Hemoglobin Disorders Associated with Neurological Impairment: First Report of ATR-X Syndrome and Recessive Congenital Methemoglobinemia Type II in Tunisia
Abstract
1. Introduction
2. Results
2.1. Family 1
2.1.1. Clinical Features
2.1.2. Mutation Analysis
2.2. Family 2
2.2.1. Clinical Features
2.2.2. Mutation Analysis
3. Discussion
4. Materials and Methods
4.1. Clinical Data and Sample Collection
4.2. Molecular Analysis
4.3. Bioinformatics Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Hb | Hemoglobin |
RCM | Recessive congenital methemoglobinemia |
RCM-II | Recessive congenital methemoglobinemia type II |
NADH-CYB5R3 | NADH-cytochrome b5 reductase 3 |
MCH | Mean corpuscular hemoglobin |
MCV | Mean corpuscular volume |
MetHb | Methemoglobin |
WES | Whole-exome sequencing |
SCD | Sickle cell disease |
NGS | Next-generation sequencing |
References
- Harteveld, C.L.; Achour, A.; Arkesteijn, S.J.G.; Ter Huurne, J.; Verschuren, M.; Bhagwandien-Bisoen, S.; Schaap, R.; Vijfhuizen, L.; El Idrissi, H.; Koopmann, T.T. The Hemoglobinopathies, Molecular Disease Mechanisms and Diagnostics. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 28–36. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H.; Forget, B.G.; Higgs, D.R.; Weatherall, D.J. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-87519-6. [Google Scholar]
- Gibbons, R.J.; Picketts, D.J.; Villard, L.; Higgs, D.R. Mutations in a Putative Global Transcriptional Regulator Cause X-Linked Mental Retardation with Alpha-Thalassemia (ATR-X Syndrome). Cell 1995, 80, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Percy, M.J.; Lappin, T.R. Recessive Congenital Methaemoglobinaemia: Cytochrome B5 Reductase Deficiency. Br. J. Haematol. 2008, 141, 298–308. [Google Scholar] [CrossRef]
- León, N.Y.; Harley, V.R. ATR-X Syndrome: Genetics, Clinical Spectrum, and Management. Hum. Genet. 2021, 140, 1625–1634. [Google Scholar] [CrossRef]
- Kugler, W.; Pekrun, A.; Laspe, P.; Erdlenbruch, B.; Lakomek, M. Molecular Basis of Recessive Congenital Methemoglobinemia, Types I and II: Exon Skipping and Three Novel Missense Mutations in the NADH-Cytochrome B5 Reductase (Diaphorase 1) Gene. Hum. Mutat. 2001, 17, 348. [Google Scholar] [CrossRef]
- Ewenczyk, C.; Leroux, A.; Roubergue, A.; Laugel, V.; Afenjar, A.; Saudubray, J.M.; Beauvais, P.; Billette de Villemeur, T.; Vidailhet, M.; Roze, E. Recessive Hereditary Methaemoglobinaemia, Type II: Delineation of the Clinical Spectrum. Brain 2008, 131, 760–761. [Google Scholar] [CrossRef]
- Weatherall, D.J. The Inherited Diseases of Hemoglobin Are an Emerging Global Health Burden. Blood 2010, 115, 4331–4336. [Google Scholar] [CrossRef]
- Kohne, E. Hemoglobinopathies: Clinical Manifestations, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2011, 108, 532–540. [Google Scholar] [CrossRef]
- Ciprietti, C.; Russo, M.; Santilli, M.; Melchiorre, S.; Polito, G.; Thomas, A.; Sensi, S.L. Neurological Management of Ischemic Stroke in Sickle Cell Disease—A Case Report with an Updated Review of the Literature. Neurol. Sci. 2025, 46, 993–998. [Google Scholar] [CrossRef]
- Nemtsas, P.; Arnaoutoglou, M.; Perifanis, V.; Koutsouraki, E.; Orologas, A. Neurological Complications of Beta-Thalassemia. Ann. Hematol. 2015, 94, 1261–1265. [Google Scholar] [CrossRef]
- Raz, S.; Koren, A.; Dan, O.; Levin, C. Executive Function and Neural Activation in Adults with β-Thalassemia Major: An Event-Related Potentials Study. Ann. N. Y. Acad. Sci. 2016, 1386, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Mengnjo, M.K.; Nicastro, N.; Kamtchum-Tatuene, J. Neurologic Complications of Sickle Cell Disease in Africa: A Systematic Review and Meta-Analysis. Neurology 2017, 89, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Maduakor, C.; Alakbarzade, V.; Sammaraiee, Y.; Vakrinou, A.; Corobana, A.; Sikorska, J.; Rhodes, E.; Pereira, A.C. The Epidemiology of Neurological Complications in Adults with Sickle Cell Disease: A Retrospective Cohort Study. Front. Neurol. 2021, 12, 744118. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, P.; López-Contreras, A.J. ATRX, a Guardian of Chromatin. Trends Genet. 2023, 39, 505–519. [Google Scholar] [CrossRef]
- Lee, H.; Deignan, J.L.; Dorrani, N.; Strom, S.P.; Kantarci, S.; Quintero-Rivera, F.; Das, K.; Toy, T.; Harry, B.; Yourshaw, M.; et al. Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders. JAMA 2014, 312, 1880–1887. [Google Scholar] [CrossRef]
- Vaisfeld, A.; Taormina, S.; Simonati, A.; Neri, G. Phenotypic Spectrum and Molecular Findings in 17 ATR-X Syndrome Italian Patients: Some New Insights. Genes 2022, 13, 1792. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Wada, T.; Fisher, C.A.; Malik, N.; Mitson, M.J.; Steensma, D.P.; Fryer, A.; Goudie, D.R.; Krantz, I.D.; Traeger-Synodinos, J. Mutations in the Chromatin-Associated Protein ATRX. Hum. Mutat. 2008, 29, 796–802. [Google Scholar] [CrossRef]
- Takagi, M.; Yagi, H.; Fukuzawa, R.; Narumi, S.; Hasegawa, T. Syndromic Disorder of Sex Development Due to a Novel Hemizygous Mutation in the Carboxyl-Terminal Domain of ATRX. Hum. Genome Var. 2017, 4, 17012. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Rostami, G.; Hamid, M. New Heritable ATRX Mutation Identified by Whole Exome Sequencing and Review. Egypt. J. Med. Hum. Genet. 2022, 23, 19. [Google Scholar] [CrossRef]
- Marano, D.; Fioriniello, S.; Fiorillo, F.; Gibbons, R.J.; D’Esposito, M.; Della Ragione, F. ATRX Contributes to MeCP2-Mediated Pericentric Heterochromatin Organization During Neural Differentiation. Int. J. Mol. Sci. 2019, 20, 5371. [Google Scholar] [CrossRef]
- Wada, T.; Ban, H.; Matsufuji, M.; Okamoto, N.; Enomoto, K.; Kurosawa, K.; Aida, N. Neuroradiologic Features in X-Linked α-Thalassemia/Mental Retardation Syndrome. AJNR Am. J. Neuroradiol. 2013, 34, 2034–2038. [Google Scholar] [CrossRef] [PubMed]
- Ratnakumar, K.; Duarte, L.F.; LeRoy, G.; Hasson, D.; Smeets, D.; Vardabasso, C.; Bönisch, C.; Zeng, T.; Xiang, B.; Zhang, D.Y.; et al. ATRX-Mediated Chromatin Association of Histone Variant macroH2A1 Regulates α-Globin Expression. Genes. Dev. 2012, 26, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Kulkarni, A.; Warang, P.; Devendra, R.; Chiddarwar, A.; Kedar, P. Mutation Update: Variants of the CYB5R3 Gene in Recessive Congenital Methemoglobinemia. Hum. Mutat. 2020, 41, 737–748. [Google Scholar] [CrossRef]
- Nicita, F.; Sabatini, L.; Alesi, V.; Lucignani, G.; Sallicandro, E.; Sferra, A.; Bertini, E.; Zanni, G.; Palumbo, G. Neurological and Neuroimaging Features of CYB5R3-Related Recessive Hereditary Methemoglobinemia Type II. Brain Sci. 2022, 12, 182. [Google Scholar] [CrossRef]
- Barakizou, H.; Chaieb, S. Familial Psychomotor Delay of an Uncommon Cause: Type II Congenital Methemoglobinemia. Clin. Med. Insights Pediatr. 2024, 18, 11795565241229007. [Google Scholar] [CrossRef]
- Dekker, J.; Eppink, M.H.M.; van Zwieten, R.; de Rijk, T.; Remacha, A.F.; Law, L.K.; Li, A.M.; Cheung, K.L.; van Berkel, W.J.H.; Roos, D. Seven New Mutations in the Nicotinamide Adenine Dinucleotide Reduced-Cytochrome b(5) Reductase Gene Leading to Methemoglobinemia Type I. Blood J. Am. Soc. Hematol. 2001, 97, 1106–1114. [Google Scholar] [CrossRef]
- Warang, P.P.; Kedar, P.S.; Shanmukaiah, C.; Ghosh, K.; Colah, R.B. Clinical Spectrum and Molecular Basis of Recessive Congenital Methemoglobinemia in India. Clin. Genet. 2015, 87, 62–67. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Meng, Y.; Huang, L.; Yang, Z. Novel Compound Heterogeneous Mutations in CYB5R3 Gene Leading to Methemoglobinemia (Type I) in a Chinese Boy: Case Report and Relevant Comprehensive Analysis. Acta Haematol. 2025, 148, 226–232. [Google Scholar] [CrossRef]
- Oshino, N.; Imai, Y.; Sato, R. A Function of Cytochrome B5 in Fatty Acid Desaturation by Rat Liver Microsomes. J. Biochem. 1971, 69, 155–167. [Google Scholar] [CrossRef]
- Ozols, J. The Role of Microsomal Cytochrome B5 in the Metabolism of Ethanol, Drugs and the Desaturation of Fatty Acids. Ann. Clin. Res. 1976, 8 (Suppl. S17), 182–192. [Google Scholar]
- Hirono, H. Adipose Fatty Acid Composition in a Case of Generalized Deficiency of Cytochrome B5 Reductase in Congenital Methemoglobinemia with Mental Retardation. Tohoku J. Exp. Med. 1983, 140, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Siendones, E.; Ballesteros, M.; Navas, P. Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J. Clin. Med. 2018, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Castellotti, B.; Ragona, F.; Freri, E.; Messina, G.; Magri, S.; Previtali, R.; Solazzi, R.; Franceschetti, S.; Taroni, F.; Canafoglia, L.; et al. Next-Generation Sequencing in Pediatric-Onset Epilepsies: Analysis with Target Panels and Personalized Therapeutic Approach. Epilepsia Open 2024, 9, 1922–1930. [Google Scholar] [CrossRef]
- Bain, B.J.; Bates, I.; Laffan, M.A. Dacie and Lewis Practical Haematology E-Book: Dacie and Lewis Practical Haematology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; ISBN 978-0-7020-6925-3. [Google Scholar]
The Proband (II-2) | The Affected Brother (II-3) | |
---|---|---|
Hb (g/dL) | 9.3 | 7.9 |
MCV (fL) | 58 | 56 |
MCH (pg) | 13.4 | 15.3 |
HbA (%) | 79.9 | 81.4 |
HbA2 (%) | 1.6 | 1.5 |
HbF (%) | 1.9 | 5.2 |
HbH (%) | 15.7 | 10 |
Hb Bart’s | 1.1 | 1.8 |
Mutations (Gene) | Functional Impact Analysis | Stability Analysis | ||||||
---|---|---|---|---|---|---|---|---|
SIFT | PolyPhen-2 | PANTHER | PhD-SNP | SNPs&GO | Mutpred2 | I-Mutant | Mupro | |
p.Arg2131Gln (ATRX) | deleterious | probably damaging | probably damaging | Disease | Disease | Pathogenic | Decreased | Decreased |
p.Ala179Thr (CYB5R3) | deleterious | probably damaging | probably damaging | Disease | Disease | Pathogenic | Decreased | Decreased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouragini, H.; Bouatrous, E.; Kasdallah, M.; Nouira, S.; Dallali, H.; Rekaya, S.; Chaouachi, D.; Ouederni, M.; Menif, S. Hemoglobin Disorders Associated with Neurological Impairment: First Report of ATR-X Syndrome and Recessive Congenital Methemoglobinemia Type II in Tunisia. Int. J. Mol. Sci. 2025, 26, 4803. https://doi.org/10.3390/ijms26104803
Ouragini H, Bouatrous E, Kasdallah M, Nouira S, Dallali H, Rekaya S, Chaouachi D, Ouederni M, Menif S. Hemoglobin Disorders Associated with Neurological Impairment: First Report of ATR-X Syndrome and Recessive Congenital Methemoglobinemia Type II in Tunisia. International Journal of Molecular Sciences. 2025; 26(10):4803. https://doi.org/10.3390/ijms26104803
Chicago/Turabian StyleOuragini, Houyem, Emna Bouatrous, Manel Kasdallah, Sonia Nouira, Hamza Dallali, Samia Rekaya, Dorra Chaouachi, Monia Ouederni, and Samia Menif. 2025. "Hemoglobin Disorders Associated with Neurological Impairment: First Report of ATR-X Syndrome and Recessive Congenital Methemoglobinemia Type II in Tunisia" International Journal of Molecular Sciences 26, no. 10: 4803. https://doi.org/10.3390/ijms26104803
APA StyleOuragini, H., Bouatrous, E., Kasdallah, M., Nouira, S., Dallali, H., Rekaya, S., Chaouachi, D., Ouederni, M., & Menif, S. (2025). Hemoglobin Disorders Associated with Neurological Impairment: First Report of ATR-X Syndrome and Recessive Congenital Methemoglobinemia Type II in Tunisia. International Journal of Molecular Sciences, 26(10), 4803. https://doi.org/10.3390/ijms26104803