Targeting Pathways in Neuroblastoma: Advances in Treatment Strategies and Clinical Outcomes
Abstract
:1. Introduction
2. Molecular Pathogenesis of NB
2.1. Genetic and Epigenetic Drivers
2.1.1. Role of MYCN Amplification in Tumor Progression and Poor Prognosis
2.1.2. TP53 Mutations and Their Impact on Tumor Suppression and Chemoresistance
2.1.3. The Significance of microRNAs and DNA Methylation in NB Differentiation
2.2. Key Signaling Pathways in NB Development
2.2.1. Wnt–BMP4–Notch Axis: Influence on Tumor Differentiation and Growth Suppression
2.2.2. PI3K/Akt/mTOR Pathway: Contribution to Cell Survival and Therapy Resistance
2.2.3. Jak2/Stat3 Signaling: Effects on Tumor Proliferation and Potential for Therapeutic Inhibition
3. TME and Its Role in NB Progression
3.1. Interaction Between NB Cells and Stromal Components
3.2. Role of Immune Cells and Inflammatory Cytokines in Tumor Development
3.3. The Influence of Hypoxia on Tumor Aggressiveness and Metastasis
4. Advances in NB Therapy
4.1. Targeted Molecular Therapies
4.1.1. PI3K and mTOR Inhibitors in Overcoming Chemoresistance
4.1.2. Inhibitors of Histone Deacetylases (HDAC) and Their Epigenetic Impact
4.1.3. Targeting the Notch Pathway: Potential for Growth Arrest and Differentiation
4.2. Immunotherapy and Novel Treatment Strategies
4.2.1. Antibody-Based Therapies Targeting GD2 and ALK
4.2.2. The Role of Immune Checkpoint Inhibitors in NB Management
4.2.3. Emerging Role of Chimeric Antigen Receptor (CAR) T-Cell Therapy in High-Risk NB
4.3. Differentiation Therapy and Metabolic Reprogramming
4.3.1. Retinoic Acid-Induced Differentiation and Its Clinical Impact
4.3.2. Role of Metabolic Vulnerabilities in Therapeutic Targeting
5. Future Directions and Unanswered Questions in NB Treatment
5.1. The Need for Personalized Medicine Based on Genetic Profiling
5.2. Advances in Precision Oncology and Combination Therapies
5.3. Challenges in Translating Preclinical Findings into Clinical Practice
5.4. Collaborative Infrastructures and Biomarker Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yan, P.; Qi, F.; Bian, L.; Xu, Y.; Zhou, J.; Hu, J.; Ren, L.; Li, M.; Tang, W. Comparison of Incidence and Outcomes of Neuroblastoma in Children, Adolescents, and Adults in the United States: A Surveillance, Epidemiology, and End Results (SEER) Program Population Study. Med. Sci. Monit. 2020, 26, e927218. [Google Scholar] [CrossRef] [PubMed]
- Nong, J.; Su, C.; Li, C.; Wang, C.; Li, W.; Li, Y.; Chen, P.; Li, Y.; Li, Z.; She, X.; et al. Global, Regional, and National Epidemiology of Childhood Neuroblastoma (1990–2021): A Statistical Analysis of Incidence, Mortality, and DALYs. eClinicalMedicine 2025, 79, 102964. [Google Scholar] [CrossRef] [PubMed]
- Kamihara, J.; Ma, C.; Fuentes Alabi, S.L.; Garrido, C.; Frazier, A.L.; Rodriguez-Galindo, C.; Orjuela, M.A. Socioeconomic Status and Global Variations in the Incidence of Neuroblastoma: Call for Support of Population-Based Cancer Registries in Low-Middle-Income Countries. Pediatr. Blood Cancer 2017, 64, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Bagatell, R.; Cohn, S.L. Genetic Discoveries and Treatment Advances in Neuroblastoma. Curr. Opin. Pediatr. 2016, 28, 19–25. [Google Scholar] [CrossRef]
- Takita, J. Molecular Basis and Clinical Features of Neuroblastoma. JMA J. 2021, 4, 321–331. [Google Scholar] [CrossRef]
- Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primer 2016, 2, 16078. [Google Scholar] [CrossRef]
- Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef]
- Sokol, E.; Desai, A. The Evolution of Risk Classification for Neuroblastoma. Children 2019, 6, 27. [Google Scholar] [CrossRef]
- Gatta, G.; Botta, L.; Rossi, S.; Aareleid, T.; Bielska-Lasota, M.; Clavel, J.; Dimitrova, N.; Jakab, Z.; Kaatsch, P.; Lacour, B.; et al. Childhood Cancer Survival in Europe 1999–2007: Results of EUROCARE-5—A Population-Based Study. Lancet Oncol. 2014, 15, 35–47. [Google Scholar] [CrossRef]
- Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet 2007, 369, 2106–2120. [Google Scholar] [CrossRef]
- Brodeur, G.M. Spontaneous Regression of Neuroblastoma. Cell Tissue Res. 2018, 372, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Ash, S.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers 2020, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, V.; Schmelz, K.; Proba, J.; Winkler, A.; Wünschel, J.; Toedling, J.; Deubzer, H.E.; Künkele, A.; Eggert, A.; Schulte, J.H.; et al. Reactivating TP53 Signaling by the Novel MDM2 Inhibitor DS-3032b as a Therapeutic Option for High-Risk Neuroblastoma. Oncotarget 2018, 9, 2304–2319. [Google Scholar] [CrossRef] [PubMed]
- Tesson, M.; Vasan, R.; Hock, A.; Nixon, C.; Rae, C.; Gaze, M.; Mairs, R. An Evaluation in Vitro of the Efficacy of Nutlin-3 and Topotecan in Combination with 177Lu-DOTATATE for the Treatment of Neuroblastoma. Oncotarget 2018, 9, 29082–29096. [Google Scholar] [CrossRef]
- Coughlan, D.; Gianferante, M.; Lynch, C.F.; Stevens, J.L.; Harlan, L.C. Treatment and Survival of Childhood Neuroblastoma: Evidence from a Population-Based Study in the United States. Pediatr. Hematol. Oncol. 2017, 34, 320–330. [Google Scholar] [CrossRef]
- Rivera, Z.; Escutia, C.; Madonna, M.B.; Gupta, K.H. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int. J. Mol. Sci. 2023, 24, 8470. [Google Scholar] [CrossRef]
- Hassan, T.; Badr, M.; Safy, U.E.; Hesham, M.; Sherief, L.; Beshir, M.; Fathy, M.; Malky, M.A.; Zakaria, M. Target Therapy in Neuroblastoma. In Neuroblastoma-Current State and Recent Updates; Gowda, C., Ed.; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Zeineldin, M.; Federico, S.; Chen, X.; Fan, Y.; Xu, B.; Stewart, E.; Zhou, X.; Jeon, J.; Griffiths, L.; Nguyen, R.; et al. MYCN Amplification and ATRX Mutations Are Incompatible in Neuroblastoma. Nat. Commun. 2020, 11, 913. [Google Scholar] [CrossRef]
- Campbell, K.; Naranjo, A.; Hibbitts, E.; Gastier-Foster, J.M.; Bagatell, R.; Irwin, M.S.; Shimada, H.; Hogarty, M.; Park, J.R.; DuBois, S.G. Association of Heterogeneous MYCN Amplification with Clinical Features, Biological Characteristics and Outcomes in Neuroblastoma: A Report from the Children’s Oncology Group. Eur. J. Cancer 2020, 133, 112–119. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, M.H.; Cho, H.W.; Ma, Y.E.; Yoo, K.H.; Sung, K.W.; Koo, H.H. Clinical Significance of MYCN Amplification in Patients with High-risk Neuroblastoma. Pediatr. Blood Cancer 2018, 65, e27257. [Google Scholar] [CrossRef]
- Bagatell, R.; Beck-Popovic, M.; London, W.B.; Zhang, Y.; Pearson, A.D.J.; Matthay, K.K.; Monclair, T.; Ambros, P.F.; Cohn, S.L. Significance of MYCN Amplification in International Neuroblastoma Staging System Stage 1 and 2 Neuroblastoma: A Report from the International Neuroblastoma Risk Group Database. J. Clin. Oncol. 2009, 27, 365–370. [Google Scholar] [CrossRef]
- Qing, G.; Skuli, N.; Mayes, P.A.; Pawel, B.; Martinez, D.; Maris, J.M.; Simon, M.C. Combinatorial Regulation of Neuroblastoma Tumor Progression by N-Myc and Hypoxia Inducible Factor HIF-1α. Cancer Res. 2010, 70, 10351–10361. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yin, Z.; Wang, H.; Wang, L.; Li, T.; Xiao, R.; Xie, T.; Han, R.; Dong, R.; Liu, H.; et al. The Super Elongation Complex Drives Transcriptional Addiction in MYCN -Amplified Neuroblastoma. Sci. Adv. 2023, 9, eadf0005. [Google Scholar] [CrossRef] [PubMed]
- Hald, Ø.H.; Olsen, L.; Gallo-Oller, G.; Elfman, L.H.M.; Løkke, C.; Kogner, P.; Sveinbjörnsson, B.; Flægstad, T.; Johnsen, J.I.; Einvik, C. Inhibitors of Ribosome Biogenesis Repress the Growth of MYCN-Amplified Neuroblastoma. Oncogene 2019, 38, 2800–2813. [Google Scholar] [CrossRef]
- Kaneko, Y.; Suenaga, Y.; Islam, S.M.R.; Matsumoto, D.; Nakamura, Y.; Ohira, M.; Yokoi, S.; Nakagawara, A. Functional Interplay between MYCN, NCYM, and OCT 4 Promotes Aggressiveness of Human Neuroblastomas. Cancer Sci. 2015, 106, 840–847. [Google Scholar] [CrossRef]
- Zeid, R.; Lawlor, M.A.; Poon, E.; Reyes, J.M.; Fulciniti, M.; Lopez, M.A.; Scott, T.G.; Nabet, B.; Erb, M.A.; Winter, G.E.; et al. Enhancer Invasion Shapes MYCN-Dependent Transcriptional Amplification in Neuroblastoma. Nat. Genet. 2018, 50, 515–523. [Google Scholar] [CrossRef]
- Zhao, M.; Gu, W.; Liu, F.; Yu, L.; Shu, Y.; Liu, L.; Hu, J.; Liu, Y.; Tang, H.; Mao, J. Prominent Staining of MYCN Immunohistochemistry Predicts a Poor Prognosis in MYCN Non-Amplified Neuroblastoma. Pediatr. Dev. Pathol. 2023, 26, 124–132. [Google Scholar] [CrossRef]
- Zimmerman, M.W.; Liu, Y.; He, S.; Durbin, A.D.; Abraham, B.J.; Easton, J.; Shao, Y.; Xu, B.; Zhu, S.; Zhang, X.; et al. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018, 8, 320–335. [Google Scholar] [CrossRef]
- Durinck, K.; Speleman, F. Epigenetic Regulation of Neuroblastoma Development. Cell Tissue Res. 2018, 372, 309–324. [Google Scholar] [CrossRef]
- Bresler, S.C.; Weiser, D.A.; Huwe, P.J.; Park, J.H.; Krytska, K.; Ryles, H.; Laudenslager, M.; Rappaport, E.F.; Wood, A.C.; McGrady, P.W.; et al. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell 2014, 26, 682–694. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting P53 Pathways: Mechanisms, Structures and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; et al. Mutant P53 in Cancer: From Molecular Mechanism to Therapeutic Modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- Van Maerken, T.; Rihani, A.; Dreidax, D.; De Clercq, S.; Yigit, N.; Marine, J.-C.; Westermann, F.; De Paepe, A.; Vandesompele, J.; Speleman, F. Functional Analysis of the P53 Pathway in Neuroblastoma Cells Using the Small-Molecule MDM2 Antagonist Nutlin-3. Mol. Cancer Ther. 2011, 10, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Wang, W.; Liu, G.; Xian, W.; McKeon, F.; Zhou, J.; Zhang, R. Targeting the P53-MDM2 Pathway for Neuroblastoma Therapy: Rays of Hope. Cancer Lett. 2021, 496, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Luquin, I.; Lázcoz, P.; Celay, J.; Castresana, J.S.; Encío, I.J. In Vitro Assessment of the Role of P53 on Chemotherapy Treatments in Neuroblastoma Cell Lines. Pharmaceuticals 2021, 14, 1184. [Google Scholar] [CrossRef]
- Rihani, A.; De Wilde, B.; Zeka, F.; Laureys, G.; Francotte, N.; Tonini, G.P.; Coco, S.; Versteeg, R.; Noguera, R.; Schulte, J.H.; et al. CASP8 SNP D302H (Rs1045485) Is Associated with Worse Survival in MYCN-Amplified Neuroblastoma Patients. PLoS ONE 2014, 9, e114696. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Q.-R.; Song, Y.K.; Wei, J.S.; Khan, J. Exon Array Analysis Reveals Neuroblastoma Tumors Have Distinct Alternative Splicing Patterns According to Stage and MYCN Amplification Status. BMC Med. Genom. 2011, 4, 35. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Xu, L.; Zhang, J. TP53 and TP53-Associated Genes Are Correlated with the Prognosis of Paediatric Neuroblastoma. BMC Genom. Data 2022, 23, 41. [Google Scholar] [CrossRef]
- Bogen, D.; Wei, J.S.; Azorsa, D.O.; Ormanoglu, P.; Buehler, E.; Guha, R.; Keller, J.M.; Griner, L.A.M.; Ferrer, M.; Song, Y.K.; et al. Aurora B Kinase Is a Potent and Selective Target in MYCN-Driven Neuroblastoma. Oncotarget 2015, 6, 35247–35262. [Google Scholar] [CrossRef]
- Stallings, R.L.; Foley, N.H.; Bray, I.M.; Das, S.; Buckley, P.G. MicroRNA and DNA Methylation Alterations Mediating Retinoic Acid Induced Neuroblastoma Cell Differentiation. Semin. Cancer Biol. 2011, 21, 283–290. [Google Scholar] [CrossRef]
- Sousares, M.; Partridge, V.; Weigum, S.; Du, L. MicroRNAs in Neuroblastoma Differentiation and Differentiation Therapy. Adv. Mod. Oncol. Res. 2017, 3, 284–288. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Shelton, S.D.; Sung, D.C.; Li, M.; Hernandez, D.; Zhang, M.; Losiewicz, M.D.; Chen, Y.; Pertsemlidis, A.; et al. A Combined Gene Expression and Functional Study Reveals the Crosstalk between N-Myc and Differentiation-Inducing microRNAs in Neuroblastoma Cells. Oncotarget 2016, 7, 79372–79387. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ma, X.; Sung, D.; Li, M.; Kosti, A.; Lin, G.; Chen, Y.; Pertsemlidis, A.; Hsiao, T.-H.; Du, L. microRNA-449a Functions as a Tumor Suppressor in Neuroblastoma through Inducing Cell Differentiation and Cell Cycle Arrest. RNA Biol. 2015, 12, 538–554. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Kawashima, H.; Sugito, K.; Yoshizawa, S.; Uekusa, S.; Furuya, T.; Ikeda, T.; Koshinaga, T.; Shinojima, Y.; Hasegawa, R.; et al. DNA Hypomethylation at the ZNF206-Exon 5 CpG Island Associated with Neuronal Differentiation in Mice and Development of Neuroblastoma in Humans. Int. J. Oncol. 2011, 40, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Charlet, J.; Tomari, A.; Dallosso, A.R.; Szemes, M.; Kaselova, M.; Curry, T.J.; Almutairi, B.; Etchevers, H.C.; McConville, C.; Malik, K.T.A.; et al. Genome-wide DNA Methylation Analysis Identifies MEGF10 as a Novel Epigenetically Repressed Candidate Tumor Suppressor Gene in Neuroblastoma. Mol. Carcinog. 2017, 56, 1290–1301. [Google Scholar] [CrossRef]
- Murphy, D.M.; Buckley, P.G.; Das, S.; Watters, K.M.; Bryan, K.; Stallings, R.L. Co-Localization of the Oncogenic Transcription Factor MYCN and the DNA Methyl Binding Protein MeCP2 at Genomic Sites in Neuroblastoma. PLoS ONE 2011, 6, e21436. [Google Scholar] [CrossRef]
- Wang, S.; Wu, W.; Claret, F.X. Mutual Regulation of microRNAs and DNA Methylation in Human Cancers. Epigenetics 2017, 12, 187–197. [Google Scholar] [CrossRef]
- Szemes, M.; Greenhough, A.; Malik, K. Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Front. Mol. Neurosci. 2019, 12, 90. [Google Scholar] [CrossRef]
- Szemes, M.; Greenhough, A.; Melegh, Z.; Malik, S.; Yuksel, A.; Catchpoole, D.; Gallacher, K.; Kollareddy, M.; Park, J.H.; Malik, K. Wnt Signalling Drives Context-Dependent Differentiation or Proliferation in Neuroblastoma. Neoplasia 2018, 20, 335–350. [Google Scholar] [CrossRef]
- Szemes, M.; Melegh, Z.; Bellamy, J.; Kollareddy, M.; Catchpoole, D.; Malik, K. A Wnt-BMP4 Signalling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells 2020, 9, 783. [Google Scholar] [CrossRef]
- Choudhary, S.; Singh, M.K.; Kashyap, S.; Seth, R.; Singh, L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. Children 2024, 11, 700. [Google Scholar] [CrossRef]
- Santo, E.E.; Stroeken, P.; Sluis, P.V.; Koster, J.; Versteeg, R.; Westerhout, E.M. FOXO3a Is a Major Target of Inactivation by PI3K/AKT Signaling in Aggressive Neuroblastoma. Cancer Res. 2013, 73, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, G.; Guan, J.; Gustafsson, D.E.; Javanmardi, N.; Cervantes-Madrid, D.; Djos, A.; Martinsson, T.; Palmer, R.H.; Hallberg, B. MEK Inhibitor Trametinib Does Not Prevent the Growth of Anaplastic Lymphoma Kinase (ALK)–Addicted Neuroblastomas. Sci. Signal. 2017, 10, eaam7550. [Google Scholar] [CrossRef] [PubMed]
- Lampis, S.; Raieli, S.; Montemurro, L.; Bartolucci, D.; Amadesi, C.; Bortolotti, S.; Angelucci, S.; Scardovi, A.L.; Nieddu, G.; Cerisoli, L.; et al. The MYCN Inhibitor BGA002 Restores the Retinoic Acid Response Leading to Differentiation or Apoptosis by the mTOR Block in MYCN-Amplified Neuroblastoma. J. Exp. Clin. Cancer Res. 2022, 41, 160. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, G.; Ruiz-Pérez, M.V.; Sainero-Alcolado, L.; Dzieran, J.; Zirath, H.; Gallart-Ayala, H.; Wheelock, C.E.; Johansson, H.J.; Nilsson, R.; Lehtiö, J.; et al. MYCN-Enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience 2019, 21, 188–204. [Google Scholar] [CrossRef]
- Hadjidaniel, M.D.; Muthugounder, S.; Hung, L.T.; Sheard, M.A.; Shirinbak, S.; Chan, R.Y.; Nakata, R.; Borriello, L.; Malvar, J.; Kennedy, R.J.; et al. Tumor-Associated Macrophages Promote Neuroblastoma via STAT3 Phosphorylation and up-Regulation of c-MYC. Oncotarget 2017, 8, 91516–91529. [Google Scholar] [CrossRef]
- D’Angelo, B.; Benedetti, E.; Di Loreto, S.; Cristiano, L.; Laurenti, G.; Cerù, M.P.; Cimini, A. Signal Transduction Pathways Involved in PPARβ/Δ-induced Neuronal Differentiation. J. Cell. Physiol. 2011, 226, 2170–2180. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, R.; Yu, P.; Shu, M. miR-221/222 Suppression Induced by Activation of the cAMP/PKA/CREB1 Pathway Is Required for cAMP-induced Bidirectional Differentiation of Glioma Cells. FEBS Lett. 2021, 595, 2829–2843. [Google Scholar] [CrossRef]
- Blavier, L.; Yang, R.-M.; DeClerck, Y.A. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers 2020, 12, 2912. [Google Scholar] [CrossRef]
- Joshi, S. Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers 2020, 12, 2057. [Google Scholar] [CrossRef]
- Louault, K.; De Clerck, Y.A.; Janoueix-Lerosey, I. The Neuroblastoma Tumor Microenvironment: From an in-Depth Characterization towards Novel Therapies. EJC Paediatr. Oncol. 2024, 3, 100161. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Li, Z.; Xu, F.; Tang, C.; Chen, H. Neuromedin U and Neurotensin May Promote the Development of the Tumour Microenvironment in Neuroblastoma. PeerJ 2021, 9, e11512. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, G.; Veschi, V.; Mantelli, M.; Croce, S.; Di Benedetto, V.; D’Angelo, P.; Maltese, A.; Catenacci, L.; Apuzzo, T.; Scavo, E.; et al. Microenvironment in Neuroblastoma: Isolation and Characterization of Tumor-Derived Mesenchymal Stromal Cells. BMC Cancer 2018, 18, 1176. [Google Scholar] [CrossRef] [PubMed]
- Borriello, L.; Nakata, R.; Sheard, M.A.; Fernandez, G.E.; Sposto, R.; Malvar, J.; Blavier, L.; Shimada, H.; Asgharzadeh, S.; Seeger, R.C.; et al. Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Res. 2017, 77, 5142–5157. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.; Boldrini, R.; Citti, A.; Romania, P.; D’Alicandro, V.; De Ioris, M.; Castellano, A.; Furlanello, C.; Locatelli, F.; Fruci, D. Tumor-Infiltrating T Lymphocytes Improve Clinical Outcome of Therapy-Resistant Neuroblastoma. OncoImmunology 2015, 4, e1019981. [Google Scholar] [CrossRef]
- Stip, M.C.; Teeuwen, L.; Dierselhuis, M.P.; Leusen, J.H.W.; Krijgsman, D. Targeting the Myeloid Microenvironment in Neuroblastoma. J. Exp. Clin. Cancer Res. 2023, 42, 337. [Google Scholar] [CrossRef]
- Valind, A.; Verhoeven, B.M.; Enoksson, J.; Karlsson, J.; Christensson, G.; Mañas, A.; Aaltonen, K.; Jansson, C.; Bexell, D.; Baryawno, N.; et al. Macrophage Infiltration Promotes Regrowth in MYCN-Amplified Neuroblastoma after Chemotherapy. OncoImmunology 2023, 12, 2184130. [Google Scholar] [CrossRef]
- Fultang, L.; Gamble, L.D.; Gneo, L.; Berry, A.M.; Egan, S.A.; De Bie, F.; Yogev, O.; Eden, G.L.; Booth, S.; Brownhill, S.; et al. Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma. Cancer Res. 2019, 79, 611–624. [Google Scholar] [CrossRef]
- Frosch, J.; Leontari, I.; Anderson, J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers 2021, 13, 1743. [Google Scholar] [CrossRef]
- Masih, K.E.; Wei, J.S.; Milewski, D.; Khan, J. Exploring and Targeting the Tumor Immune Microenvironment of Neuroblastoma. J. Cell. Immunol. 2021, 3, 305–316. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-Inducible Factors: Mediators of Cancer Progression and Targets for Cancer Therapy. Trends Pharmacol. Sci. 2012, 33, 207–214. [Google Scholar] [CrossRef]
- Inanc Surer, S.; Toksoz, F.; Bayrak, S.; Meco, H.E.; Sever, T.; Basbinar, Y.; Olgun, H.N. Repositioning of Metformin: Anticancer Agent for Hypoxic Neuroblastoma Cells. J. Basic Clin. Health Sci. 2020, 4, 384–390. [Google Scholar] [CrossRef]
- Al-Mutawa, Y.K.; Herrmann, A.; Corbishley, C.; Losty, P.D.; Phelan, M.; Sée, V. Effects of Hypoxic Preconditioning on Neuroblastoma Tumour Oxygenation and Metabolic Signature in a Chick Embryo Model. Biosci. Rep. 2018, 38, BSR20180185. [Google Scholar] [CrossRef] [PubMed]
- Currò, M.; Ferlazzo, N.; Giunta, M.L.; Montalto, A.S.; Russo, T.; Arena, S.; Impellizzeri, P.; Caccamo, D.; Romeo, C.; Ientile, R. Hypoxia-Dependent Expression of TG2 Isoforms in Neuroblastoma Cells as Consequence of Different MYCN Amplification Status. Int. J. Mol. Sci. 2020, 21, 1364. [Google Scholar] [CrossRef] [PubMed]
- Swadi, R.; Mather, G.; Pizer, B.L.; Losty, P.D.; See, V.; Moss, D. Optimising the Chick Chorioallantoic Membrane Xenograft Model of Neuroblastoma for Drug Delivery. BMC Cancer 2018, 18, 28. [Google Scholar] [CrossRef]
- Van Maerken, T.; Speleman, F.; Vermeulen, J.; Lambertz, I.; De Clercq, S.; De Smet, E.; Yigit, N.; Coppens, V.; Philippé, J.; De Paepe, A.; et al. Small-Molecule MDM2 Antagonists as a New Therapy Concept for Neuroblastoma. Cancer Res. 2006, 66, 9646–9655. [Google Scholar] [CrossRef]
- Carr, J.; Bell, E.; Pearson, A.D.J.; Kees, U.R.; Beris, H.; Lunec, J.; Tweddle, D.A. Increased Frequency of Aberrations in the P53/MDM2/P14 ARF Pathway in Neuroblastoma Cell Lines Established at Relapse. Cancer Res. 2006, 66, 2138–2145. [Google Scholar] [CrossRef]
- Tweddle, D.A.; Pearson, A.D.J.; Haber, M.; Norris, M.D.; Xue, C.; Flemming, C.; Lunec, J. The P53 Pathway and Its Inactivation in Neuroblastoma. Cancer Lett. 2003, 197, 93–98. [Google Scholar] [CrossRef]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The Role of P53 in Cancer Drug Resistance and Targeted Chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef]
- Bonomi, R.; Mukhopadhyay, U.; Shavrin, A.; Yeh, H.-H.; Majhi, A.; Dewage, S.W.; Najjar, A.; Lu, X.; Cisneros, G.A.; Tong, W.P.; et al. Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain. PLoS ONE 2015, 10, e0133512. [Google Scholar] [CrossRef]
- Sayar, E.; Patel, R.A.; Coleman, I.M.; Roudier, M.P.; Zhang, A.; Mustafi, P.; Low, J.-Y.; Hanratty, B.; Ang, L.S.; Bhatia, V.; et al. Reversible Epigenetic Alterations Mediate PSMA Expression Heterogeneity in Advanced Metastatic Prostate Cancer. JCI Insight 2023, 8, e162907. [Google Scholar] [CrossRef]
- Wagner, V.P.; Martins, M.D.; Martins, M.A.T.; Almeida, L.O.; Warner, K.A.; Nör, J.E.; Squarize, C.H.; Castilho, R.M. Targeting Histone Deacetylase and NFκB Signaling as a Novel Therapy for Mucoepidermoid Carcinomas. Sci. Rep. 2018, 8, 2065. [Google Scholar] [CrossRef] [PubMed]
- Gardberg, A.S.; Huhn, A.J.; Cummings, R.; Bommi-Reddy, A.; Poy, F.; Setser, J.; Vivat, V.; Brucelle, F.; Wilson, J. Make the Right Measurement: Discovery of an Allosteric Inhibition Site for P300-HAT. Struct. Dyn. 2019, 6, 054702. [Google Scholar] [CrossRef] [PubMed]
- Bettinsoli, P.; Ferrari-Toninelli, G.; Bonini, S.A.; Prandelli, C.; Memo, M. Notch Ligand Delta-like 1 as a Novel Molecular Target in Childhood Neuroblastoma. BMC Cancer 2017, 17, 352. [Google Scholar] [CrossRef]
- Pagie, S.; Gérard, N.; Charreau, B. Notch Signaling Triggered via the Ligand DLL4 Impedes M2 Macrophage Differentiation and Promotes Their Apoptosis. Cell Commun. Signal. 2018, 16, 4. [Google Scholar] [CrossRef]
- Badie, A.; Gaiddon, C.; Mellitzer, G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers 2022, 14, 5472. [Google Scholar] [CrossRef]
- Terzic, T.; Cordeau, M.; Herblot, S.; Teira, P.; Cournoyer, S.; Beaunoyer, M.; Peuchmaur, M.; Duval, M.; Sartelet, H. Expression of Disialoganglioside (GD2) in Neuroblastic Tumors: A Prognostic Value for Patients Treated with Anti-GD2 Immunotherapy. Pediatr. Dev. Pathol. 2018, 21, 355–362. [Google Scholar] [CrossRef]
- Nguyen, R.; Moustaki, A.; Norrie, J.L.; Brown, S.; Akers, W.J.; Shirinifard, A.; Dyer, M.A. Interleukin-15 Enhances Anti-GD2 Antibody-Mediated Cytotoxicity in an Orthotopic PDX Model of Neuroblastoma. Clin. Cancer Res. 2019, 25, 7554–7564. [Google Scholar] [CrossRef]
- Sait, S.; Modak, S. Anti-GD2 Immunotherapy for Neuroblastoma. Expert Rev. Anticancer Ther. 2017, 17, 889–904. [Google Scholar] [CrossRef]
- Wang, T.; Liu, L.; Fang, J.; Jin, H.; Natarajan, S.; Sheppard, H.; Lu, M.; Turner, G.; Confer, T.; Johnson, M.; et al. Conditional C-MYC Activation in Catecholaminergic Cells Drives Distinct Neuroendocrine Tumors: Neuroblastoma vs Somatostatinoma. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mabe, N.W.; Huang, M.; Dalton, G.N.; Alexe, G.; Schaefer, D.A.; Geraghty, A.C.; Robichaud, A.L.; Conway, A.S.; Khalid, D.; Mader, M.M.; et al. Transition to a Mesenchymal State in Neuroblastoma Confers Resistance to Anti-GD2 Antibody via Reduced Expression of ST8SIA1. Nat. Cancer 2022, 3, 976–993. [Google Scholar] [CrossRef]
- Esaki, N.; Ohkawa, Y.; Hashimoto, N.; Tsuda, Y.; Ohmi, Y.; Bhuiyan, R.H.; Kotani, N.; Honke, K.; Enomoto, A.; Takahashi, M.; et al. ASC Amino Acid Transporter 2, Defined by Enzyme-mediated Activation of Radical Sources, Enhances Malignancy of GD2-positive Small-cell Lung Cancer. Cancer Sci. 2018, 109, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Del Bufalo, F.; De Angelis, B.; Caruana, I.; Del Baldo, G.; De Ioris, M.A.; Serra, A.; Mastronuzzi, A.; Cefalo, M.G.; Pagliara, D.; Amicucci, M.; et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N. Engl. J. Med. 2023, 388, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Lode, H.N.; Ehlert, K.; Huber, S.; Siebert, N.; Troschke-Meurer, S.; Zumpe, M.; Loibner, H.; Ladenstein, R.L. Single-Agent Activity of the Anti-GD2 Antibody Dinutuximab Beta given as a Long-Term Infusion in Relapsed and Refractory Neuroblastoma (APN311-304). J. Clin. Oncol. 2023, 41 (Suppl. S16), 10034. [Google Scholar] [CrossRef]
- Heczey, A.; Xu, X.; Courtney, A.N.; Tian, G.; Barragan, G.A.; Guo, L.; Amador, C.M.; Ghatwai, N.; Rathi, P.; Wood, M.S.; et al. Anti-GD2 CAR-NKT Cells in Relapsed or Refractory Neuroblastoma: Updated Phase 1 Trial Interim Results. Nat. Med. 2023, 29, 1379–1388. [Google Scholar] [CrossRef]
- Flaadt, T.; Ladenstein, R.L.; Ebinger, M.; Lode, H.N.; Arnardóttir, H.B.; Poetschger, U.; Schwinger, W.; Meisel, R.; Schuster, F.R.; Döring, M.; et al. Anti-GD2 Antibody Dinutuximab Beta and Low-Dose Interleukin 2 After Haploidentical Stem-Cell Transplantation in Patients with Relapsed Neuroblastoma: A Multicenter, Phase I/II Trial. J. Clin. Oncol. 2023, 41, 3135–3148. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, J.; Jacobson, J.C.; Clark, R.A.; Lee, S.; Liu, L.; An, Z.; Zhang, N.; Chung, D.H. Anti-GRP-R Monoclonal Antibody Antitumor Therapy against Neuroblastoma. PLoS ONE 2022, 17, e0277956. [Google Scholar] [CrossRef]
- Coronado, E.; Yañez, Y.; Vidal, E.; Rubio, L.; Vera-Sempere, F.; Cañada-Martínez, A.J.; Panadero, J.; Cañete, A.; Ladenstein, R.; Castel, V.; et al. Intratumoral Immunosuppression Profiles in 11q-deleted Neuroblastomas Provide New Potential Therapeutic Targets. Mol. Oncol. 2021, 15, 364–380. [Google Scholar] [CrossRef]
- Sujjitjoon, J.; Sayour, E.; Tsao, S.-T.; Uiprasertkul, M.; Sanpakit, K.; Buaboonnam, J.; Yenchitsomanus, P.; Atchaneeyasakul, L.; Chang, L.-J. GD2-Specific Chimeric Antigen Receptor-Modified T Cells Targeting Retinoblastoma—Assessing Tumor and T Cell Interaction. Transl. Oncol. 2021, 14, 100971. [Google Scholar] [CrossRef]
- Strijker, J.G.M.; Pscheid, R.; Drent, E.; Van Der Hoek, J.J.F.; Koopmans, B.; Ober, K.; Van Hooff, S.R.; Kholosy, W.M.; Cornel, A.M.; Coomans, C.; et al. Aβ-T Cells Engineered to Express Γδ-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression. J. Pers. Med. 2021, 11, 923. [Google Scholar] [CrossRef]
- Pilgrim, A.A.; Jonus, H.C.; Ho, A.; Cole, A.C.; Shim, J.; Goldsmith, K.C. The Yes-Associated Protein (YAP) Is Associated with Resistance to Anti-GD2 Immunotherapy in Neuroblastoma through Downregulation of ST8SIA1. OncoImmunology 2023, 12, 2240678. [Google Scholar] [CrossRef]
- Inagaki, F.F.; Kato, T.; Furusawa, A.; Okada, R.; Wakiyama, H.; Furumoto, H.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. Disialoganglioside GD2-Targeted Near-Infrared Photoimmunotherapy (NIR-PIT) in Tumors of Neuroectodermal Origin. Pharmaceutics 2022, 14, 2037. [Google Scholar] [CrossRef] [PubMed]
- Shoag, J.M.; Podda, A.; Kobetz, E.N. Disparities in the Use of Antineoplastic Immunotherapy in Pediatric Malignant Adrenal Tumors. Pediatr. Blood Cancer 2020, 67, e28522. [Google Scholar] [CrossRef] [PubMed]
- Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. CAR T Cell Therapy for Solid Tumors. Annu. Rev. Med. 2017, 68, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor Activity and Long-Term Fate of Chimeric Antigen Receptor–Positive T Cells in Patients with Neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering Strategies to Overcome the Current Roadblocks in CAR T Cell Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef]
- Liu, G.; Rui, W.; Zhao, X.; Lin, X. Enhancing CAR-T Cell Efficacy in Solid Tumors by Targeting the Tumor Microenvironment. Cell. Mol. Immunol. 2021, 18, 1085–1095. [Google Scholar] [CrossRef]
- Bansal, M.; Gupta, A.; Ding, H.-F. MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers 2022, 14, 4113. [Google Scholar] [CrossRef]
- Tjaden, B.; Baum, K.; Marquardt, V.; Simon, M.; Trajkovic-Arsic, M.; Kouril, T.; Siebers, B.; Lisec, J.; Siveke, J.T.; Schulte, J.H.; et al. N-Myc-Induced Metabolic Rewiring Creates Novel Therapeutic Vulnerabilities in Neuroblastoma. Sci. Rep. 2020, 10, 7157. [Google Scholar] [CrossRef]
- Liu, M.; Xia, Y.; Ding, J.; Ye, B.; Zhao, E.; Choi, J.-H.; Alptekin, A.; Yan, C.; Dong, Z.; Huang, S.; et al. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells. Cell Rep. 2016, 17, 609–623. [Google Scholar] [CrossRef]
- Gunda, V.; Pathania, A.S.; Chava, S.; Prathipati, P.; Chaturvedi, N.K.; Coulter, D.W.; Pandey, M.K.; Durden, D.L.; Challagundla, K.B. Amino Acids Regulate Cisplatin Insensitivity in Neuroblastoma. Cancers 2020, 12, 2576. [Google Scholar] [CrossRef]
- Xia, Y.; Ye, B.; Ding, J.; Yu, Y.; Alptekin, A.; Thangaraju, M.; Prasad, P.D.; Ding, Z.-C.; Park, E.J.; Choi, J.-H.; et al. Metabolic Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway. Cancer Res. 2019, 79, 3837–3850. [Google Scholar] [CrossRef]
- Olsen, T.K.; Dyberg, C.; Embaie, B.; Alchahin, A.; Milosevic, J.; Otte, J.; Tümmler, C.; Myrberg, I.H.; Westerhout, E.M.; Koster, J.; et al. DHODH Is an Independent Prognostic Marker and Potent Therapeutic Target in Neuroblastoma. J. Clin. Investig. 2022, 7, e153836. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhi, Y.; Duan, Y.; Zhou, X.; Yin, X.; Guan, G.; Zhang, H.; Dong, Q. NF-κB Signaling Pathway Confers Neuroblastoma Cells Migration and Invasion Ability via the Regulation of CXCR4. Med. Sci. Monit. 2014, 20, 2746–2752. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pérez, M.V.; Medina, M.Á.; Urdiales, J.L.; Keinänen, T.A.; Sánchez-Jiménez, F. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells. J. Biol. Chem. 2015, 290, 6106–6119. [Google Scholar] [CrossRef]
- Alptekin, A.; Ye, B.; Yu, Y.; Poole, C.J.; Van Riggelen, J.; Zha, Y.; Ding, H.-F. Glycine Decarboxylase Is a Transcriptional Target of MYCN Required for Neuroblastoma Cell Proliferation and Tumorigenicity. Oncogene 2019, 38, 7504–7520. [Google Scholar] [CrossRef]
- Shi, Y.; Yuan, J.; Rraklli, V.; Maxymovitz, E.; Cipullo, M.; Liu, M.; Li, S.; Westerlund, I.; Bedoya-Reina, O.C.; Bullova, P.; et al. Aberrant Splicing in Neuroblastoma Generates RNA-Fusion Transcripts and Provides Vulnerability to Spliceosome Inhibitors. Nucleic Acids Res. 2021, 49, 2509–2521. [Google Scholar] [CrossRef]
- Zhou, J.; Du, H.; Cai, W. Narrative Review: Precision Medicine Applications in Neuroblastoma—Current Status and Future Prospects. Transl. Pediatr. 2024, 13, 164–177. [Google Scholar] [CrossRef]
- Applebaum, M.A.; Desai, A.V.; Glade Bender, J.L.; Cohn, S.L. Emerging and Investigational Therapies for Neuroblastoma. Expert Opin. Orphan Drugs 2017, 5, 355–368. [Google Scholar] [CrossRef]
- Katta, S.S.; Nagati, V.; Paturi, A.S.V.; Murakonda, S.P.; Murakonda, A.B.; Pandey, M.K.; Gupta, S.C.; Pasupulati, A.K.; Challagundla, K.B. Neuroblastoma: Emerging Trends in Pathogenesis, Diagnosis, and Therapeutic Targets. J. Control. Release 2023, 357, 444–459. [Google Scholar] [CrossRef]
- Rosenquist, R.; Fröhling, S.; Stamatopoulos, K. Precision Medicine in Cancer: A Paradigm Shift. Semin. Cancer Biol. 2022, 84, 1–2. [Google Scholar] [CrossRef]
- Bîcă, O.; Ciongradi, C.I.; Ivănuță, M.; Ianole, V.; Sârbu, I.; Cojocaru, E.; Bîcă, D.E.; Lozneanu, L. Diagnostic Value of SALL4 and OCT3/4 in Pediatric Testicular Tumors. Diagnostics 2024, 14, 1454. [Google Scholar] [CrossRef] [PubMed]
- Bîcă, O.; Sârbu, I.; Ciongradi, C.I. Pediatric and Adolescent Oncofertility in Male Patients—From Alpha to Omega. Genes 2021, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Bjornard, K.; Close, A.; Burns, K.; Chavez, J.; Chow, E.J.; Meacham, L.R. Fertility Preservation in Pediatric Solid Tumors: A Report from the Children’s Oncology Group. Pediatr. Blood Cancer 2024, 71, e30960. [Google Scholar] [CrossRef] [PubMed]
- Felker, J.; Bjornard, K.; Close, A.; Chavez, J.; Chow, E.J.; Meacham, L.R.; Burns, K. Fertility Preservation in Pediatric Central Nervous System Tumors: A Report from the Children’s Oncology Group. Pediatr. Blood Cancer 2024, 71, e31246. [Google Scholar] [CrossRef]
- Pasten González, A.; Salvador Alarcón, C.; Mora, J.; Martín Gimenez, M.P.; Carrasco Torrents, R.; Krauel, L. Current Status of Fertility Preservation in Pediatric Oncology Patients. Children 2024, 11, 537. [Google Scholar] [CrossRef]
- Ciongradi, C.I.; Benchia, D.; Stupu, C.A.; Iliescu Halițchi, C.O.; Sârbu, I. Quality of Life in Pediatric Patients with Continent Urinary Diversion—A Single Center Experience. Int. J. Environ. Res. Public Health 2022, 19, 9628. [Google Scholar] [CrossRef]
- Flaadt, T.; Rehm, J.; Simon, T.; Hero, B.; Ladenstein, R.L.; Lode, H.N.; Grabow, D.; Nolte, S.; Crazzolara, R.; Greil, J.; et al. Long-Term Outcomes and Quality of Life of High-Risk Neuroblastoma Patients Treated with a Multimodal Treatment Including Anti-GD2 Immunotherapy: A Retrospective Cohort Study. Cancers 2025, 17, 149. [Google Scholar] [CrossRef]
- Hamner, T.; Latzman, R.D.; Latzman, N.E.; Elkin, T.D.; Majumdar, S. Quality of Life among Pediatric Patients with Cancer: Contributions of Time since Diagnosis and Parental Chronic Stress. Pediatr. Blood Cancer 2015, 62, 1232–1236. [Google Scholar] [CrossRef]
- Viani, K.; Furlong, W.; Filho, V.O.; Santos Murra, M.D.; Nabarrete, J.M.; Ladas, E.; Barr, R.D. Comprehensive Health Status and Health-Related Quality of Life of Children at Diagnosis of High-Risk Neuroblastoma: A Multicentric Pilot Study. Hematol. Transfus. Cell Ther. 2024, 46, S228–S233. [Google Scholar] [CrossRef]
- Alam, M.W.; Borenäs, M.; Lind, D.E.; Cervantes-Madrid, D.; Umapathy, G.; Palmer, R.H.; Hallberg, B. Alectinib, an Anaplastic Lymphoma Kinase Inhibitor, Abolishes ALK Activity and Growth in ALK-Positive Neuroblastoma Cells. Front. Oncol. 2019, 9, 579. [Google Scholar] [CrossRef]
- Liang, W.H.; Federico, S.M.; London, W.B.; Naranjo, A.; Irwin, M.S.; Volchenboum, S.L.; Cohn, S.L. Tailoring Therapy for Children with Neuroblastoma on the Basis of Risk Group Classification: Past, Present, and Future. JCO Clin. Cancer Inform. 2020, 4, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Hamad, S.; Shedeed, H.A.; Hussein, A.S. Enhanced Deep Learning Model for Personalized Cancer Treatment. IEEE Access 2022, 10, 106050–106058. [Google Scholar] [CrossRef]
- Lee, S.-G. Molecular Target and Action Mechanism of Anti-Cancer Agents. Int. J. Mol. Sci. 2023, 24, 8259. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-L.; Dai, Y.-J.; Sun, G.-Y.; Wang, L.-K.; Han, L.; Qu, M.; Liu, B.; Xue, J. Adult Neuroblastoma in the Retroperitoneum: A Case Report. Medicine 2018, 97, e13750. [Google Scholar] [CrossRef]
- Zirngibl, F.; Ivasko, S.M.; Grunewald, L.; Klaus, A.; Schwiebert, S.; Ruf, P.; Lindhofer, H.; Astrahantseff, K.; Andersch, L.; Schulte, J.H.; et al. GD2-Directed Bispecific Trifunctional Antibody Outperforms Dinutuximab Beta in a Murine Model for Aggressive Metastasized Neuroblastoma. J. Immunother. Cancer 2021, 9, e002923. [Google Scholar] [CrossRef]
- Wei, J.S.; Kuznetsov, I.B.; Zhang, S.; Song, Y.K.; Asgharzadeh, S.; Sindiri, S.; Wen, X.; Patidar, R.; Najaraj, S.; Walton, A.; et al. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN -Not-Amplified Human Neuroblastoma. Clin. Cancer Res. 2018, 24, 5673–5684. [Google Scholar] [CrossRef]
- Hussein, R.; Abou-Shanab, A.M.; Badr, E. A Multi-Omics Approach for Biomarker Discovery in Neuroblastoma: A Network-Based Framework. Npj Syst. Biol. Appl. 2024, 10, 52. [Google Scholar] [CrossRef]
- Bagatell, R.; DuBois, S.G.; Naranjo, A.; Belle, J.; Goldsmith, K.C.; Park, J.R.; Irwin, M.S. The COG Neuroblastoma Committee. Children’s Oncology Group’s 2023 Blueprint for Research: Neuroblastoma. Pediatr. Blood Cancer 2023, 70, e30572. [Google Scholar] [CrossRef]
- Parsons, D.W.; Janeway, K.A.; Laetsch, T.W.; Irwin, M.; Alva, E.; Pratilas, C.A.; Franson, A.F.; Patton, D.R.; Saguilig, L.; Piao, J.; et al. Update for NCI-COG Pediatric MATCH: Active Trial Cohorts for Children, Adolescents and Young Adults with Refractory Cancers. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS10071. [Google Scholar] [CrossRef]
- Daei Sorkhabi, A.; Mohamed Khosroshahi, L.; Sarkesh, A.; Mardi, A.; Aghebati-Maleki, A.; Aghebati-Maleki, L.; Baradaran, B. The Current Landscape of CAR T-Cell Therapy for Solid Tumors: Mechanisms, Research Progress, Challenges, and Counterstrategies. Front. Immunol. 2023, 14, 1113882. [Google Scholar] [CrossRef]
Molecular Factor | Mechanism of Action | Clinical Implications | References |
---|---|---|---|
MYCN | - Amplification → transcriptional activation of pro-proliferative, anti-apoptotic, angiogenesis, and HIF-1α genes - Metabolic reprogramming | - Major risk marker - Associated with severe prognosis and resistance to treatment | [18,20,22,23,24,25,26] |
TP53 | - Loss of function by inhibition (e.g., MDM2 ↑), less commonly by mutation | - Genomic instability - Decreased apoptosis - Increased resistance | [13,33,34,35,36,38] |
microRNAs (e.g., miR-449a) | - Regulation of gene expression post-transcriptionally - Induces differentiation and cell cycle arrest | - Therapeutic potential in restoring tumor cell differentiation | [40,41,42] |
DNA methylation | - Hypermethylation → repression of suppressor genes and miRNAs | - Aggressive phenotype - Possible biomarkers for prognosis and treatment | [40,44,45,46,47] |
Pathway | Mechanism of Action | Clinical Relevance | Targeted Therapeutic Strategies | References |
---|---|---|---|---|
Wnt–BMP4–Notch Axis | - Regulates mesenchymal–epithelial transition; promotes cell differentiation; and suppresses proliferation | - Loss of BMP4 associated with aggressive, poorly differentiated tumors | - Therapies enhancing BMP4 signaling or modulating Wnt/Notch balance | [48,49,50] |
PI3K/Akt/mTOR Pathway | - Promotes cell survival, proliferation, and metabolism | - Therapy resistance and poor prognosis | - PI3K/mTOR inhibitors - Combination therapies | [50,52,54] |
Jak2/Stat3 Pathway | - Stimulates tumor proliferation - Inhibits apoptosis | - Tumor aggressiveness | - Jak2/Stat3 inhibitors | [57,58] |
Component | Key Roles in NB | Impact on Tumor Progression | References |
---|---|---|---|
Stromal cells (e.g., CAFs and endothelial cells) | - Structural support - Growth factors and cytokines | - Tumor progression - Support immune evasion via TGF-β secretion - Therapy resistance | [60,62,64] |
Immune cells (macrophages, NK, and T cells) | - Pro-tumorigenic (M2) macrophage phenotype secretes IL-6 and IL-10 | - Promote immune escape and tumor survival | [66,67] |
Inflammatory cytokines (IL-1β and TNF-α) | - Induce metabolic reprogramming - Promote cell survival | - Increase cell proliferation and survival | [67,68,69,70] |
Hypoxia and HIF-1α activation | - Facilitates tumor cell survival - Promotes angiogenesis - Increased invasion and metastasis - Upregulates VEGF and MMPs | - Aggressive tumor phenotype - Increased invasiveness - Therapy resistance | [59,71,73,74] |
Trial/References | Treatment Arm | Patient Population | Response Rate (ORR) CR/PR | Event-Free Survival (EFS) | Overall Survival (OS) | Key Findings |
---|---|---|---|---|---|---|
NCT03373097 [93] | GD2-targeted CAR-T cells with inducible suicide gene | Relapsed/refractory high-risk NB | 63% (33% CR) | 36% at 3 years | 60% at 3 years | Demonstrated feasibility and sustained antitumor effect with manageable safety profile |
NCT02743429 [94] | Dinutuximab beta long-term infusion (LTI) monotherapy | Relapsed/refractory stage 4 NB | 26% (CR/PR) at 24 weeks | 31% at 3 years | 66% at 3 years | DB-LTI is an active and tolerable therapeutic option |
NCT03294954 [95] | GD2-CAR-NKT cells co-expressing IL-15 | Relapsed/refractory NB | 25% (1 CR, 2 PR) | Not reported | Not reported | Safe with no dose-limiting toxicities; IL-15 may enhance CAR-NKT cell activity |
NCT01711554 [96] | Dinutuximab beta ± low-dose IL-2 post-haploidentical SCT | Relapsed high-risk NB | Not specified | Not specified | Not specified | Combining IL-2 with anti-GD2 post-transplant is feasible; further studies needed to assess efficacy |
Therapeutic Strategy | Target/Mechanism | Key Agents | Clinical Insight | Survival Data (EFS/OS) | References |
---|---|---|---|---|---|
PI3K/mTOR inhibitors | PI3K/Akt/mTOR pathway | Rapamycin and Temsirolimus | Enhances response to standard chemotherapy; synergistic with cisplatin | Data not yet mature; early-phase trials | [67,68,69] |
HDAC inhibitors | Histone deacetylation/epigenetic reprogramming | Vorinostat and Panobinostat | Induces apoptosis and differentiation; under clinical investigation | No EFS/OS published to date | [80,81,82] |
Notch pathway inhibition | Inhibits DLL1-Notch signaling | γ-secretase inhibitors | Reduces proliferation; preclinical benefit shown | Preclinical; no survival data yet | [84,85,86] |
Anti-GD2 antibody therapy | GD2 targeting; immune activation | Dinutuximab + IL-2/GM-CSF | FDA-approved; part of standard care; and enhances NK-mediated killing | EFS ~66%, OS ~86% at 2 years | [87,88,89,91] |
ALK inhibitors | Targets ALK mutations | Crizotinib, Ceritinib | Effective in relapsed ALK-mutant cases | ORR ~36%; OS data limited in small trials | [92] |
Checkpoint inhibitors | Blocks PD-1/PD-L1 axis | Nivolumab, and Pembrolizumab | Limited alone; being tested with anti-GD2 or CAR-T | No meaningful OS benefit alone in NB | [16,91,97] |
CAR-T cell therapy | Engineered GD2-directed T cells | GD2-CAR-T (e.g., GD2-CART01) | High response in relapsed NB; IL-15 and suicide switch improve safety | ORR 63%, 3-yr EFS 36%, OS 60% | [99,100,101,102,103] |
Retinoic acid therapy | RAR/RXR signaling → cell differentiation | 13-cis-RA (ATRA) | Part of post-consolidation therapy; improves outcomes in high-risk NB | 3-yr EFS improved post-induction; OS benefit modest | [108,109,110] |
Metabolic targeting | Blocks MYCN-related metabolism (glutamine and serine) | CB-839 and PHGDH inhibitors | Tumor-selective; especially effective in MYCN-amplified NB | Preclinical; no survival data in humans | [111,112,113,114,116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchia, D.; Bîcă, O.D.; Sârbu, I.; Savu, B.; Farcaș, D.; Miron, I.; Postolache, A.L.; Cojocaru, E.; Abbo, O.; Ciongradi, C.I. Targeting Pathways in Neuroblastoma: Advances in Treatment Strategies and Clinical Outcomes. Int. J. Mol. Sci. 2025, 26, 4722. https://doi.org/10.3390/ijms26104722
Benchia D, Bîcă OD, Sârbu I, Savu B, Farcaș D, Miron I, Postolache AL, Cojocaru E, Abbo O, Ciongradi CI. Targeting Pathways in Neuroblastoma: Advances in Treatment Strategies and Clinical Outcomes. International Journal of Molecular Sciences. 2025; 26(10):4722. https://doi.org/10.3390/ijms26104722
Chicago/Turabian StyleBenchia, Diana, Ovidiu Daniel Bîcă, Ioan Sârbu, Bogdan Savu, Diana Farcaș, Ingrith Miron, Anca Lavinia Postolache, Elena Cojocaru, Olivier Abbo, and Carmen Iulia Ciongradi. 2025. "Targeting Pathways in Neuroblastoma: Advances in Treatment Strategies and Clinical Outcomes" International Journal of Molecular Sciences 26, no. 10: 4722. https://doi.org/10.3390/ijms26104722
APA StyleBenchia, D., Bîcă, O. D., Sârbu, I., Savu, B., Farcaș, D., Miron, I., Postolache, A. L., Cojocaru, E., Abbo, O., & Ciongradi, C. I. (2025). Targeting Pathways in Neuroblastoma: Advances in Treatment Strategies and Clinical Outcomes. International Journal of Molecular Sciences, 26(10), 4722. https://doi.org/10.3390/ijms26104722