Genome-Wide Analysis of the Caffeoyl Coenzyme A-O-Methyltransferase (CCoAOMT) Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and the Potential Regulatory Mechanism in Response to Copper Stress
Abstract
:1. Introduction
2. Results
2.1. Identification and Analysis of Members of the PgCCoAOMT Gene Family
2.2. Chromosome Localization Analysis, Multiple Sequence Alignment, and Phylogenetic Analysis of the PgCCoAOMT Gene
2.3. PgCCoAOMT Gene Structure, Conserved Motifs, and Intron–Exon Analysis
2.4. Analysis of Cis-Regulatory Element of the PgCCoAOMT Gene Promoter
2.5. Prediction of Secondary Structure of the PgCCoAOMT Protein
2.6. Analysis of CCoAOMT Gene Expression in P. grandiflorus Under Copper Ion Stress
2.7. PgCCoAOMT Protein Interaction Network Prediction
2.8. The Trend of Lignin Content Changes in the Tissue Samples of P. grandiflorus
3. Discussion
3.1. Effect of Copper Treatment on Appearance and Morphology of P. grandiflorus Seedlings and the Changing Trend of Lignin Content
3.2. Bioinformatics Analysis of PgCCoAOMT Gene Family
3.3. The Potential Role of PgCCoAOMT Gene Under Copper Stress
4. Materials and Methods
4.1. Experimental Material
4.2. Hydroponics Test and Copper Stress Treatment of P. grandiflorus
4.3. Identification of Members of the CCoAOMT Gene Family, Analysis of Physical and Chemical Properties, Subcellular Localization, and Chromosomal Localization of P. grandiflorus
4.4. Multiple Sequence Alignment of CCoAOMT Protein in P. grandiflorus and Phylogenetic Analysis of CCoAOMT Gene Family in 10 Different Plants
4.5. Analysis of CCoAOMT Gene Structure, Conserved Motif, and Intron–Exon in P. grandiflorus
4.6. Analysis of Cis-Regulatory Elements of CCoAOMT Gene Promoter and Prediction of Secondary Structure of PgCCoAOMT Protein in P. grandiflorus
4.7. Extraction, Quality Detection, and Real-Time Fluorescence Quantitative PCR (qRT-PCR) Verification of Total RNA from P. grandiflorus
4.8. Prediction of CCoAOMT Protein Interaction Network in P. grandiflorus
4.9. Determination of the Content of Lignin in P. grandiflorus Seedlings Under Copper Stress
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med. 2012, 20, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, B.; Yun, E.; Kim, J.; Chae, Y.; Park, S. Statistical quality control of total ash, acid-insoluble ash, loss on drying, and hazardous heavy metals contained in the component medicinal herbs of “Ssanghwatang”, a widely used oriental formula in Korea. J. Nat. Med. 2013, 67, 27–35. [Google Scholar] [CrossRef]
- Chen, Y.G.; He, X.L.; Huang, J.H.; Luo, R.; Ge, H.Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.X.; et al. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef]
- Gyamfi, E.T. Metals and metalloids in traditional medicines (Ayurvedic medicines, nutraceuticals and traditional Chinese medicines). Environ. Sci. Pollut. Res. 2019, 26, 15767–15778. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-Ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. Int. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Hossain, M.S.; Abdelrahman, M.; Tran, C.D.; Nguyen, K.H.; Chu, H.D.; Watanabe, Y.; Hasanuzzaman, M.; Mohsin, S.M.; Fujita, M.; Tran, L.P. Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ. Pollut. 2020, 258, 113544. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, J.; Han, H.; Du, R.; Wang, X. Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef]
- Xu, E.; Liu, Y.; Gu, D.; Zhan, X.; Li, J.; Zhou, K.; Zhang, P.; Zou, Y. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int. J. Mol. Sci. 2024, 25, 6993. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon grandiflorus—An ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 2015, 164, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, M.; He, Y.; Gao, W.; Wang, Y.; Yang, B.; Sun, Y.; Kuang, H. Polysaccharides from Platycodon grandiflorum: A review of their extraction, structures, modifications, and bioactivities. Int. J. Biol. Macromol. 2024, 271, 132617. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, W.; Yuan, T.; Shi, C.; Jin, T.; Chong, Y.; Ji, J.; Lin, L.; Xu, J.; Zhang, Y.; et al. Platycodon grandiflorus root extract activates hepatic PI3K/PIP3/Akt insulin signaling by enriching gut Akkermansia muciniphila in high fat diet fed mice. Phytomedicine 2023, 109, 154595. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhao, Y.X.; Zheng, Y.; Li, X.F. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front. Pharmacol. 2023, 14, 1148853. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Q.; Dong, A.B.; Xia, H.Y.; Wen, S.Y. Preparation methods, structural characteristics, and biological activity of polysaccharides from Platycodon grandiflorus. Int. J. Biol. Macromol. 2024, 258, 129106. [Google Scholar] [CrossRef]
- Zou, Y.F.; Chen, M.; Fu, Y.P.; Zhu, Z.K.; Zhang, Y.Y.; Paulsen, B.S.; Rise, F.; Chen, Y.L.; Yang, Y.Z.; Jia, R.Y.; et al. Characterization of an antioxidant pectic polysaccharide from Platycodon grandiflorus. Int. J. Biol. Macromol. 2021, 175, 473–480. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.J. Phenolic Constituents from Platycodon grandiflorum Root and Their Anti-Inflammatory Activity. Molecules 2021, 26, 4530. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.Y.; Bo, A.; Yang, M.; Xu, J.F.; Jiang, L.L.; Zhou, B.C.; Li, M.H. The Pharmacological Effects and Health Benefits of Platycodon grandiflorus-A Medicine Food Homology Species. Foods 2020, 9, 142. [Google Scholar] [CrossRef]
- Nan, G.; Meng, X.; Song, N.; Liu, Z.; Liu, Y.; Li, Y.; Yang, G.; Zheng, S. Uptake and Distribution Characteristic and Health Risk Assessment of Heavy Metal(loid)s in Platycodon grandiflorum (Jacq.) A.DC. with Growth from a Medicinal Herb Garden of Xi’an, China. Biol. Trace Elem. Res. 2021, 199, 2770–2778. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, X.; Zheng, J.; Zhao, C.; Wang, D.; Xu, Y.; Sun, C. A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus. Plant Physiol. 2023, 192, 2049–2066. [Google Scholar] [CrossRef]
- Xu, R.X.; Zhao, Y.; Gao, S.; Zhang, Y.Y.; Li, D.D.; Lou, H.X.; Cheng, A.X. Functional characterization of a plastidal cation-dependent O-methyltransferase from the liverwort Plagiochasma appendiculatum. Phytochemistry 2015, 118, 33–41. [Google Scholar] [CrossRef]
- Peng, Y.; Sheng, S.; Wang, T.; Song, J.; Wang, D.; Zhang, Y.; Cheng, J.; Zheng, T.; Lv, Z.; Zhu, X.; et al. Genome-Wide Characterization of Solanum tuberosum CCoAOMT Gene Family and Identification of StCCoAOMT Genes Involved in Anthocyanin Biosynthesis. Genes 2024, 15, 1466. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, X.; Jia, B.; Liu, L.; Wei, P.; Manzoor, M.A.; Wang, F.; Li, B.Y.; Wang, G.; Chen, C.; et al. Comparative Transcriptomics Unveil the Crucial Genes Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. Front. Plant Sci. 2022, 13, 899819. [Google Scholar] [CrossRef]
- Tong, N.N.; Peng, L.P.; Liu, Z.A.; Li, Y.; Zhou, X.Y.; Wang, X.R.; Shu, Q.Y. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. Physiol. Plant. 2021, 173, 961–977. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Pakusch, A.E.; Kneusel, R.E.; Matern, U. S-adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures. Arch. Biochem. Biophys. 1989, 271, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.H.; Kneusel, R.E.; Matern, U.; Varner, J.E. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 1994, 6, 1427–1439. [Google Scholar] [PubMed]
- Martz, F.; Maury, S.; Pinçon, G.; Legrand, M. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol. Biol. 1998, 36, 427–437. [Google Scholar] [CrossRef]
- Do, C.T.; Pollet, B.; Thévenin, J.; Sibout, R.; Denoue, D.; Barrière, Y.; Lapierre, C.; Jouanin, L. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 2007, 226, 1117–1129. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Qiao, K.; Quan, Y.; Fan, S.; Wu, L. Genome-Wide Analysis of Caffeoyl-CoA-O-methyltransferase (CCoAOMT) Family Genes and the Roles of GhCCoAOMT7 in Lignin Synthesis in Cotton. Plants 2024, 13, 2969. [Google Scholar] [CrossRef]
- Zhang, M.; Xing, Y.; Ma, J.; Zhang, Y.; Yu, J.; Wang, X.; Jia, X. Investigation of the response of Platycodongrandiflorus (Jacq.) A. DC to salt stress using combined transcriptomics and metabolomics. BMC Plant Biol. 2023, 23, 589. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.J.; Lim, L.H.; Cheong, M.S.; Baek, D.; Park, M.S.; Cho, H.M.; Lee, S.H.; Jin, B.J.; No, D.H.; Cha, Y.J.; et al. Arabidopsis CCoAOMT1 Plays a Role in Drought Stress Response via ROS- and ABA-Dependent Manners. Plants 2021, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P.; et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. Genet. 2017, 49, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.P.; Chiang, V.L. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 1998, 37, 663–674. [Google Scholar] [CrossRef]
- Zhao, H.; Qu, C.; Zuo, Z.; Cao, L.; Zhang, S.; Xu, X.; Xu, Z.; Liu, G. Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus. Biochem. Genet. 2022, 60, 656–675. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, J.; Zhang, D.; Deng, K.; Chai, G.; Huang, Y.; Ma, S.; Qin, Y.; Wang, L. Genome-Wide Identification and Characterization of the SBP Gene Family in Passion Fruit (Passiflora edulis Sims). Int. J. Mol. Sci. 2022, 23, 14153. [Google Scholar] [CrossRef]
- Kai, K.; Mizutani, M.; Kawamura, N.; Yamamoto, R.; Tamai, M.; Yamaguchi, H.; Sakata, K.; Shimizu, B. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 2008, 55, 989–999. [Google Scholar] [CrossRef]
- Shad, M.A.; Li, X.; Rao, M.J.; Luo, Z.; Li, X.; Ali, A.; Wang, L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int. J. Mol. Sci. 2024, 25, 10001. [Google Scholar] [CrossRef]
- Akhter, S.; Sami, A.A.; Toma, T.I.; Jahan, B.; Islam, T. Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries. Front. Plant Sci. 2022, 13, 1035383. [Google Scholar] [CrossRef]
- Lee, D.J.; Choi, J.W.; Kang, J.N.; Lee, S.M.; Park, G.H.; Kim, C.K. Chromosome-Scale Genome Assembly and Triterpenoid Saponin Biosynthesis in Korean Bellflower (Platycodon grandiflorum). Int. J. Mol. Sci. 2023, 24, 6534. [Google Scholar] [CrossRef]
- Reiser, L.; Bakker, E.; Subramaniam, S.; Chen, X.; Sawant, S.; Khosa, K.; Prithvi, T.; Berardini, T.Z. The Arabidopsis Information Resource in 2024. Genetics 2024, 227, iyae027. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Pinto, B.L.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The protein sequence classification resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Yu, C.S.; Lin, C.J.; Hwang, J.K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004, 13, 1402–1406. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Chen, H.; Song, X.; Shang, Q.; Feng, S.; Ge, W. CFVisual: An interactive desktop platform for drawing gene structure and protein architecture. BMC Bioinform. 2022, 23, 178. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.H.; Gao, Z.J.; Zhang, J.J.; Zhang, W.; Shao, J.H.; Hai, M.R.; Chen, J.W.; Yang, S.C.; Zhang, G.H. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis. Front. Plant Sci. 2016, 7, 673. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
Gene Name | Accession Number | Chromosome | Number of Amino Acids | Molecular Weight | Isoelectric Point | Subcellular Localization Predicted |
---|---|---|---|---|---|---|
PgCCoAOMT1 | Pg_chr02_53430 | chr2 | 246 | 27.66 | 5.56 | Cytoplasmic |
PgCCoAOMT2 | Pg_chr03_29690 | chr3 | 287 | 32.29 | 6.00 | Cytoplasmic |
PgCCoAOMT3 | Pg_chr08_33400 | chr8 | 311 | 34.02 | 9.15 | Chloroplast |
PgCCoAOMT4 | Pg_chr09_01760 | chr9 | 635 | 69.76 | 5.65 | Cytoplasmic mitochondrial |
PgCCoAOMT5 | Pg_contig00572_00060 | contig00572 | 280 | 31.46 | 5.83 | Cytoplasmic |
Protein Name | Alpha Helix | Extended Strand | Beta Turn | Random Coil |
---|---|---|---|---|
PgCCoAOMT1 | 38.62 | 17.89 | 0 | 43.50 |
PgCCoAOMT2 | 39.37 | 13.59 | 0 | 47.04 |
PgCCoAOMT3 | 38.26 | 14.79 | 0 | 46.95 |
PgCCoAOMT4 | 38.74 | 12.28 | 0 | 48.98 |
PgCCoAOMT5 | 33.57 | 14.29 | 0 | 52.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Jiang, S.; Kong, L.; Ma, L.; Wang, X.; Pan, M.; Li, C.; Huang, S.; Liu, X.; Ma, W.; et al. Genome-Wide Analysis of the Caffeoyl Coenzyme A-O-Methyltransferase (CCoAOMT) Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and the Potential Regulatory Mechanism in Response to Copper Stress. Int. J. Mol. Sci. 2025, 26, 4709. https://doi.org/10.3390/ijms26104709
Ma J, Jiang S, Kong L, Ma L, Wang X, Pan M, Li C, Huang S, Liu X, Ma W, et al. Genome-Wide Analysis of the Caffeoyl Coenzyme A-O-Methyltransferase (CCoAOMT) Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and the Potential Regulatory Mechanism in Response to Copper Stress. International Journal of Molecular Sciences. 2025; 26(10):4709. https://doi.org/10.3390/ijms26104709
Chicago/Turabian StyleMa, Junbai, Shan Jiang, Lingyang Kong, Lengleng Ma, Xinxin Wang, Meitong Pan, Chenliang Li, Shumin Huang, Xiubo Liu, Wei Ma, and et al. 2025. "Genome-Wide Analysis of the Caffeoyl Coenzyme A-O-Methyltransferase (CCoAOMT) Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and the Potential Regulatory Mechanism in Response to Copper Stress" International Journal of Molecular Sciences 26, no. 10: 4709. https://doi.org/10.3390/ijms26104709
APA StyleMa, J., Jiang, S., Kong, L., Ma, L., Wang, X., Pan, M., Li, C., Huang, S., Liu, X., Ma, W., & Ren, W. (2025). Genome-Wide Analysis of the Caffeoyl Coenzyme A-O-Methyltransferase (CCoAOMT) Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and the Potential Regulatory Mechanism in Response to Copper Stress. International Journal of Molecular Sciences, 26(10), 4709. https://doi.org/10.3390/ijms26104709