Community-Acquired Clostridioides difficile Infection: The Fox Among the Chickens
Abstract
:1. Introduction
2. Pathogenesis
2.1. Virulence Factors of C. difficile
2.2. Means and Sources of Colonization
3. Community Spread in Healthy Individuals and Immunosuppressed Patients—The Distinct Role of Gut Microbiota
4. Most Common Ribotypes of C. difficile Related to CA-CDI
5. Zoonotic Spread of C. difficile in the Community: The Role of Companion Animals in Cross-Contamination and Spread
6. Antibiotic Resistance of C. difficile Strains
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schäffler, H.; Breitrück, A. Clostridium difficile—From Colonization to Infection. Front. Microbiol. 2018, 9, 649. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Johnson, S.; Peterson, L.R.; Mulligan, M.E.; Silva, J. Clostridium difficile-associated diarrhea and colitis. Infect. Control Hosp. Epidemiol. 1995, 16, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 526–536. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, Y.; Grinspan, A.M. Epidemiology of community-acquired and recurrent Clostridioides difficile infection. Therap. Adv. Gastroenterol. 2021, 14, 17562848211016248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos-Martínez, A.; Ortiz-Balbuena, J.; Curto-García, I.; Asensio-Vegas, A.; Martínez-Ruiz, R.; Múñez-Rubio, E.; Cantero-Caballero, M.; Sánchez-Romero, I.; González-Partida, I.; Vera-Mendoza, M.I. Risk factors for Clostridium difficile diarrhea in patients with inflammatory bowel disease. Rev. Esp. Enferm. Dig. 2015, 107, 4–9. [Google Scholar]
- Nitzan, O.; Elias, M.; Chazan, B.; Raz, R.; Saliba, W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 2013, 21, 7577–7585. [Google Scholar] [CrossRef]
- Binion, D.G. Strategies for management of Clostridium difficile infection in immunosuppressed patients. Gastroenterol. Hepatol. (N. Y.) 2011, 7, 750–752. [Google Scholar]
- Hung, Y.P.; Lee, J.C.; Lin, H.J.; Liu, H.C.; Wu, Y.H.; Tsai, P.J.; Ko, W.C. Clinical impact of Clostridium difficile colonization. J. Microbiol. Immunol. Infect. 2015, 48, 241–248. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef]
- Candel-Pérez, C.; Ros-Berruezo, G.; Martínez-Graciá, C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol. 2019, 77, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P.; LaMont, J.T. Clostridium difficile infection. Annu. Rev. Med. 1998, 49, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.C.; O’Toole, E. Intestinal flora in newborn infants with a description of a new pathogenic anaerobe. Am. J. Dis. Child 1935, 49, 390–402. [Google Scholar] [CrossRef]
- Dingle, K.E.; Elliott, B.; Robinson, E.; Griffiths, D.; Eyre, D.W.; Stoesser, N.; Vaughan, A.; Golubchik, T.; Fawley, W.N.; Wilcox, M.H.; et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol. Evol. 2014, 6, 36–52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voth, D.E.; Ballard, J.D. Clostridium difficile toxins: Mechanism of action and role in disease. Clin. Microbiol. Rev. 2005, 18, 247–263. [Google Scholar] [CrossRef]
- Brouwer, M.S.; Roberts, A.P.; Hussain, H.; Williams, R.J.; Allan, E.; Mullany, P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat. Commun. 2013, 4, 2601. [Google Scholar] [CrossRef]
- Carter, G.P.; Chakravorty, A.; Pham Nguyen, T.A.; Mileto, S.; Schreiber, F.; Li, L.; Howarth, P.; Clare, S.; Cunningham, B.; Sambol, S.P.; et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. mBio. 2015, 6, e00551. [Google Scholar] [CrossRef]
- Drudy, D.; Fanning, S.; Kyne, L. Toxin A-negative, toxin B-positive Clostridium difficile. Int. J. Infect. Dis. 2007, 11, 5–10. [Google Scholar] [CrossRef]
- Gupta, P.; Zhang, Z.; Sugiman-Marangos, S.N.; Tam, J.; Raman, S.; Julien, J.P.; Kroh, H.K.; Lacy, D.B.; Murgolo, N.; Bekkari, K.; et al. Functional defects in Clostridium difficile TcdB toxin uptake identify CSPG4 receptor-binding determinants. J. Biol. Chem. 2017, 292, 17290–17301. [Google Scholar] [CrossRef]
- Awad, M.M.; Johanesen, P.A.; Carter, G.P.; Rose, E.; Lyras, D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes. 2014, 5, 579–593. [Google Scholar] [CrossRef]
- Chumbler, N.M.; Farrow, M.A.; Lapierre, L.A.; Franklin, J.L.; Haslam, D.B.; Haslam, D.; Goldenring, J.R.; Lacy, D.B. Clostridium difficile toxin B causes epithelial cell necrosis through an autoprocessing independent mechanism. PLoS Pathog. 2012, 8, e1003072. [Google Scholar] [CrossRef]
- Farrow, M.A.; Chumbler, N.M.; Lapierre, L.A.; Franklin, J.L.; Rutherford, S.A.; Goldenring, J.R.; Lacy, D.B. Clostridium difficile toxinB-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc. Natl. Acad. Sci. USA 2013, 110, 18674–18679. [Google Scholar] [CrossRef] [PubMed]
- Price, A.B.; Davies, D.R. Pseudomembranous colitis. J. Clin. Pathol. 1977, 30, 1–12. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/c-diff/hcp/diagnosis-testing/index.html (accessed on 19 April 2025).
- Otamiri, T.; Sjödahl, R. Oxygen radicals: Their role in selected gastrointestinal disorders. Dig. Dis. 1991, 9, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Joh, T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J. Clin. Biochem. Nutr. 2007, 40, 1–12. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, E.H.; Hahm, K.B. Oxidative stress in inflammation based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol. 2012, 27, 1004–1010. [Google Scholar] [CrossRef]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef]
- Dapa, T.; Leuzzi, R.; Ng, Y.K.; Baban, S.T.; Adamo, R.; Kuehne, S.A.; Scarselli, M.; Minton, N.P.; Serruto, D.; Unnikrishnan, M. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol. 2013, 195, 545–555. [Google Scholar] [CrossRef]
- Dawson, L.F.; Valiente, E.; Faulds-Pain, A.; Donahue, E.H.; Wren, B.W.; Popoff, M.R. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS ONE. 2012, 7, e0050527. [Google Scholar] [CrossRef]
- Pantaléon, V.; Soavelomandroso, A.P.; Bouttier, S.; Briandet, R.; Roxas, B.; Chu, M.; Collignon, A.; Janoir, C.; Vedantam, G.; Candela, T. The Clostridium difficile protease Cwp84 Modulates both biofilm formation and cell-surface properties. PLoS ONE 2015, 10, e0124971. [Google Scholar] [CrossRef]
- Semenyuk, E.G.; Laning, M.L.; Foley, J.; Johnston, P.F.; Knight, K.L.; Gerding, D.N.; Driks, A. Spore formation and toxin production in Clostridium difficile biofilms. PLoS ONE 2014, 9, e0087757. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, Z.; Weese, S.; Ezzatpanah, H.; Jalali, M.; Chamani, M. Occurrence of Clostridium difficile in seasoned hamburgers and seven processing plants in Iran. BMC Microbiol. 2014, 14, 283. [Google Scholar] [CrossRef]
- Auria, E.; Deschamps, J.; Briandet, R.; Dupuy, B. Extracellular succinate induces spatially organized biofilm formation in Clostridioides difficile. Biofilm 2023, 5, 100–125. [Google Scholar] [CrossRef]
- Rubio-Mendoza, D.; Martínez-Meléndez, A.; Maldonado-Garza, H.J.; Córdova-Fletes, C.; Garza-González, E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023, 11, 2525. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023, 11, 2161. [Google Scholar] [CrossRef]
- Maldarelli, G.A.; Piepenbrink, K.H.; Scott, A.J.; Freiberg, J.A.; Song, Y.; Achermann, Y.; Ernst, R.K.; Shirtliff, M.E.; Sundberg, E.J.; Donnenberg, M.S.; et al. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog. Dis. 2016, 74, ftw061. [Google Scholar] [CrossRef]
- Dapa, T.; Unnikrishnan, M. Biofilm formation by Clostridium difficile. Gut Microbes. 2013, 4, 397–402. [Google Scholar] [CrossRef]
- Deakin, L.J.; Clare, S.; Fagan, R.P.; Dawson, L.F.; Pickard, D.J.; West, M.R.; Wren, B.W.; Fairweather, N.F.; Dougan, G.; Lawley, T.D. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect. Immun. 2012, 80, 2704–2711. [Google Scholar] [CrossRef]
- Dubois, T.; Tremblay, Y.D.; Hamiot, A.; Martin-Verstraete, I.; Deschamps, J.; Monot, M.; Briandet, R.; Dupuy, B. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. npj Biofilms Microbiomes 2019, 5, 14. [Google Scholar] [CrossRef]
- Slater, R.T.; Frost, L.R.; Jossi, S.E.; Millard, A.D.; Unnikrishnan, M. Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Sci. Rep. 2019, 9, 9903. [Google Scholar] [CrossRef]
- Vuotto, C.; Moura, I.; Barbanti, F.; Donelli, G.; Spigaglia, P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog. Dis. 2016, 74, ftv114. [Google Scholar] [CrossRef] [PubMed]
- Taggart, M.G.; Snelling, W.J.; Naughton, P.J.; La Ragione, R.M.; Dooley, J.S.; Ternan, N.G. Biofilm regulation in Clostridioides difficile: Novel systems linked to hypervirulence. PLoS Pathog. 2021, 17, e1009817. [Google Scholar] [CrossRef]
- Tremblay, Y.D.; Dupuy, B. The blueprint for building a biofilm the Clostridioides difficile way. Curr. Opin. Microbiol. 2022, 66, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Normington, C.; Moura, I.B.; Bryant, J.A.; Ewin, D.J.; Clark, E.V.; Kettle, M.J.; Harris, H.C.; Spittal, W.; Davis, G.; Henn, M.R.; et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. npj Biofilms Microbiomes 2021, 7, 16. [Google Scholar] [CrossRef]
- Semenyuk, E.G.; Poroyko, V.A.; Johnston, P.F.; Jones, S.E.; Knight, K.L.; Gerding, D.N.; Driks, A. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse. Infect. Immun. 2015, 83, 4383–4391. [Google Scholar] [CrossRef]
- McFarland, L.V.; Mulligan, M.E.; Kwok, R.Y.; Stamm, W.E. Nosocomial acquisition of Clostridium difficile infection. N. Engl. J. Med. 1989, 320, 204–210. [Google Scholar] [CrossRef]
- Pasquale, V.; Romano, V.; Rupnik, M.; Capuano, F.; Bove, D.; Aliberti, F.; Krovacek, K.; Dumontet, S. Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol. 2012, 31, 309–312. [Google Scholar] [CrossRef]
- Pasquale, V.; Romano, V.J.; Rupnik, M.; Dumontet, S.; Čiznar, I.; Aliberti, F.; Mauri, F.; Saggiomo, V.; Krovacek, K. Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol. 2011, 56, 431–437. [Google Scholar] [CrossRef]
- Salf, N.A.L.; Brazier, J.S. The distribution of Clostridium difficile in the environment of South Wales. J. Clin. Microbiol. 1996, 45, 133–137. [Google Scholar] [CrossRef]
- Zidaric, V.; Beigot, S.; Lapajne, S.; Rupnik, M. The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 2010, 16, 371–375. [Google Scholar] [CrossRef]
- Frentrup, M.; Thiel, N.; Junker, V.; Behrens, W.; Münch, S.; Siller, P.; Kabelitz, T.; Faust, M.; Indra, A.; Baumgartner, S.; et al. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ. Microbiol. 2021, 23, 7591–7602. [Google Scholar] [CrossRef] [PubMed]
- Romano, V.; Pasquale, V.; Krovacek, K.; Mauri, F.; Demarta, A.; Dumontet, S. Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in southern Switzerland. Appl. Environ. Microbiol. 2012, 78, 6643–6646. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Weese, J.S.; Flemming, C.; Odumeru, J.; Warriner, K. Fate of Clostridium difficile during wastewater treatment and incidence in Southern Ontario watersheds. J. Appl. Microbiol. 2014, 1, 891–904. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Daube, G. Clostridium difficile in Food and Animals: A Comprehensive Review. Adv. Exp. Med. Biol. 2016, 932, 65–92. [Google Scholar] [CrossRef] [PubMed]
- Porsbo, L.J.; Agersø, Y. Clostridium Difficile—A Possible Zoonotic Link; National Food Institute, Technical University of Denmark: Søborg, Denmark, 2016; 45p, Available online: https://orbit.dtu.dk/en/publications/clostridium-difficile-a-possible-zoonotic-link (accessed on 19 April 2025).
- Weese, J.S.; Avery, B.P.; Rousseau, J. Detection and characterization of Clostridium difficile in retail chicken. Lett. Appl. Microbiol. 2010, 50, 362–365. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/c-diff/prevention/index.html (accessed on 19 April 2025).
- Medina-Torres, C.E.; Weese, J.S.; Staempfli, H.R. Prevalence of Clostridium difficile in horses. Vet. Microbiol. 2011, 152, 212–215. [Google Scholar] [CrossRef]
- Goorhuis, A.; Bakker, D.; Corver, J.; Debast, S.B.; Harmanus, C.; Notermans, D.W.; Bergwerff, A.A.; Dekker, F.W.; Kuijper, E.J. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis. 2008, 47, 1162–1170. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yang, L.; Xi, G.; Chen, P.X.; Li, F.; Jiang, H.X. The first isolation of Clostridium difficile RT078/ST11 from pigs in China. PLoS ONE 2019, 14, e0212965. [Google Scholar] [CrossRef]
- Knight, D.R.; Riley, T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health. 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Whyte, P.; Rogers, T.; McElroy, M.; Fanning, S.; Frias, J.; Bolton, D. The prevalence of Clostridioides difficile on farms, in abattoirs and in retail foods in Ireland. Food Microbiol. 2021, 98, 103781. [Google Scholar] [CrossRef]
- Taha Attia, A.E. Retail chicken meats as potential sources of Clostridioides difficile in Al-Jouf, Saudi Arabia. J. Infect. Dev. Ctries 2021, 15, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.B.; Norman, K.N.; Andrews, K.; Hume, M.E.; Scanlan, C.M.; Callaway, T.R.; Anderson, R.C.; Nisbet, D.J. Clostridium difficile in poultry and poultry meat. Foodborne Pathog. Dis. 2011, 8, 1321–1323. [Google Scholar] [CrossRef] [PubMed]
- Guran, H.S.; Ilhak, O.I. Clostridium difficile in retail chicken meat parts and liver in the Eastern Region of Turkey. J. Verbr. Lebensm. 2015, 10, 359–364. [Google Scholar] [CrossRef]
- Abdel-Glil, M.Y.; Thomas, P.; Schmoock, G.; Abou-El-Azm, K.; Wieler, L.H.; Neubauer, H.; Seyboldt, C. Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe 2018, 51, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Razmyar, J.; Jamshidi, A.; Khanzadi, S.; Kalidari, G. Toxigenic Clostridium difficile in retail packed chicken meat and broiler flocks in northeastern Iran. Iran J. Vet. Res. 2017, 18, 271–274. [Google Scholar] [PubMed] [PubMed Central]
- Barbosa, J.; Campos, A.; Teixeira, P. Methods currently applied to study the prevalence of Clostridioides difficile in foods. AIMS Agric. Food 2020, 5, 102–128. [Google Scholar] [CrossRef]
- Lim, S.C.; Foster, N.F.; Riley, T.V. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite. Anaerobe 2016, 37, 67–71. [Google Scholar] [CrossRef]
- Flock, G.; Chen, C.-H.; Yin, H.-B.; Fancher, S.; Mooyottu, S.; Venkitanarayanan, K. Effect of chilling, freezing and cooking on survivability of Clostridium difficile spores in ground beef. Meat Sci. 2016, 112, 161. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Reid-Smith, R.J.; Staemp, H.R.; Weese, J.S. Clostridium difficile survives minimal temperature recommended for cooking ground meats. Anaerobe 2010, 16, 540–542. [Google Scholar] [CrossRef]
- Fordtran, J.S. Colitis Due to Clostridium Difficile Toxins: Underdiagnosed, Highly Virulent, and Nosocomial. Bayl. Univ. Med. Cent. Proc. 2006, 19, 3–12. [Google Scholar] [CrossRef]
- Kim, G.; Zhu, N.A. Community-acquired Clostridium difficile infection. Can. Fam. Physician 2017, 63, 131–132. [Google Scholar] [PubMed]
- Chitnis, A.S.; Holzbauer, S.M.; Belflower, R.M.; Winston, L.G.; Bamberg, W.M.; Lyons, C.; Farley, M.M.; Dumyati, G.K.; Wilson, L.E.; Beldavs, Z.G.; et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern. Med. 2013, 173, 1359–1367. [Google Scholar] [CrossRef]
- Khanna, S.; Pardi, D.S.; Aronson, S.L.; Kammer, P.P.; Orenstein, R.; St Sauver, J.L.; Harmsen, S.W.; Zinsmeister, A.R. The epidemiology of community-acquired Clostridium difficile infection: A population based study. Am. J. Gastroenterol. 2012, 107, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Juneau, C.; Mendias, E.N.; Wagal, N.; Loeffelholz, M.; Savidge, T.; Croisant, S.; Dann, S. Community-Acquired Clostridium Difficile Infection: Awareness and Clinical Implications. J. Nurse Pract. 2013, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, M.; Suzuki, R.; Tanaka, N.; Fukunaga, H.; Kinoshita, Y.; Kimura, H.; Tsutsui, S.; Murata, M.; Morita, S. Community-acquired fulminant Clostridioides (Clostridium) difficile infection by ribotype 027 isolate in Japan: A case report. Surg. Case Rep. 2021, 7, 137. [Google Scholar] [CrossRef]
- Al Assaad, R.; Dakessian, A.; Bachir, R.; Bizri, A.R.; El Sayed, M. Significance of Clostridium difficile in community-acquired diarrhea in a tertiary care center in Lebanon. Sci. Rep. 2020, 10, 5678. [Google Scholar] [CrossRef]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef]
- Schwartz, O.; Rohana, H.; Azrad, M.; Shor, A.; Rainy, N.; Maor, Y.; Nesher, L.; Sagi, O.; Ken-Dror, S.; Kechker, P.; et al. Characterization of community-acquired Clostridioides difficile strains in Israel, 2020–2022. Front. Microbiol. 2023, 14, 1323257. [Google Scholar] [CrossRef]
- Borriello, S.P. The influence of the normal flora on Clostridium difficile colonisation of the gut. Ann. Med. 1990, 22, 61–67. [Google Scholar] [CrossRef]
- Gillespie, W.; Marya, N.; Fahed, J.; Leslie, G.; Patel, K.; Cave, D.R. Clostridium difficile in inflammatory bowel disease: A retrospective study. Gastroenterol. Res. Pract. 2017, 2017, 4803262. [Google Scholar] [CrossRef]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef]
- Balram, B.; Battat, R.; Al-Khoury, A.; D’Aoust, J.; Afif, W.; Bitton, A.; Lakatos, P.L.; Bessissow, T. Risk factors associated with Clostridium difficile infection in inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis 2019, 13, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Dorman, S.A.; Liggoria, E.; Winn, W.C., Jr.; Beeken, W.L. Isolation of Clostridium difficile from patients with inactive Crohn’s disease. Gastroenterology 1982, 82, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Mylonaki, M.; Langmead, L.; Pantes, A.; Johnson, F.; Rampton, D.S. Enteric infection in relapse of inflammatory bowel disease: Importance of microbiological examination of stool. Eur. J. Gastroenterol. Hepatol. 2004, 16, 775–778. [Google Scholar] [CrossRef]
- Mahnic, A.; Pintar, S.; Skok, P.; Rupnik, M. Gut community alterations associated with Clostridioides difficile colonization in hospitalized gastroenterological patients with or without inflammatory bowel disease. Front. Microbiol. 2022, 13, 988426. [Google Scholar] [CrossRef]
- Manichanh, C.; Rigottier-Gois, L.; Bonnaud, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.; Chardon, P.; Marteau, P.; et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 55, 205–211. [Google Scholar] [CrossRef]
- Fischer, M.; Kao, D.; Kelly, C.; Kuchipudi, A.; Jafri, S.M.; Blumenkehl, M.; Rex, D.; Mellow, M.; Kaur, N.; Sokol, H.; et al. Fecal microbiota transplantation is safe and efficacious for recurrent or refractory Clostridium difficile infection in patients with inflammatory bowel disease. Inflamm. Bowel. Dis. 2016, 22, 2402–2409. [Google Scholar] [CrossRef]
- Dalal, R.S.; Allegretti, J.R. Diagnosis and management of Clostridioides difficile infection in patients with inflammatory bowel disease. Curr. Opin. Gastroenterol. 2021, 37, 336–343. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kearney, S.; Li, N.; Bogart, E.; Bullock, K.; Gerber, G.K.; Bry, L.; Clish, C.B.; Alm, E.; Korzenik, J.R. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 2016, 43, 1142–1153. [Google Scholar] [CrossRef]
- D’Aoust, J.; Battat, R.; Bessissow, T. Management of inflammatory bowel disease with Clostridium difficile infection. World J. Gastroenterol. 2017, 23, 4986–5003. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Guo, H.; Zheng, X.Y. Inflammatory bowel disease and Clostridium difficile infection: Clinical presentation, diagnosis, and management. Therap. Adv. Gastroenterol. 2023, 16, 17562848231207280. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.S.; Yee, J. Clostridioides difficile Infection in Chronic Kidney Disease/End-Stage Renal Disease. Adv. Chronic Kidney Dis. 2019, 26, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Chmielewski, M.; Honda, H.; Pecoits-Filho, R.; Matsuo, S.; Yuzawa, Y.; Tranaeus, A.; Stenvinkel, P.; Lindholm, B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1526–1533. [Google Scholar] [CrossRef]
- Mihaescu, A.; Augustine, A.M.; Khokhar, H.T.; Zafran, M.; Masood, S.S.M.E.; Gilca-Blanariu, G.E.; Covic, A.; Nistor, I. Clostridioides difficile Infection in Patients with Chronic Kidney Disease: A Systematic Review. Biomed. Res. Int. 2021, 13, 5466656. [Google Scholar] [CrossRef]
- Lyerly, D.M.; Lockwood, D.E.; Richardson, S.H.; Wilkins, T.D. Biological activities of toxins A and B of Clostridium difficile. Infect. Immun. 1982, 35, 1147–1150. [Google Scholar] [CrossRef]
- Arrich, J.; Sodeck, G.H.; Sengolge, G.; Konnaris, C.; Mullner, M.; Laggner, A.N.; Domanovits, H. Clostridium difficile causing acute renal failure: Case presentation and review. World J. Gastroenterol. 2005, 11, 1245–1247. [Google Scholar] [CrossRef]
- Lee, J.D.; Heintz, B.H.; Mosher, H.J.; Livorsi, D.J.; Egge, J.A.; Lund, B.C. Risk of Acute Kidney Injury and Clostridioides difficile Infection With Piperacillin/Tazobactam, Cefepime, and Meropenem With or Without Vancomycin. Clin. Infect. Dis. 2021, 73, e1579–e1586. [Google Scholar] [CrossRef] [PubMed]
- Cimolai, N. Are Clostridium difficile toxins nephrotoxic? Med. Hypotheses 2019, 126, 4–8. [Google Scholar] [CrossRef]
- Qu, H.Q.; Jiang, Z.D. Clostridium difficile infection in diabetes. Diabetes Res. Clin. Pract. 2014, 105, 285–294. [Google Scholar] [CrossRef]
- Dubberke, E.R.; Riddle, D.J. Clostridium difficile in Solid Organ Transplant Recipients. Am. J. Transplant. 2009, 9, S35–S40. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.J.; Dubberke, E.R. Clostridium difficile infection in solid organ transplant recipients. Curr. Opin. Organ Transplant. 2008, 13, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Revolinski, S.L.; Munoz-Price, S.L. Clostridium difficile in Immunocompromised Hosts: A Review of Epidemiology, Risk Factors, Treatment, and Prevention. Clin. Infect. Dis. 2019, 68, 2144–2215. [Google Scholar] [CrossRef]
- Knight, D.R.; Elliott, B.; Chang, B.J.; Perkins, T.T.; Riley, T.V. Diversity and Evolution in the Genome of Clostridium difficile. Clin. Microbiol. Rev. 2015, 28, 721–741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, A.; Khanna, S. Community-acquired Clostridium difficile infection: An increasing public health threat. Infect. Drug. Resist. 2014, 7, 63–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaulton, T.; Misra, R.; Rose, G.; Baybayan, P.; Hall, R.; Freeman, J.; Turton, J.; Picton, S.; Korlach, J.; Gharbia, S.; et al. Complete genome sequence of the hypervirulent bacterium Clostridium difficile strain G46, ribotype 027. Genome Announc. 2015, 3, e00073-15. [Google Scholar] [CrossRef]
- Brouwer, M.S.; Allan, E.; Mullany, P.; Roberts, A.P. Draft genome sequence of the nontoxigenic Clostridium difficile strain CD37. J. Bacteriol. 2012, 194, 2125–2126. [Google Scholar] [CrossRef]
- Stabler, R.A.; He, M.; Dawson, L.; Martin, M.; Valiente, E.; Corton, C.; Lawley, T.D.; Sebaihia, M.; Quail, M.A.; Rose, G.; et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009, 10, R102. [Google Scholar] [CrossRef]
- He, M.; Sebaihia, M.; Lawley, T.D.; Stabler, R.A.; Dawson, L.F.; Martin, M.J.; Holt, K.E.; Seth-Smith, H.M.; Quail, M.A.; Rance, R.; et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 2010, 107, 7527–7532. [Google Scholar] [CrossRef]
- Sebaihia, M.; Wren, B.W.; Mullany, P.; Fairweather, N.F.; Minton, N.; Stabler, R.; Thomson, N.R.; Roberts, A.P.; Cerdeno-Tarrraga, A.M.; Wang, H.W.; et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 2006, 38, 779–786. [Google Scholar] [CrossRef]
- Enkirch, T.; Mernelius, S.; Magnusson, C.; Kühlmann-Berenzon, S.; Bengnér, M.; Åkerlund, T.; Rizzardi, K. Molecular epidemiology of community- and hospital-associated Clostridioides difficile infections in Jönköping, Sweden, October 2017–March 2018. APMIS 2022, 130, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Bauer, M.P.; Baines, S.D.; Corver, J.; Fawley, W.N.; Goorhuis, B.; Kuijper, E.J.; Wilcox, M.H. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 2010, 23, 529–549. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Du, P.; Yang, H.; Zhang, Y.; Wang, J.; Zhang, W.; Han, G.; Han, N.; Yao, Z.; Wang, H.; et al. Nosocomial transmission of Clostridium difficile Ribotype 027 in a Chinese hospital, 2012-2014, traced by whole genome sequencing. BMC Genom. 2016, 17, 405. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Gould, C.V.; McDonald, L.C. Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S65–S70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warny, M.; Pepin, J.; Fang, A.; Killgore, G.; Thompson, A.; Brazier, J.; Frost, E.; McDonald, L.C. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005, 366, 1079–1084. [Google Scholar] [CrossRef]
- Tian, T.T.; Zhao, J.H.; Yang, J.; Qiang, C.X.; Li, Z.R.; Chen, J.; Xu, K.Y.; Ciu, Q.Q.; Li, R.X. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment. PLoS ONE 2016, 11, e0151964. [Google Scholar] [CrossRef]
- Abad-Fau, A.; Sevilla, E.; Martín-Burriel, I.; Moreno, B.; Bolea, R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023, 11, 1752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, S.S.; Gim, J.L.; Kim, M.S.; Kim, H.; Choi, J.Y.; Yong, D.; Lee, K. Clinical and molecular characteristics of community-acquired Clostridium difficile infections in comparison with those of hospital-acquired C. difficile. Anaerobe 2017, 48, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, S.; Riley, T.V. Molecular Epidemiology of Clostridioides difficile Infections in Children. J. Pediatric. Infect. Dis. Soc. 2021, 10 (Suppl. S3), S34–S40. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Li, W.; Gu, W.; Zhang, W.; Liu, X.; Fu, X.; Xu, W.; Wu, Y.; Lu, J. A retrospective study of community-acquired Clostridium difficile infection in southwest China. Sci. Rep. 2018, 8, 3992. [Google Scholar] [CrossRef]
- Shaw, H.A.; Preston, M.D.; Vendrik, K.E.W.; Cairns, M.D.; Browne, H.P.; Stabler, R.A.; Crobach, M.J.T.; Corver, J.; Pituch, H.; Ingebretsen, A.; et al. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin. Microbiol. Infect. 2020, 26, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Roxas, B.A.P.; Roxas, J.L.; Claus-Walker, R.; Harishankar, A.; Mansoor, A.; Anwar, F.; Jillella, S.; Williams, A.; Lindsey, J.; Elliott, S.P.; et al. Phylogenomic analysis of Clostridioides difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes. Sci. Rep. 2020, 10, 22135. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.-L.; Li, S.-H.; Qin, Z.; Yang, Y.-J.; Bai, L.-X.; Ge, W.-B.; Liu, X.-W.; Li, J.-Y. Isolation, molecular typing and antimicrobial resistance of Clostridium difficile in dogs and cats in Lanzhoun city of Northwest China. Front. Vet. Sci. 2022, 9, 1032945. [Google Scholar] [CrossRef]
- Rabold, D.; Espelage, W.; Abu Sin, M.; Eckmanns, T.; Schneeberg, A.; Neubauer, H.; Möbius, N.; Hille, K.; Wieler, L.H.; Seyboldt, C.; et al. The zoonotic potential of Clostridium difficile from small companion animals and their owners. PLoS ONE 2018, 13, e193411. [Google Scholar] [CrossRef]
- Lefebvre, S.L.; Reid-Smith, R.J.; Waltner-Toews, D.; Weese, J.S. Incidence of acquisition of methicillin-resistant Staphylococcus aureus, Clostridium difficile, and other health-care-associated pathogens by dogs that participate in animal-assisted interventions. J. Am. Vet. Med. Assoc. 2009, 234, 1404–1417. [Google Scholar] [CrossRef]
- Janezic, S.; Ocepek, M.; Zidaric, V.; Rupnik, M. Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol. 2012, 12, 48. [Google Scholar] [CrossRef]
- Bauer, M.P.; Notermans, D.W.; Van Benthem, B.H.; Brazier, J.S.; Wilcox, M.H.; Rupnik, M.; Monnet, D.L.; Van Dissel, J.T.; Kuijper, E.J. Clostridium difficile infection in Europe: A hospital-based survey. Lancet 2011, 377, 63–73. [Google Scholar] [CrossRef]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome analysis of Clostridium difficile PCR Ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front. Microbiol. 2016, 7, 2138. [Google Scholar] [CrossRef]
- Hunter, D.; Bellhouse, R.; Baker, K. Clostridium difficile isolated from a goat. Vet. Rec. 1981, 109, 291–292. [Google Scholar] [CrossRef]
- Princewell, T.J.T.; Agba, M.I. Examination of bovine faeces for the isolation and identification of Clostridium species. J. Appl. Bacteriol. 1982, 52, 97–102. [Google Scholar] [CrossRef]
- Ismael, E.; Kadry, M.; Hamza, D.A. The occurrence of Clostridium difficile in different animal species in Egypt. Inter. J. Vet. Sci. 2019, 8, 138–142. Available online: www.ijvets.com (accessed on 19 April 2025).
- Hussain, I.; Borah, P.; Sharma, R.K.; Rajkhowa, S.; Rupnik, M.; Saikia, D.P. Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Mol. Cell Probes. 2016, 30, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Avberšek, J.; Pirš, T.; Pate, M.; Rupnik, M.; Ocepek, M. Clostridium difficile in goats and sheep in Slovenia: Characterisation of strains and evidence of age-related shedding. Anaerobe 2014, 28, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Bakri, M. Prevalence of Clostridium difficile in raw cow, sheep, and goat meat in Jazan, Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 783–785. [Google Scholar] [CrossRef]
- Knight, D.R.; Putsathit, P.; Elliott, B.; Riley, T.V. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin. Microbiol. Infect. 2016, 22, 266.e1–266.e7. [Google Scholar] [CrossRef]
- Rahimi, E.; Jalali, M.; Weese, J.S. Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health. 2014, 14, 119. [Google Scholar] [CrossRef]
- Moono, P.; Foster, N.F.; Hampson, D.J.; Knight, D.R.; Bloomfield, L.E.; Riley, T.V. Clostridium difficile infection in production animals and Avian species: A review. Foodborne Pathog. Dis. 2016, 13, 647–655. [Google Scholar] [CrossRef]
- Cooper, K.K.; Songer, J.G.; Uzal, F.A. Diagnosing clostridial enteric disease in poultry. J. Vet. Diagn. Investg. 2013, 25, 314–327. [Google Scholar] [CrossRef]
- Beres, C.; Tabaran, A.; Colobatiu, L.M.; Reget, O.L.; Greapca, A.S.; Mihaiu, R.; Mihaiu, M. Prevalence of Clostridium difficile isolates in broiler chickens-First study in Romania. Rev. Rom. Med. Vet. 2023, 33, 86–88. [Google Scholar]
- Elliott, B.; Reed, R.; Chang, B.J.; Riley, T.V. Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile. Anaerobe 2009, 15, 249–251. [Google Scholar] [CrossRef]
- Elliott, B.; Androga, G.O.; Knight, D.R.; Riley, T.V. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. Infect. Genet Evol. 2017, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Adams, V.; Lyras, D.; Farrow, K.A.; Rood, J.I. The clostridial mobilisable transposons. Cell Mol. Life Sci. 2002, 59, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.S.; Warburton, P.J.; Roberts, A.P.; Mullany, P.; Allan, E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS ONE 2011, 6, e23014. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.P.; Allan, E.; Mullany, P. The impact of horizontal gene transfer on the biology of Clostridium difficile. Adv. Microb. Physiol. 2014, 65, 63–82. [Google Scholar] [CrossRef]
- Spigaglia, P.; Carucci, V.; Barbanti, F.; Mastrantonio, P. ErmB determinants and Tn916-Like elements in clinical isolates of Clostridium difficile. Antimicrob. Agents Chemother. 2005, 49, 2550–2553. [Google Scholar] [CrossRef]
- Huang, H.; Weintraub, A.; Fang, H.; Wu, S.; Zhang, Y.; Nord, C.E. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe 2010, 16, 633–635. [Google Scholar] [CrossRef]
- Marin, M.; Martin, A.; Alcala, L.; Cercenado, E.; Iglesias, C.; Reigadas, E.; Bouza, E. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob. Agents Chemother. 2015, 59, 586–589. [Google Scholar] [CrossRef]
- Goh, S.; Hussain, H.; Chang, B.J.; Emmett, W.; Riley, T.V.; Mullany, P. Phage φC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio 2013, 4, e00840-13. [Google Scholar] [CrossRef]
- Dridi, L.; Tankovic, J.; Burghoffer, B.; Barbut, F.; Petit, J.C. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002, 46, 34183421. [Google Scholar] [CrossRef]
- Stanton, R.A.; Vlachos, N.; Halpin, A.L. GAMMA: A tool for the rapid identification, classification, and annotation of translated gene matches from sequencing data. Bioinformatics 2022, 38, 546–548. [Google Scholar] [CrossRef]
- Ackermann, G.; Tang, Y.J.; Kueper, R.; Heisig, P.; Rodloff, A.C.; Silva, J., Jr.; Cohen, S.H. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob. Agents Chemother. 2001, 45, 2348–2353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iwashita, Y.; Takeuchi, S.; Hadano, Y.; Kawamura, T.; Tanaka, Y.; Sato, R.; Kodani, N.; Yamada, N.; Saito, R. A case of community-acquired Clostridioides difficile infection causing intussusception, severe pneumonia, and severe hypokalemia. BMC Infect. Dis. 2024, 24, 744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muñoz, M.; Camargo, M.; Ríos-Chaparro, D.I.; Gómez, P.; Patarroyo, M.A.; Ramírez, J.D. Community-acquired infection with hypervirulent Clostridium difficile isolates that carry different toxin and antibiotic resistance loci: A case report. Gut Pathog. 2017, 9, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, W.J.; Deshpande, A.; Hevener, K.E.; Endres, B.T.; Garey, K.W.; Palmer, K.L.; Hurdle, J.G. Constitutive expression of the cryptic vanGCd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. J. Antimicrob. Chemother. 2020, 75, 859–867. [Google Scholar] [CrossRef]
- Gargis, A.S.; Karlsson, M.; Paulick, A.L.; Anderson, K.F.; Adamczyk, M.; Vlachos, N.; Kent, A.G.; McAllister, G.; McKay, S.L.; Halpin, A.L.; et al. Emerging Infections Program C. difficile Infection Working Group. Reference Susceptibility Testing and Genomic Surveillance of Clostridioides difficile, United States, 2012–2017. Clin. Infect. Dis. 2023, 76, 890–896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Ribotype of C. difficile | Characteristics |
---|---|
RT005 [114] | Responsible for sporadic cases; vanS mutation [114,158] |
RT020 [114] | Responsible for outbreaks [114] Present in wastewater [158] Isolated from Australian pigs [131] |
RT001 [123] | Reduced susceptibility to linezolid [150] |
RT106 [125] | Isolated from companion animals [126] |
RT017 [122] | Responsible for outbreaks [122] Related to food production [11] Reduced susceptibility to linezolid [150] Resistance to fluroquinolones and clindamycin [122] |
RT078 [122] | Related to epidemics [114,122] Reduced susceptibility to linezolid [150] Isolated from swine, cattle, retail meat [108], wastewater [120], and food products [11] |
RT244 [122] | Related to epidemics [122] |
RT027 [122] | Related to epidemics and outbreaks [115,122] Resistance to erythromycin, clindamycin, and chloramphenicol; high-level resistance to fluoroquinolones; vancomycin MIC > 2 μg/mL; and resistance to tetracycline [107,156,157,158] Isolated from companion animals [126,127] and food products [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xaplanteri, P.; Oikonomopoulou, C.; Xini, C.; Potsios, C. Community-Acquired Clostridioides difficile Infection: The Fox Among the Chickens. Int. J. Mol. Sci. 2025, 26, 4716. https://doi.org/10.3390/ijms26104716
Xaplanteri P, Oikonomopoulou C, Xini C, Potsios C. Community-Acquired Clostridioides difficile Infection: The Fox Among the Chickens. International Journal of Molecular Sciences. 2025; 26(10):4716. https://doi.org/10.3390/ijms26104716
Chicago/Turabian StyleXaplanteri, Panagiota, Chrysanthi Oikonomopoulou, Chrysanthi Xini, and Charalampos Potsios. 2025. "Community-Acquired Clostridioides difficile Infection: The Fox Among the Chickens" International Journal of Molecular Sciences 26, no. 10: 4716. https://doi.org/10.3390/ijms26104716
APA StyleXaplanteri, P., Oikonomopoulou, C., Xini, C., & Potsios, C. (2025). Community-Acquired Clostridioides difficile Infection: The Fox Among the Chickens. International Journal of Molecular Sciences, 26(10), 4716. https://doi.org/10.3390/ijms26104716