Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Guiding Question and Eligibility Criteria
2.2. Literature Search
2.3. Data Extraction
2.4. Risk of Bias (RoB)
3. Results
3.1. Description of the Main Characteristics of the Studies
3.2. Patient Characteristics
3.3. Main Characteristics of Vaccine Acquisition and Preparation
3.4. Main Characteristics of Treatment
3.5. Overall Patient Evaluation
3.6. Immune Response
3.7. Quality Control
3.8. Methodological Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | Dendritic Cells |
mDC | Myeloid Dendritic Cells |
pDC | Plasmacytoid Dendritic Cells |
mCRPC | Metastatic Castration-Resistant Prostate Cancer |
PCa | Prostate Cancer |
PSA | Prostate-specific Antigen |
PBMC | Peripheral Blood Mononuclear Cells |
DCPM | Dendritic Cell Propagation Medium |
PSMA | Prostate-specific Membrane Antigens |
LNCaP | Human Prostate Adenocarcinoma Cells |
PAP | Prostate Acid Phosphatase |
PSCA | Prostate Stem Cell Antigen |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
PGE2 | Prostaglandin E2 |
MDSC | Myeloid-derived Suppressor Cells |
CRPC | Castration-resistant Prostate Cancer |
DTH | Delayed-type Hypersensitivity |
IFN-γ | Interferon γ |
TNF-α | Tumor Necrosis Factor α |
MIP-1α | Macrophage Inflammatory Protein-1 alpha |
APC | Antigen Presenting Cells |
Appendix A
Database | Descriptors | Items Found | Time | Date |
---|---|---|---|---|
Pubmed | Dendritic Cells | 104,275 | 20:13:10 | 28 October 2023 |
Male urogenital cancer clinical trial | 21,023 | 20:12:43 | 28 October 2023 | |
#1 and #2 | 187 | 20:13:37 | 28 October 2023 | |
Scopus | Dendritic Cells | 785,090 | 21:16:10 | 28 October 2023 |
Male urogenital cancer clinical trial | 9314 | 21:16:40 | 28 October 2023 | |
#1 and #2 | 380 | 21:16:58 | 28 October 2023 | |
Web Of Science | TS = Dendritic Cells | 170,576 | 21:17:30 | 28 October 2023 |
TS = male urogenital cancer clinical trial | 14 | 21:17:06 | 28 October 2023 | |
#1 and #2 | 0 | 21:17:54 | 28 October 2023 | |
Embase | Dendritic Cells | 139,497 | 21:14:39 | 28 October 2023 |
Male urogenital cancer clinical trial | 2103 | 21:15:23 | 28 October 2023 | |
#1 and #2 | 8 | 21:15:35 | 28 October 2023 |
Country | Type of Study | Participants | Participants per Group | Age | Inclusion Criteria | Ethics (Humans) | Ethics (Animals) | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
Czech Republic | Phase I/II | 25 | - | 73 | Prostatic adenocarcinoma and progression of serum PSA levels and/or radiographic progression after failure of second-line hormonal manipulation in widespread metastatic disease. Adequate hematologic, hepatic, and renal function and negative results. | - | - | 2015 | [19] |
The Netherlands | Phase II | 44 | - | Histologically confirmed adenocarcinoma of the prostate. Have not received any immunotherapy, docetaxel, abazitaxel, or treatment with the RANKL inhibitor denosumab. Absence of active autoimmune disease, absence of an active viral infection or allergy to shellfish or significant laboratory abnormalities. | Y | Y | 2019 | [20] | |
Norway | Phase I | 18 | - | - | mCRPC with metastases and an Eastern Cooperative Oncology Group (ECOG) performance status of 0–1, adequate organ function, no known hypersensitivity to vaccines or components of the cell therapy, and no contraindications to surgery. | - | - | 2023 | [21] |
United States of America | Phase I | - | - | 72 | Patients were required to have progressive mCRPC and exposure to no more than one prior chemotherapy, biologic, or combination treatment regimen for mCRPC. Visceral metastasis and narcotics for pain were allowed. Castrate testosterone level ÿ50 ng/dL. | - | - | 2017 | [22] |
Chile | Phase I | 20 | Histologically confirmed PC; progressive disease during combined ADT and androgen blockade (AB). Withdrawal of other oncological treatments for at least 4 weeks. Exclusion criteria included steroid therapy and second oncological disease. | Y | Y | 2013 | [23] | ||
Denmark | Phase II | 43 | 70 | They have histologically confirmed metastatic adenocarcinoma of the prostate progressing despite treatment with surgical or medical castration. Exclusion criteria were a positive serological status for hepatitis B, C, and/or HIV; use of immunosuppressive drugs (including prednisolone); and the presence of severe cardiac, pulmonary, and/or autoimmune diseases. | Y | 2017 | [24] | ||
United States of America | In vitro study | 14 | Aggressive tumor characteristics. | Y | - | 2000 | [25] | ||
United States of America | In vitro study | - | - | - | - | - | Y | 2001 | [25] |
United States of America | Phase I | 16 | 3-average dose and 6-maximum dose | - | Patients were required to be free from the toxic effects of prior therapies and not to have received any chemotherapy, radiotherapy, or immunotherapy for at least 6 weeks prior to study entry. In patients treated with hormonal therapy, evidence of appropriate testosterone suppression was obtained before study entry. | Y | - | 2002 | [26] |
United States of America | Phase I | 12 | - | - | Histologically proven adenocarcinoma of the prostate that progressed despite primary hormonal therapy; negative serologic tests for HIV, human T-cell lymphotropic virus type I, hepatitis B, and hepatitis C; adequate hematologic parameters, with total bilirubin equal to or less than two times the upper limit of normal; and aspartate aminotransferase and alanine aminotransferase equal to or less than five times the upper limit of normal. | - | Y | 2000 | [27] |
United States of America | Clinical study | 18 | - | - | - | Y | - | 2017 | [28] |
United States of America | Clinic trial (pilot) | 21 | 6 | - | They were required to have histologically documented prostate cancer with recurrent or metastatic disease measurable by an abnormal and/or rising serum prostate-specific Ag level and detectable serum PAP levels, and no hormonal manipulation or other therapies, including immunosuppressive radiation or chemotherapy, were performed during the study. | Y | - | 2001 | [29] |
United States of America | Phase I | 24 | 12 | - | Patients who had biopsy-proven prostate cancer and progressive disease: PSA documented as elevated on 3 occasions despite testosterone levels. | Y | - | 2010 | [30] |
United States of America | Phase I/II | 27 | - | 49–77 | Histologically confirmed prostatic adenocarcinoma. Patients after radical prostatectomy, radiotherapy, and with elevated serum PSA concentration. | Y | - | 2018 | [31] |
Germany | Phase I | 8 | - | 57–74 | Patients with HLAA*0201 allele, life expectancy of at least 3 months, and serum PSA between 5 and 150 ng/m. | Y | - | 2006 | [32] |
United States of America | Phase II | 21 | - | 70 | Rising PSA while receiving androgen ablation therapy and must have had a negative bone scan at the time of study entry. Karnofsky’s performance status of 60%, castrate testosterone levels, adequate hematologic function, and adequate liver function. | Y | - | 2004 | [33] |
Germany | Clinical trial | 15 | 12 | >18 | Histologically confirmed progressive prostate carcinoma expressing measurable serum PSA, HLA type A2, life expectancy of at least 3 months, at least one measurable and/or evaluable parameter, and adequate vital organ function. | - | Y | 2007 | [34] |
United Kingdom | In vitro | - | - | - | - | - | - | 2010 | [35] |
United States of America | Phase II | 107 | - | - | - | - | - | 2000 | [36] |
Norway | Phase I /II | 20 | 19 | - | Histologically, prostate adenocarcinoma; increased PSA in three analyses. All had continued anti-hormonal treatment during the vaccination period and 3 months after therapy. | - | Y | 2005 | [36] |
United States of America | Phase I | 51 | - | - | - | Y | - | 1996 | [37] |
United States of America | Phase II | 33 | - | - | - | - | - | 1999 | [38] |
United States of America | Phase II | 37 | - | - | - | - | - | 1999b | [39] |
United States of America | Phase II | 28 | 1st group: 17; 2nd group: 11 | - | - | - | - | 2000 | [40] |
United States of America | Phase II | 63 | 26-hormone-refractory metastatic disease; 37-suspected local recurrence | - | - | - | - | 2000b | [41] |
United States of America | Cohort | - | - | - | - | - | - | 2004 | [42] |
United Kingdom | Phase I/II | 20 | Patients with hormone-refractory prostate cancer = 15; Patients with metastatic renal cell cancer = 5 | - | - | - | - | 2004 | [43] |
United States of America | Phase I | 14 | 14 | - | - | - | - | 2015 | [44] |
United States of America | Phase II | 40 | Phase I = 12; Post-treatments (PSA 1.5) = 28 | - | - | - | - | 1998 | [45] |
Lebanon | Clinical trial | 26 | 12 | - | Documented PSA elevation on two measurements at least 2 weeks apart, a life expectancy greater than 6 months, and at least 4 weeks after surgery or radiation. Patients treated with androgen deprivation had to discontinue at least 6 weeks of all oral nonsteroidal antiandrogens and show evidence of progression. | - | - | 2006 | [46] |
United States of America | Phase I | 107 | Group AI = 33; Group AII = 33; Group B = 41 | AI—72 AII—62 B—66 | - | - | - | 1999 | [47] |
United States of America | Phase I/II | 31 | Phase I = 12; Phase II = 19 | - | Histologically confirmed adenocarcinoma of the prostate with evidence of disease progression despite androgen deprivation, serum testosterone less than 50 ng/mL, and an expected survival of at least 3 months. | - | - | 2000 | [48] |
United Kingdom | Phase II | 20 | A = 12; B = 8 | - | Patients with histologically confirmed metastatic adenocarcinoma of the prostate, have adequate hepatic, renal, and neurological function, a life expectancy of >6 months, and a Karnofsky’s performance status of >70%. | Y | - | 2005 | [49] |
Germany | Phase I/II | 12 | - | - | HLA-A*0201-positive patients with histologically proven metastatic prostate carcinoma (PCa) and tumor progression under complete androgen deprivation. | - | - | 2006 | [50] |
United States of America | in vitro | 10 | - | - | Patients with histological confirmation of prostate cancer. | Y | - | 1995 | [51] |
United States of America | in vitro | - | - | - | Patients with prostate cancer in the pre- and post-operative period of prostatectomy. | Y | - | 1996 | [37] |
United States of America | Phase I | 51 | - | - | Advanced, hormone-resistant cancer. | Y | - | 1997 | [52] |
United States of America | Phase I/II | 33 | - | - | Advanced prostate cancer. | 1998 | [53] | ||
United States of America | Phase I/II | Phase II—107 | - | - | Phase I—patients with advanced hormone-refractory prostate cancer/Phase II—clinically progressive and hormone-refractory prostate cancer (group A) and locally recurrent prostate cancer (group B). | 1999 | [54] | ||
United States of America | Clinical trial—Phase II | 107 | - | - | Group A (individuals with hormone-refractory metastatic prostate cancer)/group B (individuals admitted with recurrence of prostate cancer after primary treatment). | 1999 | [55] | ||
- | - | - | - | - | Patients with a histological diagnosis of adenocarcinoma of the prostate who had undergone prior definitive therapy for prostate cancer consisting of external beam radiotherapy and/or brachytherapy or radical prostatectomy, with or without adjuvant androgen ablation, were eligible. | 2012 | [56] | ||
China | - | - | - | - | Orchiectomy or LHRH analogue augmentation. | Y | 2005 | [57] | |
Switzerland | Clinical trial Phase I/II | 6 | - | 58–74 | Patients with hormone-refractory prostate cancer documented disease progression. In the case of antiandrogen therapy, these should have been stopped at least 6 weeks before enrollment. | 2006 | [58] | ||
Australia | - | - | - | - | (i) clinically localized disease that was pre-treated or part of a watchful waiting regimen; (ii) hormone-sensitive, metastatic disease, and rising PSA; and (iii) hormone-refractory metastatic disease. | Y | Y | 2006 | [59] |
China | - | 21 | 11 | 67.7 | - | Y | Y | 2015 | [60] |
Treatment | Dose | Route | Volume | Time | Duration | Frequency | Systemic Adjuvant | Dose | Ref. |
---|---|---|---|---|---|---|---|---|---|
DCVAC/PCa | 1 × 107 | Subcutaneous | 2.5 mL | 8 weeks | 12 days | 1 day/week for the first two weeks, and then another 10 days/6 weeks. | - | - | [19] |
A—CD1c+ mDC vaccinations. B—pDC vaccinations. C—combined CD1c+ mDC and pDC combiDC vaccinations. | A—2–5 × 106 B—1–3 × 106 C—3–8 × 106 | Intranodal | - | - | - | - | - | - | [20] |
- | - | - | - | - | - | - | - | [21] | |
- | 4, 12.5 or 40 × 106 of DCs | Intradermal | 200 μL | - | 5–8 days | 1 day/2 weeks | [22] | ||
Mixture of autologous TAPC cells and CCH. | 2 × 107 TAPC and 150 mg CCH | Subcutaneous | - | - | On the 1st, 10th, 30th, and 60th. | Saline | 150 mg of CCH | [23] | |
DCvac | 5 × 106 mRNA DCs | Intradermal | - | 30 weeks | 14 days | First 4 cycles on days 8 and 15. In the others only on day 8. | - | - | [24] |
DC transfected with mRNA encoding PSA. | - | - | - | - | - | - | - | - | [25] |
DC transfected with amplifietumor RNA. | - | - | - | - | - | - | - | - | [25] |
DCs transfected with mRNA encoding prostate-specific antigen (PSA). | 1 × 107, 3 × 107 or 5× 107 107 | Intravenous and intradermal | - | 6 weeks | 3 days | 3 days/2 weeks | - | - | [26] |
Autologous dendritic cells loaded with PAP antigen. Autologous dendritic cells exposed ex vivo to PA2024. | 0.3, 0.6, and 1.0 mg | Intravenous and subcutaneous | - | - | 5 days | 2 days/month | GM-CSF | - | [27] |
Autologous DC pulsed with TARP peptide. | - | Subcutaneous and intradermal | - | 48 to 96 weeks | 5 days | 1 day/3 weeks | - | - | [28] |
DCs loaded with recombinant PAP. | 112 × 106 | Intravenous, intradermal, and intralinfático | I—100 mL II—4 mL | - | 2 days | 2 days/month | Enriched from lymphocytes. | - | [29] |
DC/LNCaP; DC/ LNCaP-M1; DC/KLH; DC alone. | 2–10 × 106 | - | - | 8 weeks | 4 days | - | Supplemented with 1% autologous plasma, GM-CSF (180 ng/mL). | - | [30] |
Autologous DCs pulsed with the killed LNCaP cell line (DCVAC/Pca). | 1 × 107 | Subcutaneous | 5 mL | - | 12 days | - | - | - | [31] |
DCs loaded with a PSA-derived HLA-A*0201-restricted peptide cocktail. | 1 × 107 | Intradermal and intravenous | 2 mL ID and 50 mL EV | 8 weeks | 4 days | 4 days/2 weeks | - | - | [32] |
Dendritic cell stimulating agent Flt3 ligand. | 25 g/kg | Subcutaneous | - | - | 6 days | 6 cycles of 28 days | - | - | [33] |
IFN-g and autologous DCs pulsed with PSA peptides. | 2 × 106 DCs | Subcutaneous | 50 mg/m2 of body surface | 12 weeks | - | 4 days/3 weeks | - | - | [34] |
DC matured with lipopolysaccharide (LPS). Tumor lysate. | - | - | - | - | - | - | - | - | [35] |
Autologous DCs pulsed with two HLA-A2-binding PSMA-derived peptides. | - | Intravenous | - | 36 weeks | - | 1 day/week | - | - | [36] |
DCs transfected with mRNA from allogeneic prostate cancer cell lines (DU145, LNCaP, and PC-3). | - | Intranodal or intradermal | - | - | - | 4 days/week | - | - | [36] |
DC pulsed with PSMA specific for HLA-A0201. | - | Intravenous | 100 mL | 6–12 weeks | - | - | - | - | [37] |
DC and two HLA-A2-specific PSMA peptides, PSM-P1 and -P2. | - | - | - | 32 weeks | - | 1 day/week | - | - | [38] |
DC and two HLA-A2-specific prostate-specific membrane antigen (PSMA) peptides, PSM-P1 and -P2. | - | - | - | 32 weeks | - | 1 day/week | - | - | [39] |
DCs pulsed with PSMA peptides. | - | - | - | 6 weeks | - | 1 day/week | - | - | [40] |
Autologous DCs immobilized with PSM-P1 peptides. | - | - | - | - | - | 1 day/week | - | - | [41] |
Antigen-pulsed DC (MHC-peptide complexes). | - | - | - | - | - | - | - | - | [42] |
DC pulsed with allogeneic tumor lysate (HRPC and CCR). | 1–3 × 106 | Intranodal or intradermal | 200 µL | 12 weeks | - | 1 day/2 weeks | - | - | [43] |
CD1c (BDCA-1) + BDC. | Median of 66.95 × 106 | Intradermal or intravenous | - | 8 weeks | - | Days 10, 28, and 56. | - | - | [44] |
Autologous DC pulsed with PSM-P1 and PSM-P2. | 106–2 × 107 DC and 2 × 107 DC | - | 75 g/m2 /day | 36 weeks | - | - | GM-CSF | 1000 U/ml | [45] |
GM-CSF | - | - | - | - | - | - | GM-CSF | A = 125 µg/m2 and B 250 µg/m2 | [46] |
Autologous DC pulsed with PSMA peptides. | - | Subcutaneous | 75 mcg/m2/day | - | - | 1 day/week | GM-CSF | 75 µg/m2/day | [47] |
Pulsed DC with PAP (provenge). | 100 × 106 | Intravenous | 250 mL | 24 weeks | 4 days | Weeks 0, 4, and 8. A fourth infusion was administered on week 24. | - | - | [48] |
- | 1st dose = 3 × 107 DC 2nd dose = 6 × 107 DC | Intradermal | 200 μL | 26 weeks | - | - | - | - | [49] |
Pulsed DC with PSCA. | Mean global dose 3 × 106 DC | Subcutaneous | - | 8 weeks | - | 1 day/2 weeks | - | - | [50] |
DC with LNCaP lysate. | - | - | - | - | - | - | - | - | [51] |
DC with PSMA lysate. | - | - | - | - | - | - | - | - | [37] |
Autologous DC pulsed with a PSM-P1 and -P2 cocktail. | 1, 5, 10 ou 20 × 106 | Intravenous | 1 g/mL | 6–8 weeks | 4–5 days | - | - | - | [52] |
Autologous DC pulsed with a PSM-P1 and -P2 cocktail. | - | Intravenous | 100 mL | 6 weeks | 6 days | - | GM-CSF | 75 g/m2/day | [53] |
Autologous DC pulsed with a PSM-P1 and -P2 cocktail. | Maximum acceptable dose | Intravenous | 7 weeks | 7 days | - | GM-CSF | - | [54] | |
Autologous DC pulsed with a PSM-P1 and -P2 cocktail. | - | Intravenous | 100 mL | 6 weeks | 6 days | - | GM-CSF | - | [55] |
rhGM-CSF | 250 µg/m2 /day | Subcutaneous | - | 4 weeks | 14 days | - | - | - | [56] |
- | - | - | - | - | - | - | - | - | [57] |
DC were pulsed with the set of peptides, PSCA14–22, PAP299–307, PSMA4–12, and PSA154–163. | 4 × 106 DC + 10 lg/mL from each peptide | Intradermal | - | 2 weeks | 6 days/week | - | - | - | [58] |
CD11cþCD1cþ, CD11cþCD16þ, and CD11cCD123 + BDC subsets in whole blood. | - | - | - | - | - | - | - | - | [59] |
DCs pulsed with rPSMA + rSurvivin. | 5 × 106 | Subcutaneous | - | - | 5 days | 3 days/15 days 2 days/month | - | - | [60] |
References
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- World Health Organization Global Health Estimates; World Health Organization: Geneva, Switzerland, 2022.
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Palecki, J.; Bhasin, A.; Bernstein, A.; Mille, P.J.; Tester, W.J.; Kelly, W.K.; Zarrabi, K.K. T-Cell Redirecting Bispecific Antibodies: A Review of a Novel Class of Immuno-Oncology for Advanced Prostate Cancer. Cancer Biol. Ther. 2024, 25, 2356820. [Google Scholar] [CrossRef]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Journal of clinical oncology Nivolumab Versus Docetaxel in Previously Treated Patients with Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef]
- Hato, L.; Vizcay, A.; Eguren, I.; Pérez-Gracia, J.L.; Rodríguez, J.; Gállego Pérez-Larraya, J.; Sarobe, P.; Inogés, S.; Díaz de Cerio, A.L.; Santisteban, M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers 2024, 16, 981. [Google Scholar] [CrossRef]
- Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Morales Barrera, R.; et al. Pembrolizumab Alone or Combined with Chemotherapy versus Chemotherapy as First-Line Therapy for Advanced Urothelial Carcinoma (KEYNOTE-361): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Heras-Murillo, I.; Adán-Barrientos, I.; Galán, M.; Wculek, S.K.; Sancho, D. Dendritic Cells as Orchestrators of Anticancer Immunity and Immunotherapy. Nat. Rev. Clin. Oncol. 2024, 21, 257–277. [Google Scholar] [CrossRef]
- Pacheco, H.F.; Andrade, M.L.F.; Santana, B.P.; Rodrigues, J.G.; Gabiatti, B.; Fernandes, J.L.F.; Costa-Madeira, J.; Dias, F.C.R.; Gomes, A.d.O.; Michelin, M.A.; et al. Dendritic cells as an immunotherapy tool as células dendríticas como ferramenta de imunoterapia. Acta Biol. Bras. 2024, 7, 6–19. [Google Scholar]
- Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.Y.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; et al. T Cell Infiltration of the Prostate Induced by Androgen Withdrawal in Patients with Prostate Cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 14565–14570. [Google Scholar] [CrossRef]
- Lubong-Sabado, R.; Bhardwaj, N. Directing Dendritic Cell Immunotherapy towards Successful Cancer Treatment. Immunotherapy 2010, 2, 37–56. [Google Scholar] [CrossRef]
- He, M.; Roussak, K.; Ma, F.; Borcherding, N.; Garin, V.; White, M.; Schutt, C.; Jensen, T.I.; Zhao, Y.; Iberg, C.A.; et al. CD5 Expression by Dendritic Cells Directs T Cell Immunity and Sustains Immunotherapy Responses. Science 2023, 379, eabg2752. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Bruno, T.C.; Maris, C.H.; Xu, L.; Thoburn, C.J.; Demarzo, A.M.; Meeker, A.K.; Isaacs, W.B.; Drake, C.G. Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals T H17 and Treg Skewing. Clin. Cancer Res. 2008, 14, 3254–3261. [Google Scholar] [CrossRef]
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic Patterns of Prostate Cancer: An Autopsy Study of 1,589 Patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef]
- Wang, I.; Song, L.; Wang, B.Y.; Kalebasty, A.R.; Uchio, E.; Zi, X. Prostate Cancer Immunotherapy: A Review of Recent Advancements with Novel Treatment Methods and Efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210. [Google Scholar]
- Sutherland, S.I.M.; Ju, X.; Horvath, L.G.; Clark, G.J. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front. Immunol. 2021, 12, 641307. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.C.A. Assessing Risk of Bias in a Randomized Trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: London, UK, 2021. [Google Scholar]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J.; et al. Phase I/II Clinical Trial of Dendritic-Cell Based Immunotherapy (DCVAC/PCa) Combined with Chemotherapy in Patients with Metastatic, Castration-Resistant Prostate Cancer. Oncotarget 2015, 6, 18192. [Google Scholar] [CrossRef]
- Westdorp, H.; Creemers, J.H.A.; Van Oort, I.M.; Schreibelt, G.; Gorris, M.A.J.; Mehra, N.; Simons, M.; De Goede, A.L.; Van Rossum, M.M.; Croockewit, A.J.; et al. Blood-Derived Dendritic Cell Vaccinations Induce Immune Responses That Correlate with Clinical Outcome in Patients with Chemo-Naive Castration-Resistant Prostate Cancer. J. Immunother. Cancer 2019, 7, 302. [Google Scholar] [CrossRef]
- Thomsen, L.C.V.; Honoré, A.; Reisæter, L.A.R.; Almås, B.; Børretzen, A.; Helle, S.I.; Førde, K.; Kristoffersen, E.K.; Kaada, S.H.; Melve, G.K.; et al. A Phase I Prospective, Non-Randomized Trial of Autologous Dendritic Cell-Based Cryoimmunotherapy in Patients with Metastatic Castration-Resistant Prostate Cancer. Cancer Immunology. Immunotherapy 2023, 72, 2357–2373. [Google Scholar] [CrossRef]
- Sonpavde, G.; McMannis, J.D.; Bai, Y.; Seethammagari, M.R.; Bull, J.M.C.; Hawkins, V.; Dancsak, T.K.; Lapteva, N.; Levitt, J.M.; Moseley, A.; et al. Phase I Trial of Antigen-Targeted Autologous Dendritic Cell-Based Vaccine with in Vivo Activation of Inducible CD40 for Advanced Prostate Cancer. Cancer Immunology. Immunotherapy 2017, 66, 1345–1357. [Google Scholar] [CrossRef]
- Reyes, D.; Salazar, L.; Espinoza, E.; Pereda, C.; Castellón, E.; Valdevenito, R.; Huidobro, C.; Inés Becker, M.; Lladser, A.; López, M.N.; et al. Tumour Cell Lysate-Loaded Dendritic Cell Vaccine Induces Biochemical and Memory Immune Response in Castration-Resistant Prostate Cancer Patients. Br. J. Cancer 2013, 109, 1488–1497. [Google Scholar] [CrossRef]
- Kongsted, P.; Borch, T.H.; Ellebaek, E.; Iversen, T.Z.; Andersen, R.; Met, Ö.; Hansen, M.; Lindberg, H.; Sengeløv, L.; Svane, I.M. Dendritic Cell Vaccination in Combination with Docetaxel for Patients with Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase II Study. Cytotherapy 2017, 19, 500–513. [Google Scholar] [CrossRef]
- Heiser, A.; Maurice, M.A.; Yancey, D.R.; Wu, N.Z.; Dahm, P.; Pruitt, S.K.; Boczkowski, D.; Nair, S.K.; Ballo, M.S.; Gilboa, E.; et al. Induction of Polyclonal Prostate Cancer-Specific CTL Using Dendritic Cells Transfected with Amplified Tumor RNA. J. Immunol. 2001, 166, 2953–2960. [Google Scholar] [CrossRef]
- Heiser, A.; Coleman, D.; Dannull, J.; Yancey, D.; Maurice, M.A.; Lallas, C.D.; Dahm, P.; Niedzwiecki, D.; Gilboa, E.; Vieweg, J. Autologous Dendritic Cells Transfected with Prostate-Specific Antigen RNA Stimulate CTL Responses against Metastatic Prostate Tumors. J. Clin. Investig. 2002, 109, 409–417. [Google Scholar] [CrossRef]
- Burch, P.A.; Breen, J.K.; Buckner, J.C.; Gastineau, D.A.; Kaur, J.A.; Laus, R.L.; Padley, D.J.; Peshwa, M.V.; Pitot, H.C.; Richardson, R.L.; et al. Priming Tissue-Specific Cellular Immunity in a Phase I Trial of Autologous Dendritic Cells for Prostate Cancer. Clin. Cancer Res. 2000, 6, 2175–2182. [Google Scholar]
- Castiello, L.; Sabatino, M.; Ren, J.; Terabe, M.; Khuu, H.; Wood, L.V.; Berzofsky, J.A.; Stroncek, D.F. Expression of CD14, IL10, and Tolerogenic Signature in Dendritic Cells Inversely Correlate with Clinical and Immunologic Response to TARP Vaccination in Prostate Cancer Patients. Clin. Cancer Res. 2017, 23, 3352–3364. [Google Scholar] [CrossRef]
- Fong, L.; Brockstedt, D.; Benike, C.; Breen, J.K.; Strang, G.; Ruegg, C.L.; Engleman, E.G. Dendritic Cell-Based Xenoantigen Vaccination for Prostate Cancer Immunotherapy. J. Immunol. 2001, 167, 7150–7156. [Google Scholar] [CrossRef]
- Frank, M.O.; Kaufman, J.; Tian, S.; Suärez-Farïas, M.; Parveen, S.; Blachëre, N.E.; Morris, M.J.; Slovin, S.; Scher, H.I.; Albert, M.L.; et al. Harnessing Naturally Occurring Tumor Immunity: A Clinical Vaccine Trial in Prostate Cancer. PLoS ONE 2010, 5, e12367. [Google Scholar] [CrossRef]
- Fucikova, J.; Podrazil, M.; Jarolim, L.; Bilkova, P.; Hensler, M.; Becht, E.; Gasova, Z.; Klouckova, J.; Kayserova, J.; Horvath, R.; et al. Phase I/II Trial of Dendritic Cell-Based Active Cellular Immunotherapy with DCVAC/PCa in Patients with Rising PSA after Primary Prostatectomy or Salvage Radiotherapy for the Treatment of Prostate Cancer. Cancer Immunology. Immunotherapy 2018, 67, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Fuessel, S.; Meye, A.; Schmitz, M.; Zastrow, S.; Linné, C.; Richter, K.; Löbel, B.; Hakenberg, O.W.; Hoelig, K.; Rieber, E.P.; et al. Vaccination of Hormone-Refractory Prostate Cancer Patients with Peptide Cocktail-Loaded Dendritic Cells: Results of a Phase I Clinical Trial. Prostate 2006, 66, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Higano, C.S.; Vogelzang, N.J.; Sosman, J.A.; Feng, A.; Caron, D.; Small, E.J. Safety and Biological Activity of Repeated Doses of Recombinant Human Flt3 Ligand in Patients with Bone Scan-Negative Hormone-Refractory Prostate Cancer. Clin. Cancer Res. 2004, 10, 1219–1225. [Google Scholar] [CrossRef]
- Hildenbrand, B.; Sauer, B.; Kalis, O.; Stoll, C.; Freudenberg, M.A.; Niedermann, G.; Giesler, J.M.; Jüttner, E.; Peters, J.H.; Häring, B.; et al. Immunotherapy of Patients with Hormone-Refractory Prostate Carcinoma Pre-Treated with Interferon-Gamma and Vaccinated with Autologous PSA-Peptide Loaded Dendritic Cells—A Pilot Study. Prostate 2007, 67, 500–508. [Google Scholar] [CrossRef]
- Ismail, M.; Morgan, R.; Harrington, K.; Davies, J.; Pandha, H. Immunoregulatory Effects of Freeze Injured Whole Tumour Cells on Human Dendritic Cells Using an in Vitro Cryotherapy Model. Cryobiology 2010, 61, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.J.; Kyte, J.A.; Kvalheim, G.; Aamdal, S.; Dueland, S.; Hauser, M.; Hammerstad, H.; Waehre, H.; Raabe, N.; Gaudernack, G. Immunotherapy with Allotumour MRNA-Transfected Dendritic Cells in Androgen-Resistant Prostate Cancer Patients. Br. J. Cancer 2005, 93, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.; Tjoa, B.; Ragde, H.; Kenny, G.; Boynton, A. Phase I Clinical Trial: T-Cell Therapy for Prostate Cancer Using Autologous Dendritic Cells Pulsed With HLA-A020 I-Specific Peptides from Prostate-Specific Membrane Antigen. Prostate 1996, 29, 371–380. [Google Scholar] [CrossRef]
- Murphy, G.P.; Tjoa, B.A.; Simmons, S.J.; Ragde, H.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Troychak, M.J.; Salgaller, M.L.; Boynton, A.L. Phase II Prostate Cancer Vaccine Trial: Report of a Study Involving 37 Patients with Disease Recurrence Following Primary Treatment. Prostate 1999, 39, 54–59. [Google Scholar] [CrossRef]
- Murphy, G.P.; Tjoa, B.A.; Simmons, S.J.; Jarisch, J.; Bowes, V.A.; Ragde, H.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Cobb, O.E.; et al. Rapid Communication Infusion of Dendritic Cells Pulsed With HLA-A2-Specific Prostate-Specific Membrane Antigen Peptides: A Phase II Prostate Cancer Vaccine Trial Involving Patients With Hormone-Refractory Metastatic Disease. Prostate 1999, 38, 73–78. [Google Scholar] [CrossRef]
- Murphy, G.P.; Snow, P.; Simmons, S.J.; Tjoa, B.A.; Rogers, M.K.; Brandt, J.; Healy, C.G.; Bolton, W.E.; Rodbold, D. Use of Artificial Neural Networks in Evaluating Prognostic Factors Determining the Response to Dendritic Cells Pulsed With PSMA Peptides in Prostate Cancer Patients. Prostate 2000, 42, 67–72. [Google Scholar] [CrossRef]
- Murphy, G.P.; Tjoa, B.A.; Simmons, S.J.; Rogers, M.K.; Kenny, G.M.; Jarisch, J. Higher-Dose and Less Frequent Dendritic Cell Infusions With PSMA Peptides in Hormone-Refractory Metastatic Prostate Cancer Patients. Prostate 2000, 43, 59–62. [Google Scholar] [CrossRef]
- Orange, D.E.; Jegathesan, M.; Blachère, N.E.; Frank, M.O.; Scher, H.I.; Albert, M.L.; Darnell, R.B. Effective Antigen Cross-Presentation by Prostate Cancer Patients’ Dendritic Cells: Implications for Prostate Cancer Immunotherapy. Prostate Cancer Prostatic Dis. 2004, 7, 63–72. [Google Scholar] [CrossRef]
- Pandha, H.S.; John, R.J.; Hutchinson, J.; James, N.; Whelan, M.; Corbishley, C.; Dalgleish, A.G. Dendritic Cell Immunotherapy for Urological Cancers Using Cryopreserved Allogeneic Tumour Lysate-Pulsed Cells: A Phase I/II Study. BJU Int. 2004, 94, 412–418. [Google Scholar] [CrossRef]
- Prue, R.L.; Vari, F.; Radford, K.J.; Tong, H.; Hardy, M.Y.; Rozario, R.D.’; Waterhouse, N.J.; Rossetti, T.; Coleman, R.; Tracey, C.; et al. A Phase I Clinical Trial of CD1c (BDCA-1) + Dendritic Cells Pulsed With HLA-A*0201 Peptides for Immunotherapy of Metastatic Hormone Refractory Prostate Cancer. J. Immunother. 2015, 38, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Salgaller, M.L.; Lodge, P.A.; Mclean, J.G.; Tjoa, B.A.; Loftus, D.J.; Ragde, H.; Kenny, G.M.; Rogers, M.; Boynton, A.L.; Murphy, G.P. Report of Immune Monitoring of Prostate Cancer Patients Undergoing T-Cell Therapy Using Dendritic Cells Pulsed With HLA-A2-Specific Peptides From Prostate-Specific Membrane Antigen (PSMA). Prostate 1998, 35, 144–151. [Google Scholar] [CrossRef]
- Schwaab, T.; Tretter, C.P.G.; Gibson, J.J.; Cole, B.F.; Schned, A.R.; Harris, R.; Fisher, J.L.; Crosby, N.; Stempkowski, L.M.; Heaney, J.A.; et al. Tumor-Related Immunity in Prostate Cancer Patients Treated with Human Recombinant Granulocyte Monocyte-Colony Stimulating Factor (GM-CSF). Prostate 2006, 66, 667–674. [Google Scholar] [CrossRef]
- Simmons, S.J.; Tjoa, B.A.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Ragde, H.; Troychak, M.J.; Boynton, A.L.; Murphy, G.P. GM-CSF as a Systemic Adjuvant in a Phase II Prostate Cancer Vaccine Trial. Prostate 1999, 39, 291–297. [Google Scholar] [CrossRef]
- Small, E.; Fratesi, P.; Reese, D.M.; Strang, G.; Lous, R.; Peshwa, M.V.; Valone, F.H. Immunotherapy of Hormone-Refractory Prostate Cancer With Antigen-Loaded Dendritic Cells. J. Clin. Oncol. 2000, 18, 3894–3903. [Google Scholar] [CrossRef]
- Su, Z.; Dannull, J.; Yang, B.K.; Dahm, P.; Coleman, D.; Yancey, D.; Sichi, S.; Niedzwiecki, D.; Boczkowski, D.; Gilboa, E.; et al. Telomerase MRNA-Transfected Dendritic Cells Stimulate Antigen-Specific CD8+ and CD4+ T Cell Responses in Patients with Metastatic Prostate Cancer. J. Immunol. 2005, 174, 3798–3807. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Kaskel, A.K.; Zeiser, R.; Jochim, R.; Robbel, C.; Schultze-Seemann, W.; Waller, C.F.; Veelken, H. Vaccination of Advanced Prostate Cancer Patients with PSCA and PSA Peptide-Loaded Dendritic Cells Induces DTH Responses That Correlate with Superior Overall Survival. Int. J. Cancer 2006, 119, 2428–2434. [Google Scholar] [CrossRef]
- Tjoa, B.; Erickson, S.; Barren, R.; Ragde, H.; Kenny, G.; Boynton, A.; Murphy, G. In Vitro Propagated Dendritic Cells From Prostate Cancer Patients as a Component of Prostate Cancer Lmmunotherapy. Prostate 1995, 27, 63–69. [Google Scholar] [CrossRef]
- Salgaller, M.L.; Tjoa, B.A.; Lodge, P.A.; Ragde, H.; Kenny, G.; Boynton, A.; Murphy, G.P. Dendritic Cell-Based Immunotherapy of Prostate Cancer. Crit. Rev. Immunol. 1997, 18, 109–119. [Google Scholar] [CrossRef]
- Tjoa, B.A.; Simmons, S.J.; Bowes, V.A.; Ragde, H.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Cobb, O.E.; Ireton, R.C.; Troychak, M.J.; et al. Rapid Communication Evaluation of Phase I/II Clinical Trials in Prostate Cancer With Dendritic Cells and PSMA Peptides. Prostate 1998, 36, 39–44. [Google Scholar] [CrossRef]
- Tjoa, B.A.; Lodge, P.A.; Salgaller, M.L.; Boynton, A.L.; Murphy, G.P. Dendritic Cell-Based Immunotherapy for Prostate Cancer. CA Cancer J. Clin. 1999, 49, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Tjoa, B.A.; Simmons, S.J.; Elgamal, A.; Rogers, M.; Ragde, H.; Kenny, G.M.; Troychak, M.J.; Boynton, A.L.; Murphy, G.P. Follow-Up Evaluation of a Phase II Prostate Cancer Vaccine Trial. Prostate 1999, 40, 125–129. [Google Scholar] [CrossRef]
- Triozzi, P.L.; Achberger, S.; Aldrich, W.; Elson, P.; Garcia, J.; Dreicer, R. Differential Immunologic and MicroRNA Effects of 2 Dosing Regimens of Recombinant Human Granulocyte/Macrophage Colony Stimulating Factor. J. Immunother. 2012, 35, 587–594. [Google Scholar] [CrossRef]
- Waeckerle-Men, Y.; Uetz-Von Allmen, E.; Von Moos, R.; Classon, B.J.; Scandella, E.; Schmid, H.P.; Ludewig, B.; Groettrup, M.; Gillessen, S. Dendritic Cells Generated from Patients with Androgen-Independent Prostate Cancer Are Not Impaired in Migration and T-Cell Stimulation. Prostate 2005, 64, 323–331. [Google Scholar] [CrossRef]
- Waeckerle-Men, Y.; Uetz-Von Allmen, E.; Fopp, M.; Von Moos, R.; Böhme, C.; Schmid, H.P.; Ackermann, D.; Cerny, T.; Ludewig, B.; Groettrup, M.; et al. Dendritic Cell-Based Multi-Epitope Immunotherapy of Hormone-Refractory Prostate Carcinoma. Cancer Immunology. Immunother. 2006, 55, 1524–1533. [Google Scholar] [CrossRef]
- Wilkinson, R.; Kassianos, A.J.; Swindle, P.; Hart, D.N.J.; Radford, K.J. Numerical and Functional Assessment of Blood Dendritic Cells in Prostate Cancer Patients. Prostate 2006, 66, 180–192. [Google Scholar] [CrossRef]
- Xi, H.-B.; Wang, G.-X.; Fu, B.; Liu, W.-P.; Li, Y. Survivin and PSMA Loaded Dendritic Cell Vaccine for the Treatment of Prostate Cancer. Biol. Pharm. Bull. 2015, 38, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, C.; Merchant, A.; Zaharie, A.T.; Horak, P.; Marhold, M.; Krainer, M. Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers 2022, 14, 5719. [Google Scholar] [CrossRef]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef]
- Melief, C.J.M.; Van Hall, T.; Arens, R.; Ossendorp, F.; Van Der Burg, S.H. Therapeutic Cancer Vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Blanc, C.; Granier, C.; Saldmann, A.; Tanchot, C.; Tartour, E. Therapeutic Cancer Vaccine: Building the Future from Lessons of the Past. Semin. Immunopathol. 2019, 41, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Santos, P.M.; Butterfield, L.H. Dendritic Cell-Based Cancer Vaccines. J. Immunol. 2018, 200, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.D.; Sivarapatna, A.; Gress, R.E. The Aging Immune System and Its Relationship with Cancer. Aging Health 2011, 7, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Almeida Barbosa, C.; Meira Veras, R. Perspectivas Históricas Dos Comitês de Ética Em Pesquisa No Brasil: Uma Revisão Da Literatura Historical Perspectives of Ethics Committees in Research in Brazil: A Literature Review. Saúde Transformação Social/Health Social Change 2020, 11, 133–142. [Google Scholar]
- Pinsky, P.F.; Prorok, P.C.; Kramer, B.S. Prostate Cancer Screening-A Perspective on the Current State of the Evidence. N. Engl. J. Med. 2017, 376, 1285–1289. [Google Scholar] [CrossRef]
- Loblaw, A.; Souter, L.H.; Canil, C.; Breau, R.H.; Haider, M.; Jamnicky, L.; Morash, R.; Surchin, M.; Matthew, A. Follow-up Care for Survivors of Prostate Cancer—Clinical Management: A Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline. Clin. Oncol. 2017, 29, 711–717. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- Van Der Burg, S.H.; Arens, R.; Ossendorp, F.; Van Hall, T.; Melief, C.J.M. Vaccines for Established Cancer: Overcoming the Challenges Posed by Immune Evasion. Nat. Rev. Cancer 2016, 16, 219–233. [Google Scholar] [CrossRef]
- Ju, H.; Xing, W.; Yang, J.; Zheng, Y.; Jia, X.; Zhang, B.; Ren, H. An Effective Cytokine Adjuvant Vaccine Induces Autologous T-Cell Response against Colon Cancer in an Animal Model. BMC Immunol. 2016, 17, 31. [Google Scholar] [CrossRef]
- Jaatinen, T.; Laine, J. Isolation of Mononuclear Cells from Human Cord Blood by Ficoll-Paque Density Gradient. Curr. Protoc. Stem Cell Biol. 2007, 1, 2A-1. [Google Scholar] [CrossRef]
- He, H.; Tang, L.; Jiang, N.; Zheng, R.; Li, W.; Gu, Y.; Wang, M. Characterization of Peripheral Blood Mononuclear Cells Isolated Using Two Kinds of Leukocyte Filters. Transfus. Clin. Et. Biol. 2020, 27, 10–17. [Google Scholar] [CrossRef]
- Rashid, M.U.; Coombs, K.M. Serum-Reduced Media Impacts on Cell Viability and Protein Expression in Human Lung Epithelial Cells. J. Cell Physiol. 2019, 234, 7718–7724. [Google Scholar] [CrossRef]
- de Vries, I.J.M.; Eggert, A.A.O.; Scharenborg, N.M.; Vissers, J.L.M.; Lesterhuis, W.J.; Boerman, C.; Punt, J.A.; Adema, G.J.; Figdor, C.G. Phenotypical and Functional Characterization of Clinical Grade Dendritic Cells. J. Immunother. 2002, 25, 429–438. [Google Scholar] [CrossRef]
- Jonuleit, H.; Schmitt, E. The regulatory T cell family: Distinct subsets and their interrelations. J. Immunol. 2003, 171, 6323–6327. [Google Scholar] [CrossRef]
- Bol, K.F.; Aarntzen, E.H.J.G.; Hout, F.E.M.; Schreibelt, G.; Creemers, J.H.A.; Lesterhuis, W.J.; Gerritsen, W.R.; Grunhagen, D.J.; Verhoef, C.; Punt, C.J.A.; et al. Favorable Overall Survival in Stage III Melanoma Patients after Adjuvant Dendritic Cell Vaccination. Oncoimmunology 2016, 5, e1057673. [Google Scholar] [CrossRef]
- Shimizu, K.; Fields, R.C.; Giedlin, M.; Mulé, J.J. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines. Proc. Natl. Acad. Sci. USA 1999, 96, 2268–2273. [Google Scholar] [CrossRef]
- Gu, Y.Z.; Zhao, X.; Song, X.R. Ex Vivo Pulsed Dendritic Cell Vaccination against Cancer. Acta Pharmacol. Sin. 2020, 41, 959–969. [Google Scholar] [CrossRef]
- Adema, G.J.; De Vries, I.J.M.; Punt, C.J.A.; Figdor, C.G. Migration of Dendritic Cell Based Cancer Vaccines: In Vivo Veritas? Curr. Opin. Immunol. 2005, 17, 170–174. [Google Scholar] [CrossRef]
- Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; et al. Therapeutic Vaccines for Cancer: An Overview of Clinical Trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–524. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Dalod, M.; Chelbi, R.; Malissen, B.; Lawrence, T. Dendritic Cell Maturation: Functional Specialization through Signaling Specificity and Transcriptional Programming. EMBO J. 2014, 33, 1104–1116. [Google Scholar] [CrossRef]
- Blanco, P.; Palucka, A.K.; Pascual, V.; Banchereau, J. Dendritic Cells and Cytokines in Human Inflammatory and Autoimmune Diseases. Cytokine Growth Factor. Rev. 2008, 19, 41–52. [Google Scholar] [CrossRef]
- Alcaide, E.G.; Krishnarajah, S.; Junker, F. Dendritic Cell Tumor Vaccination via Fc Gamma Receptor Targeting: Lessons Learned from Pre-Clinical and Translational Studies. Vaccines 2021, 9, 409. [Google Scholar] [CrossRef]
- Carreras, B.; Griffin, D.E.; Silverstein, A.M. Sindbis Virus—Induced Ocular Immunopathology. Invest. Ophthalmol. Vis. Sci. 1982, 22, 571–578. [Google Scholar]
- Black, C.A. Delayed type hypersensitivity: Current theories with a historic perspective. Dermatol. Online J. 1999, 5, 7. [Google Scholar] [CrossRef]
- Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The Tumor Immune Contexture of Prostate Cancer. Front. Immunol. 2019, 10, 603. [Google Scholar] [CrossRef]
- Dias, F.C.R.; Oliveira, J.B.; Pinheiro, B.S.S.; Pacheco, H.F.M.; Rodrigues, J.G.; Fernandes, J.L.F.; Gomes, M.L.M. Mechanism of Tumor Growth and Metastasis. In Interdisciplinary Cancer Research; Rezaei, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Zeng, D.; Wu, J.; Luo, H.; Li, Y.; Xiao, J.; Peng, J.; Ye, Z.; Zhou, R.; Yu, Y.; Wang, G.; et al. Tumor Microenvironment Evaluation Promotes Precise Checkpoint Immunotherapy of Advanced Gastric Cancer. J. Immunother. Cancer 2021, 9, e002467. [Google Scholar] [CrossRef] [PubMed]
- Mughees, M.; Kaushal, J.B.; Sharma, G.; Wajid, S.; Batra, S.K.; Siddiqui, J.A. Chemokines and Cytokines: Axis and Allies in Prostate Cancer Pathogenesis. Semin. Cancer Biol. 2022, 86, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Fay, E.K.; Graff, J.N. Immunotherapy in Prostate Cancer. Cancers 2020, 12, 1752. [Google Scholar] [CrossRef]
- Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; Kroemer, G. The Immune Contexture in Cancer Prognosis and Treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer Immunotherapy Comes of Age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef]
- Seder, R.A.; Boulay, J.; Finkelman, F.; Barbier, S.; Le Gros, G.; Paul, W.E. Cd8+ t cells can be primed in vitro to produce IL-4. J. Immunol. 1992, 148, 1652–1656. [Google Scholar] [CrossRef]
- Pulendran, B.; Smith, J.L.; Caspary, G.; Brasel, K.; Pettit, D.; Maraskovsky, E.; Maliszewski, C.R. Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response in Vivo. Proc. Natl. Acad. Sci. USA 1999, 96, 1036–1041. [Google Scholar] [CrossRef]
- LeibundGut-Landmann, S.; Groß, O.; Robinson, M.J.; Osorio, F.; Slack, E.C.; Tsoni, S.V.; Schweighoffer, E.; Tybulewicz, V.; Brown, G.D.; Ruland, J.; et al. Syk- and CARD9-Dependent Coupling of Innate Immunity to the Induction of T Helper Cells That Produce Interleukin 17. Nat. Immunol. 2007, 8, 630–638. [Google Scholar] [CrossRef]
- Mempel, T.R.; Henrickson, S.E.; Von Andrian, U.H. T-Cell Priming by Dendritic Cells in Lymph Nodes Occurs in Three Distinct Phases. Nature 2004, 427, 154–159. [Google Scholar] [CrossRef]
- Bousso, P.; Robey, E. Dynamics of CD8+ T Cell Priming by Dendritic Cells in Intact Lymph Nodes. Nat. Immunol. 2003, 4, 579–585. [Google Scholar] [CrossRef]
- Steinman, R.M.; Young, J.W. Signals Arising from Antigen-Presenting Cells. Curr. Opin. Immunol. 1991, 3, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.P. CD28-B7 Interactions in T-Cel1 Activation. Curr. Opin. Immunol. 1994, 6, 414–419. [Google Scholar] [CrossRef]
- Van Kooten, G.; Banchereau, J. CD40-CD40 Ligand. J. Leukoc. Biol. 2000, 67, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Ridge, J.P.; Di Rosa, F.; Matzinger, P. A Conditioned Dendritic Cell Can Be a Temporal Bridge between a CD4 T-Helper and a T-Killer Cell. Nature 1998, 393, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.E.; Soto-Cid, A.; Aranda-Abreu, G.E.; Díaz, R.; Rojas, F.; Garcia, L.I.; Toledo, R.; Manzo, J. A Study of the Prostate, Androgens and Sexual Activity of Male Rats. Reprod. Biol. Endocrinol. 2007, 5, 11. [Google Scholar] [CrossRef]
- Van Deusen, K.E.; Rajapakse, R.; Bullock, T.N.J. CD70 Expression by Dendritic Cells Plays a Critical Role in the Immunogenicity of CD40-Independent, CD4+ T Cell-Dependent, Licensed CD8+ T Cell Responses. J. Leukoc. Biol. 2009, 87, 477–485. [Google Scholar] [CrossRef]
- Croft, M. Co-Stimulatory Members of the TNFR Family: Keys to Effective T-Cell Immunity? Nat. Rev. Immunol. 2003, 3, 609–620. [Google Scholar] [CrossRef]
- Arens, R.; Schepers, K.; Nolte, M.A.; Van Oosterwijk, M.F.; Van Lier, R.A.W.; Schumacher, T.N.M.; Van Oers, M.H.J. Tumor Rejection Induced by CD70-Mediated Quantitative and Qualitative Effects on Effector CD8+ T Cell Formation. J. Exp. Med. 2004, 199, 1595–1605. [Google Scholar] [CrossRef]
- Soares, H.; Waechter, H.N.; Glaichenhaus, N.; Mougneau, E.; Yagita, H.; Mizenina, O.; Dudziak, D.; Nussenzweig, M.C.; Steinman, R.M. A Subset of Dendritic Cells Induces CD4+ T Cells to Produce IFN-γ by an IL-12-Independent but CD70-Dependent Mechanism in Vivo. J. Exp. Med. 2007, 204, 1095–1106. [Google Scholar] [CrossRef]
- Upadhyay, R.; Boiarsky, J.A.; Pantsulaia, G.; Svensson-Arvelund, J.; Lin, M.J.; Wroblewska, A.; Bhalla, S.; Scholler, N.; Bot, A.; Rossi, J.M.; et al. A Critical Role for Fas-Mediated off-Target Tumor Killing in t-Cell Immunotherapy. Cancer Discov. 2021, 11, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, Z.Z.; Zhu, S.W.; Wan, S.C.; Zhang, M.J.; Zhang, B.X.; Yang, Q.C.; Xiao, Y.; Li, H.; Mao, L.; et al. CTLA-4 Blockade Induces Tumor Pyroptosis via CD8+ T Cells in Head and Neck Squamous Cell Carcinoma. Mol. Ther. 2023, 31, 2154–2168. [Google Scholar] [CrossRef]
- Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; et al. CD8+ T Cells Regulate Tumour Ferroptosis during Cancer Immunotherapy. Nature 2019, 569, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Van Marle, G.; Antony, J.M.; Silva, C.; Sullivan, A.; Power, C. Aberrant Cortical Neurogenesis in a Pediatric NeuroAIDS Model: Neurotrophic Effects of Growth Hormone. AIDS 2005, 19, 1781–1791. [Google Scholar] [CrossRef]
- Kennedy, R. Celis E Multiple Roles for CD4 1 T Cells in Anti-Tumor Immune Responses. Immunol. Rev. 2008, 222, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Quezada, S.A.; Jarvinen, L.Z.; Lind, E.F.; Noelle, R.J. CD40/CD154 Interactions at the Interface of Tolerance and Immunity. Annu Rev. Immunol. 2004, 22, 307–328. [Google Scholar] [CrossRef]
- Xie, Y.; Akpinarli, A.; Maris, C.; Hipkiss, E.L.; Lane, M.; Kwon, E.K.M.; Muranski, P.; Restifo, N.P.; Antony, P.A. Naive Tumor-Specific CD4+ T Cells Differentiated in Vivo Eradicate Established Melanoma. J. Exp. Med. 2010, 207, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Badr, M.E.S.G.; Miyauchi, K.; Ishihara, C.; Onishi, R.; Guo, Z.; Sasaki, Y.; Ike, H.; Takumi, A.; Tsuji, N.M.; et al. CRT AM Determines the CD4+ Cytotoxic T Lymphocyte Lineage. J. Exp. Med. 2016, 213, 123–138. [Google Scholar] [CrossRef]
- Matsuzaki, J.; Tsuji, T.; Luescher, I.F.; Shiku, H.; Mineno, J.; Okamoto, S.; Old, L.J.; Shrikant, P.; Gnjatic, S.; Odunsi, K. Direct Tumor Recognition by a Human CD4+ T-Cell Subset Potently Mediates Tumor Growth Inhibition and Orchestrates Anti-Tumor Immune Responses. Sci. Rep. 2015, 5, 14896. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Baccala, R.; Beutler, B.; Kono, D.H. Type I Interferons (α/β) in Immunity and Autoimmunity. Annu. Rev. Immunol. 2005, 23, 307–336. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type i Interferon Responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Stambolic, V.; Auzuki, A.; De La Pompa, J.L.; Brothers, G.M.; Mirtsos, J.; Sasaki, T.; Ruland, J.; Penninger, J.M.; Siderovski David, P.; Mak, T.W. Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell 1998, 95, 29–39. [Google Scholar] [CrossRef]
- Chen, L.; Guo, D. The Functions of Tumor Suppressor PTEN in Innate and Adaptive Immunity. Cell Mol. Immunol. 2017, 14, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Pencik, J.; Schlederer, M.; Gruber, W.; Unger, C.; Walker, S.M.; Chalaris, A.; Marié, I.J.; Hassler, M.R.; Javaheri, T.; Aksoy, O.; et al. STAT3 Regulated ARF Expression Suppresses Prostate Cancer Metastasis. Nat. Commun. 2015, 6, 7736. [Google Scholar] [CrossRef]
- Heninger, E.; Krueger, T.E.G.; Thiede, S.M.; Sperger, J.M.; Byers, B.L.; Kircher, M.R.; Kosoff, D.; Yang, B.; Jarrard, D.F.; Mcneel, D.G.; et al. Inducible Expression of Cancer-Testis Antigens in Human Prostate Cancer. Oncotarget 2016, 7, 84359. [Google Scholar] [CrossRef]
- Martini, M.; Testi, M.G.; Pasetto, M.; Picchio, M.C.; Innamorati, G.; Mazzocco, M.; Ugel, S.; Cingarlini, S.; Bronte, V.; Zanovello, P.; et al. IFN-γ-Mediated Upmodulation of MHC Class I Expression Activates Tumor-Specific Immune Response in a Mouse Model of Prostate Cancer. Vaccine 2010, 28, 3548–3557. [Google Scholar] [CrossRef] [PubMed]
- Kyrysyuk, O.; Wucherpfennig, K.W. Designing Cancer Immunotherapies That Engage T Cells and NK Cells. Annu. Rev. Immunol. 2023, 41, 17–38. [Google Scholar] [CrossRef]
- Cachot, A.; Bilous, M.; Liu, Y.-C.; Li, X.; Saillard, M.; Cenerenti, M.; Rockinger, G.A.; Wyss, T.; Guillaume, P.; Schmidt, J.; et al. Tumor-Specific Cytolytic CD4 T Cells Mediate Immunity against Human Cancer. Sci. Adv. 2021, 7, eabe3348. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N. Cancer Immune Escape: MHC Expression in Primary Tumours versus Metastases. Immunology 2019, 158, 255–266. [Google Scholar] [CrossRef]
- Xu, Y.; Xiang, Z.; Alnaggar, M.; Kouakanou, L.; Li, J.; He, J.; Yang, J.; Hu, Y.; Chen, Y.; Lin, L.; et al. Allogeneic Vγ9Vδ2 T-Cell Immunotherapy Exhibits Promising Clinical Safety and Prolongs the Survival of Patients with Late-Stage Lung or Liver Cancer. Cell Mol. Immunol. 2021, 18, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Arce-Sillas, A.; Álvarez-Luquín, D.D.; Tamaya-Domínguez, B.; Gomez-Fuentes, S.; Trejo-Garciá, A.; Melo-Salas, M.; Cárdenas, G.; Rodríguez-Ramírez, J.; Adalid-Peralta, L. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. J. Immunol. Res. 2016, 1, 1720827. [Google Scholar] [CrossRef]
- Tang, S.; Moore, M.L.; Grayson, J.M.; Dubey, P. Increased CD8 + T-Cell Function Following Castration and Immunization Is Countered by Parallel Expansion of Regulatory T Cells. Cancer Res. 2012, 72, 1975–1985. [Google Scholar] [CrossRef]
- Veglia, F.; Gabrilovich, D.I. Dendritic Cells in Cancer: The Role Revisited. Curr. Opin. Immunol. 2017, 45, 43–51. [Google Scholar] [CrossRef]
- Lu, C.; Huang, X.; Zhang, X.; Roensch, K.; Cao, Q.; Nakayama, K.I.; Blazar, B.R.; Zeng, Y.; Zhou, X. MiR-221 and MiR-155 Regulate Human Dendritic Cell Development, Apoptosis, and IL-12 Production through Targeting of P27 Kip1, KPC1, and SOCS-1. Blood J. Am. Soc. Hematol. 2011, 117, 4293–4303. [Google Scholar]
- Mahnke, K.; Qian, Y.; Knop, J.; Enk, A.H. Induction of CD4+/CD25+ Regulatory T Cells by Targeting of Antigens to Immature Dendritic Cells. Blood 2003, 101, 4862–4869. [Google Scholar] [CrossRef]
- Vicari, A.P.; Chiodoni, C.; Vaure, C.; Aït-Yahia, S.; Dercamp, C.; Matsos, F.; Reynard, O.; Taverne, C.; Merle, P.; Colombo, M.P.; et al. Reversal of Tumor-Induced Dendritic Cell Paralysis by CpG Immunostimulatory Oligonucleotide and Anti-Interleukin 10 Receptor Antibody. J. Exp. Med. 2002, 196, 541–549. [Google Scholar] [CrossRef]
- Hornero, R.A.; Idoyaga, J. Plasmacytoid Dendritic Cells: A Dendritic Cell in Disguise. Mol. Immunol. 2023, 159, 38–45. [Google Scholar] [CrossRef]
- Schadendorf, D.; Ugurel, S.; Schuler-Thurner, B.; Nestles, F.O.; Enk, A.; Bröcker, E.B.; Grabbe, S.; Rittgen, W.; Sucker, A.; Zimpfer-Rechner, C.; et al. Dacarbazine (DTIC) versus Vaccination with Autologous Peptide-Pulsed Dendritic Cells (DC) in First-Line Treatment of Patients with Metastatic Melanoma: A Randomized Phase III Trial of the DC Study Group of the DeCOG. Ann. Oncol. 2006, 17, 563–570. [Google Scholar] [CrossRef]
- Higano, C.S.; Schellhammer, P.F.; Small, E.J.; Burch, P.A.; Nemunaitis, J.; Yuh, L.; Provost, N.; Frohlich, M.W. Integrated Data from 2 Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trials of Active Cellular Immunotherapy with Sipuleucel-T in Advanced Prostate Cancer. Cancer 2009, 115, 3670–3679. [Google Scholar] [CrossRef]
Cell Separation | Medium of Resupply | Propagation Medium | Time | DCs Pulsed | DC Maturation | Supplementation | Ref. |
---|---|---|---|---|---|---|---|
Leukapheresis | Cell Gro DC | - | 6 days | Tumor cells | Poly I: C | - | [19] |
- | - | - | - | - | - | - | [20] |
Leukapheresis | - | - | - | - | - | - | [21] |
Leukapheresis | AIM-V | - | - | - | GM-CSF/PA001 protein/rimi-ducid and LPS | - | [22] |
- | - | - | - | - | IL-4; GM-CSF; rhTNF-a; | - | [23] |
Leukapheresis | - | - | - | - | mRNA de PAP and PSA | - | [24] |
His-topaque | AIM-V | - | 7 days | - | - | IL-4 and GM-CSF | [25] |
His-topaque | AIM-V | - | - | - | - | IL-4 and GM-CSF | [25] |
- | AIM-V | - | 16 days | - | - | rhIL-4 and rhGM-CSF | [26] |
- | AIM-V | - | - | - | - | - | [27] |
- | Infusion medium made from Plasma—Lyte A | - | - | - | - | LPS and IFN-ÿ | [28] |
Ficoll-Hypaque | Saline solution | - | - | - | - | - | [29] |
Leukapheresis | RPMI | - | - | KLH | IL-4 and GM-CSF | - | [30] |
- | - | - | - | - | - | GM-CSF and (PGE2) | [31] |
- | CliniMACS | - | - | - | GM LCR, IL-4 IL-1b, IL-6, TNF-a, PGE2. | HLA-A*0201 binding peptides | [32] |
- | AIM-V | - | 16 days | - | - | PSA peptide supplemented with rhIL-4 and rhGM-CSF | [33] |
- | - | - | - | - | - | PSA peptide | [34] |
- | - | - | - | - | - | - | [35] |
Lymphoprep ou Histopaque | - | - | - | - | - | PSMA, peptides with specific motif of HLA-A0201 and influenza matrix peptide M158-66 | [36] |
- | - | - | - | - | - | - | [36] |
Lymphoprep | OPTIMEM | DCPM | 4–6 days | - | - | PSMA peptides with HLA-A0201 specific motif | [37] |
Histopaque | OPTIMEM | DCPM | 7 days | - | - | PSMA peptides with HLA-A0201 specific motif | [38] |
Histopaque | OPTIMEM | - | - | - | - | PSMA peptides with HLA-A0201 specific motif | [39] |
Histopaque 1077 Ficoll | OPTIMEM | - | - | - | - | PSMA peptides with HLA-A0201 specific motif | [40] |
- | - | - | - | - | - | PSMA specific for HLA-A2 (PSM-P1) | [41] |
Ficoll-Hypaque | - | - | 4–6 days | - | - | GM-CSF and IL-4 | [42] |
- | RPMI | - | - | Allogeneic tumor lysates | - | GM-CSF and IL-4. | [43] |
- | - | - | - | - | - | BDC and KLH peptide | [44] |
- | OPTIMEM | DCPM | 6 days | PSM-P1 and PSM-P2 | - | [45] | |
- | - | DDPA | 10 days | - | - | GM-CSF | [46] |
- | Saline | DCPM | - | - | - | PSMA (PSM-P1 and PSM-P2) | [47] |
- | AIM-V | - | - | PAP (Provenge) | - | PA2024 (PAP and GM-CSF) | [48] |
- | - | AIM-V | - | - | - | - | [49] |
- | - | - | 2 days | PSCA, PSA1-3 and HIV | - | PSCA, PSA1-3 and HIV and IL-4 and GM-CSF | [50] |
Lymphoprep | OPTIMEM | DCPM | 7 days | LNCaP lysate and tetanus toxoid | - | - | [51] |
- | OPTIMEM | - | - | PSMA (AL132) | - | - | [37] |
Lymphoprep | OPTIMEM | DCPM | 4–6 days | - | - | - | [52] |
Histopaque | OPTIMEM | DCPM | 7 days | - | - | - | [53] |
- | - | - | - | - | - | - | [54] |
- | - | - | - | - | - | - | [55] |
- | - | - | - | - | - | - | [56] |
- | AIM-V | AIM-V | - | - | - | - | [57] |
- | - | - | - | - | - | - | [58] |
Ficoll | RPMI | - | - | - | - | - | [59] |
- | Cell-Gro DC | - | 5 days | - | Poly I: C soluble | - | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, H.F.M.; Fernandes, J.L.F.; Dias, F.C.R.; Deus, M.C.; Ribeiro, D.L.; Michelin, M.A.; Gomes, M.L.M. Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 4939. https://doi.org/10.3390/ijms26104939
Pacheco HFM, Fernandes JLF, Dias FCR, Deus MC, Ribeiro DL, Michelin MA, Gomes MLM. Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(10):4939. https://doi.org/10.3390/ijms26104939
Chicago/Turabian StylePacheco, Helen F. M., Jhessyka L. F. Fernandes, Fernanda C. R. Dias, Marina C. Deus, Daniele L. Ribeiro, Márcia A. Michelin, and Marcos L. M. Gomes. 2025. "Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review" International Journal of Molecular Sciences 26, no. 10: 4939. https://doi.org/10.3390/ijms26104939
APA StylePacheco, H. F. M., Fernandes, J. L. F., Dias, F. C. R., Deus, M. C., Ribeiro, D. L., Michelin, M. A., & Gomes, M. L. M. (2025). Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review. International Journal of Molecular Sciences, 26(10), 4939. https://doi.org/10.3390/ijms26104939