Development of Liquid Chromatography on Monolithic Supports—From First Concepts to Real Analytical and Preparative Techniques
Abstract
:1. Introduction
2. From Membranes to CIM Monoliths
2.1. Early Developments
2.2. First Experiments with Enzyme Immobilization on Monolithic Supports
2.3. The Way Toward Convective Interaction Media
2.4. Scaling-Up and Construction of Radial Flow Monolithic Columns
2.5. Applications
2.6. In-Process Analyses
2.7. Direct Application of Undiluted Biological Fluids and Cell Culture Supernatants
3. Outlook and Vision for the Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ettre, L.S. 75 Years of Chromatography: A Glimpse behind the Scenes. J. High Resol. Chromatogr. 1979, 2, 500–506. [Google Scholar] [CrossRef]
- Meyer, V.R. Chromatography: Liquid | Historical Development. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013; p. B978012409547204470X. ISBN 978-0-12-409547-2. [Google Scholar]
- Kuhn, R.; Lederer, E. Fraktionierung und Isomerisierung des Carotins. Naturwissenschaften 1931, 19, 306. [Google Scholar] [CrossRef]
- Tiselius, A. Displacement Development in Adsorption Analysis. Ark. För Kemi Mineral. Och Geol. 1943, 16A, 1–18. [Google Scholar]
- Buchanan, D.L. Preparative Isolation of Amino Acids by Carrier Displacement Chromatography on Ion Exchange Resins. J. Biol. Chem. 1957, 229, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Srajer Gajdosik, M.; Clifton, J.; Josic, D. Sample Displacement Chromatography as a Method for Purification of Proteins and Peptides from Complex Mixtures. J. Chromatogr. A 2012, 1239, 1–9. [Google Scholar] [CrossRef]
- Horváth, C.; Nahum, A.; Frenz, J.H. High-Performance Displacement Chromatography. J. Chromatogr. A 1981, 218, 365–393. [Google Scholar] [CrossRef]
- Guiochon, G. Csaba Horváth and Preparative Liquid Chromatography. J. Chromatogr. A 2005, 1079, 7–23. [Google Scholar] [CrossRef]
- Molnár, I.; Horváth, C. Separation of Amino Acids and Peptides on Non-Polar Stationary Phases by High-Performance Liquid Chromatography. J. Chromatogr. A 1977, 142, 623–640. [Google Scholar] [CrossRef]
- Porath, J.; Flodin, P. Gel Filtration: A Method for Desalting and Group Separation. Nature 1959, 183, 1657–1659. [Google Scholar] [CrossRef]
- Schlüter, H.; Zidek, W. Application of Non-Size-Related Separation Effects to the Purification of Biologically Active Substances with a Size-Exclusion Gel. J. Chromatogr. A 1993, 639, 17–22. [Google Scholar] [CrossRef]
- Yaguchi, M.; Rose, D. Chromatographic Separation of Milk Proteins: A Review. J. Dairy Sci. 1971, 54, 1725–1743. [Google Scholar] [CrossRef] [PubMed]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef] [PubMed]
- Kramberger, P.; Petrovič, N.; Štrancar, A.; Ravnikar, M. Concentration of Plant Viruses Using Monolithic Chromatographic Supports. J. Virol. Methods 2004, 120, 51–57. [Google Scholar] [CrossRef]
- Lemmens, R.; Olsson, U.; Nyhammar, T.; Stadler, J. Supercoiled Plasmid DNA: Selective Purification by Thiophilic/Aromatic Adsorption. J. Chromatogr. B 2003, 784, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Kanao, E.; Ishida, K.; Mizuta, R.; Li, Y.; Imami, K.; Tanigawa, T.; Sasaki, Y.; Akiyoshi, K.; Adachi, J.; Otsuka, K.; et al. Rapid and Highly Efficient Purification of Extracellular Vesicles Enabled by a TiO2 Hybridized Spongy-like Polymer. Anal. Chem. 2023, 95, 14502–14510. [Google Scholar] [CrossRef]
- Urthaler, J.; Schlegl, R.; Podgornik, A.; Strancar, A.; Jungbauer, A.; Necina, R. Application of Monoliths for Plasmid DNA Purification. J. Chromatogr. A 2005, 1065, 93–106. [Google Scholar] [CrossRef]
- Campbell, D.H.; Luescher, E.; Lerman, L.S. Immunologic Adsorbents: I. Isolation of Antibody by Means of a Cellulose-Protein Antigen. Proc. Natl. Acad. Sci. USA 1951, 37, 575–578. [Google Scholar] [CrossRef]
- Wilchek, M.; Miron, T.; Kohn, J. Affinity Chromatography. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 104, pp. 3–55. ISBN 978-0-12-182004-6. [Google Scholar]
- Martin, A.J.P.; Synge, R.L.M. A New Form of Chromatogram Employing Two Liquid Phases. Biochem. J. 1941, 35, 1358–1368. [Google Scholar] [CrossRef]
- Touchstone, J.C. History of Chromatography. J. Liq. Chromatogr. 1993, 16, 1647–1665. [Google Scholar] [CrossRef]
- Unger, K.K.; Jilge, G.; Janzen, R.; Giesche, H.; Kinkel, J.N. Non-Porous Microparticulate Supports in High-Performance Liquid Chromatography (HPLC) of Biopolymers—Concepts, Realization and Prospects. Chromatographia 1986, 22, 379–380. [Google Scholar] [CrossRef]
- Snyder, L.R.; Dolan, J.W. Milestones in the Development of Liquid Chromatography. In Liquid Chromatography; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–17. ISBN 978-0-12-415807-8. [Google Scholar]
- Moser, A.C.; Hage, D.S. Immunoaffinity Chromatography: An Introduction to Applications and Recent Developments. Bioanalysis 2010, 2, 769–790. [Google Scholar] [CrossRef] [PubMed]
- Abighanem, D.; R Berghman, L. Immunoaffinity Chromatography: A Review. In Affinity Chromatography; Magdeldin, S., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0325-7. [Google Scholar]
- Rodrigo, G.; Gruvegård, M.; Van Alstine, J. Antibody Fragments and Their Purification by Protein L Affinity Chromatography. Antibodies 2015, 4, 259–277. [Google Scholar] [CrossRef]
- Hinamoto, Y.; Sugawara, A.; Asoh, T.-A.; Nandi, M.; Uyama, H. Functionalized Cellulose Monolith Based Affinity Chromatography Columns for Efficient Separation of Protein Molecules. RSC Appl. Polym. 2023, 1, 82–96. [Google Scholar] [CrossRef]
- Javois, L.C. Immunocytochemical Methods and Protocols, 3rd ed.; Jamur, M.C., Oliver, C., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2009; ISBN 978-1-58829-463-0. [Google Scholar]
- Neubert, H.; Shuford, C.M.; Olah, T.V.; Garofolo, F.; Schultz, G.A.; Jones, B.R.; Amaravadi, L.; Laterza, O.F.; Xu, K.; Ackermann, B.L. Protein Biomarker Quantification by Immunoaffinity Liquid Chromatography–Tandem Mass Spectrometry: Current State and Future Vision. Clin. Chem. 2020, 66, 282–301. [Google Scholar] [CrossRef]
- Pfaunmiller, E.; Moser, A.C.; Hage, D.S. Biointeraction Analysis of Immobilized Antibodies and Related Agents by High-Performance Immunoaffinity Chromatography. Methods 2012, 56, 130–135. [Google Scholar] [CrossRef]
- Fitzgerald, J.; Leonard, P.; Darcy, E.; Sharma, S.; O’Kennedy, R. Immunoaffinity Chromatography: Concepts and Applications. In Protein Chromatography; Walls, D., Loughran, S.T., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1485, pp. 27–51. ISBN 978-1-4939-6410-9. [Google Scholar]
- Boardman, N.K.; Partridge, S.M. Separation of Neutral Proteins on Ion-Exchange Resins. Biochem. J. 1955, 59, 543–552. [Google Scholar] [CrossRef]
- Regnier, F.E. The Role of Protein Structure in Chromatographic Behavior. Science 1987, 238, 319–323. [Google Scholar] [CrossRef]
- Chakraborty, A.B.; Berger, S.J. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology. J. Biomol Tech. 2005, 16, 327–335. [Google Scholar]
- Jia, W.; Peng, J.; Zhang, Y.; Zhu, J.; Qiang, X.; Zhang, R.; Shi, L. Exploring Novel ANGICon-EIPs through Ameliorated Peptidomics Techniques: Can Deep Learning Strategies as a Core Breakthrough in Peptide Structure and Function Prediction? Food Res. Int. 2023, 174, 113640. [Google Scholar] [CrossRef]
- Kopp, J.; Zauner, F.B.; Pell, A.; Hausjell, J.; Humer, D.; Ebner, J.; Herwig, C.; Spadiut, O.; Slouka, C.; Pell, R. Development of a Generic Reversed-Phase Liquid Chromatography Method for Protein Quantification Using Analytical Quality-by-Design Principles. J. Pharm. Biomed. Anal. 2020, 188, 113412. [Google Scholar] [CrossRef]
- Regnier, F.E. High-Performance Liquid Chromatography of Biopolymers. Science 1983, 222, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jennissen, H.P. Hydrophobic Interaction Chromatography. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-0-470-01617-6. [Google Scholar]
- Žuvela, P.; Skoczylas, M.; Jay Liu, J.; Ba̧czek, T.; Kaliszan, R.; Wong, M.W.; Buszewski, B. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019, 119, 3674–3729. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.-L.; Hjertén, S. High-Performance Liquid Chromatography of Proteins on Compressed, Non-Porous Agarose Beads. J. Chromatogr. A 1988, 457, 175–182. [Google Scholar] [CrossRef]
- Tennikova, T.B.; Svec, F.; Belenkii, B.G. High-Performance Membrane Chromatography. A Novel Method of Protein Separation. J. Liq. Chromatogr. 1990, 13, 63–70. [Google Scholar] [CrossRef]
- Svec, F. Stellan Hjertén’s Contribution to the Development of Monolithic Stationary Phases. Electrophoresis 2008, 29, 1593–1603. [Google Scholar] [CrossRef]
- Tennikova, T.B.; Bleha, M.; Švec, F.; Almazova, T.V.; Belenkii, B.G. High-Performance Membrane Chromatography of Proteins, a Novel Method of Protein Separation. J. Chromatogr. A 1991, 555, 97–107. [Google Scholar] [CrossRef]
- Abou-Rebyeh, H.; Körber, F.; Schubert-Rehberg, K.; Reusch, J.; Josić, D.J. Carrier Membrane as a Stationary Phase for Affinity Chromatography and Kinetic Studies of Membrane-Bound Enzymes. J. Chromatogr. B Biomed. Sci. Appl. 1991, 566, 341–350. [Google Scholar] [CrossRef]
- Petro, M.; Svec, F.; Fréchet, J.M.J. Immobilization of Trypsin onto “Molded” Macroporous Poly(Glycidyl Methacrylate-Co-Ethylene Dimethacrylate) Rods and Use of the Conjugates as Bioreactors and for Affinity Chromatography. Biotechnol. Bioeng. 2000, 49, 355–363. [Google Scholar] [CrossRef]
- Palm, A.K.; Novotny, M.V. Analytical Characterization of a Facile Porous Polymer Monolithic Trypsin Microreactor Enabling Peptide Mass Mapping Using Mass Spectrometry. Rapid Comm Mass Spectrom. 2004, 18, 1374–1382. [Google Scholar] [CrossRef]
- Rainer, T.; Egger, A.-S.; Zeindl, R.; Tollinger, M.; Kwiatkowski, M.; Müller, T. 3D-Printed High-Pressure-Resistant Immobilized Enzyme Microreactor (μIMER) for Protein Analysis. Anal. Chem. 2022, 94, 8580–8587. [Google Scholar] [CrossRef]
- Wouters, B.; Currivan, S.A.; Abdulhussain, N.; Hankemeier, T.; Schoenmakers, P.J. Immobilized-Enzyme Reactors Integrated into Analytical Platforms: Recent Advances and Challenges. TrAC Trends Anal. Chem. 2021, 144, 116419. [Google Scholar] [CrossRef]
- Mao, Y.; Fan, R.; Li, R.; Ye, X.; Kulozik, U. Flow-through Enzymatic Reactors Using Polymer Monoliths: From Motivation to Application. Electrophoresis 2021, 42, 2599–2614. [Google Scholar] [CrossRef] [PubMed]
- Krenkova, J.; Svec, F. Less Common Applications of Monoliths: IV. Recent Developments in Immobilized Enzyme Reactors for Proteomics and Biotechnology. J. Sep. Sci. 2009, 32, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liang, Z.; Qiao, X.; Deng, Q.; Tao, D.; Zhang, L.; Zhang, Y. Organic−Inorganic Hybrid Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity. Anal. Chem. 2008, 80, 2949–2956. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Tennikova, T.B. Flow-through Immobilized Enzyme Reactors Based on Monoliths: II. Kinetics Study and Application. J. Sep. Sci. 2013, 36, 1149–1167. [Google Scholar] [CrossRef]
- Svec, F.; Fréchet, J.M.J. New Designs of Macroporous Polymers and Supports: From Separation to Biocatalysis. Science 1996, 273, 205–211. [Google Scholar] [CrossRef]
- Sproß, J.; Sinz, A. Immobilized Monolithic Enzyme Reactors for Application in Proteomics and Pharmaceutics. Anal. Bioanal. Chem. 2009, 395, 1583–1588. [Google Scholar] [CrossRef]
- Ahmad, S.; Sebai, W.; Belleville, M.-P.; Brun, N.; Galarneau, A.; Sanchez-Marcano, J. Enzymatic Monolithic Reactors for Micropollutants Degradation. Catal. Today 2021, 362, 62–71. [Google Scholar] [CrossRef]
- Ameur, S.B.; Luminiţa Gîjiu, C.; Belleville, M.-P.; Sanchez, J.; Paolucci-Jeanjean, D. Development of a Multichannel Monolith Large-Scale Enzymatic Membrane and Application in an Immobilized Enzymatic Membrane Reactor. J. Membr. Sci. 2014, 455, 330–340. [Google Scholar] [CrossRef]
- Josić, D.; Reusch, J.; Löster, K.; Baum, O.; Reutter, W. High-Performance Membrane Chromatography of Serum and Plasma Membrane Proteins. J. Chromatogr. A 1992, 590, 59–76. [Google Scholar] [CrossRef]
- Štrancar, A.; Koselj, P.; Schwinn, H.; Josic, D. Application of Compact Porous Disks for Fast Separations of Biopolymers and In-Process Control in Biotechnology. Anal. Chem. 1996, 68, 3483–3488. [Google Scholar] [CrossRef] [PubMed]
- Josić, D.; Štrancar, A. Application of Membranes and Compact, Porous Units for the Separation of Biopolymers. Ind. Eng. Chem. Res. 1999, 38, 333–342. [Google Scholar] [CrossRef]
- Podgornik, A.; Barut, M.; Štrancar, A.; Josić, D.; Koloini, T. Construction of Large-Volume Monolithic Columns. Anal. Chem. 2000, 72, 5693–5699. [Google Scholar] [CrossRef]
- Svec, F. Monolithic Columns: A Historical Overview. Electrophoresis 2017, 38, 2810–2820. [Google Scholar] [CrossRef] [PubMed]
- Martinović, T.; Josić, D. Polymethacrylate-based Monoliths as Stationary Phases for Separation of Biopolymers and Immobilization of Enzymes. Electrophoresis 2017, 38, 2821–2826. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, L.; Liang, Z.; Zhang, W.; Zhang, Y. Monolith-based Immobilized Enzyme Reactors: Recent Developments and Applications for Proteome Analysis. J. Sep. Sci. 2007, 30, 3050–3059. [Google Scholar] [CrossRef]
- Neumair, J.; D’Ercole, C.; De March, M.; Elsner, M.; Seidel, M.; De Marco, A. Macroporous Epoxy-Based Monoliths Functionalized with Anti-CD63 Nanobodies for Effective Isolation of Extracellular Vesicles in Urine. Int. J. Mol. Sci. 2023, 24, 6131. [Google Scholar] [CrossRef]
- The Emerging Generation of Chromatography Tools for Virus Purification. Available online: https://www.bioprocessintl.com/chromatography/the-emerging-generation-of-chromatography-tools-for-virus-purification (accessed on 2 May 2025).
- Sviben, D.; Forcic, D.; Ivancic-Jelecki, J.; Halassy, B.; Brgles, M. Recovery of Infective Virus Particles in Ion-Exchange and Hydrophobic Interaction Monolith Chromatography Is Influenced by Particle Charge and Total-to-Infective Particle Ratio. J. Chromatogr. B 2017, 1054, 10–19. [Google Scholar] [CrossRef]
- Josić, D.; Begić, M.; Simović Medica, J. Method of Purifying or Removing a Target Component from Full Plasma 2023. Available online: https://patentimages.storage.googleapis.com/60/04/86/cbee133b4fa9aa/EP4223381A1.pdf (accessed on 10 May 2025).
- Miklavčič, R.; Megušar, P.; Kodermac, Š.M.; Bakalar, B.; Dolenc, D.; Sekirnik, R.; Štrancar, A.; Černigoj, U. High Recovery Chromatographic Purification of mRNA at Room Temperature and Neutral pH. Int. J. Mol. Sci. 2023, 24, 14267. [Google Scholar] [CrossRef]
- Podgornik, A.; Štrancar, A. Convective Interaction Media® (CIM)—Short layer monolithic chromatographic stationary. Biotechnol. Annu. Rev. Phases 2005, 11, 281–333. [Google Scholar] [CrossRef]
- Kramberger, P.; Honour, R.C.; Herman, R.E.; Smrekar, F.; Peterka, M. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J. Virol. Methods 2010, 166, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Macroporous Polymeric Membranes for the Separation of Polymers and a Method of Their Application. Available online: https://patents.google.com/patent/US4889632A/en (accessed on 10 May 2025).
- Vincent, D.; Kramberger, P.; Hudej, R.; Štrancar, A.; Wang, Y.; Zhou, Y.; Velayudhan, A. The Development of a Monolith-Based Purification Process for Orthopoxvirus Vaccinia Virus Lister Strain. J. Chromatogr. A 2017, 1524, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Kramberger, P.; Peterka, M.; Boben, J.; Ravnikar, M.; Štrancar, A. Short Monolithic Columns—A Breakthrough in Purification and Fast Quantification of Tomato Mosaic Virus. J. Chromatogr. A 2007, 1144, 143–149. [Google Scholar] [CrossRef]
- Ruščić, J.; Gutiérrez-Aguirre, I.; Tušek Žnidarič, M.; Kolundžija, S.; Slana, A.; Barut, M.; Ravnikar, M.; Krajačić, M. A New Application of Monolithic Supports: The Separation of Viruses from One Another. J. Chromatogr. A 2015, 1388, 69–78. [Google Scholar] [CrossRef]
- Rogerson, T.; Xi, G.; Ampey, A.; Borman, J.; Jaroudi, S.; Pappas, D.; Linke, T. Purification of a Recombinant Oncolytic Virus from Clarified Cell Culture Media by Anion Exchange Monolith Chromatography. Electrophoresis 2023, 44, 1923–1933. [Google Scholar] [CrossRef]
- Schimek, A.; Ng, J.; Will, F.; Hubbuch, J. Mechanistic Modeling of the Elution Behavior and Convective Entrapment of Vesicular Stomatitis Virus on an Ion Exchange Chromatography Monolith. J. Chromatogr. A 2025, 1748, 465832. [Google Scholar] [CrossRef]
- Kadoi, K.; Iwamoto, E.; Nakama, T. Fabrication and Characterization of a Cellulose Monolith-like Particle for Virus Purification. Biochem. Eng. J. 2023, 192, 108849. [Google Scholar] [CrossRef]
- Multia, E.; Liangsupree, T.; Jussila, M.; Ruiz-Jimenez, J.; Kemell, M.; Riekkola, M.-L. Automated On-Line Isolation and Fractionation System for Nanosized Biomacromolecules from Human Plasma. Anal. Chem. 2020, 92, 13058–13065. [Google Scholar] [CrossRef]
- Liangsupree, T.; Multia, E.; Riekkola, M.-L. Modern Isolation and Separation Techniques for Extracellular Vesicles. J. Chromatogr. A 2021, 1636, 461773. [Google Scholar] [CrossRef]
- Multia, E.; Tear, C.J.Y.; Palviainen, M.; Siljander, P.; Riekkola, M.-L. Fast Isolation of Highly Specific Population of Platelet-Derived Extracellular Vesicles from Blood Plasma by Affinity Monolithic Column, Immobilized with Anti-Human CD61 Antibody. Anal. Chim. Acta 2019, 1091, 160–168. [Google Scholar] [CrossRef]
- Megušar, P.; Miklavčič, R.; Korenč, M.; Ličen, J.; Vodopivec, T.; Černigoj, U.; Štrancar, A.; Sekirnik, R. Scalable Multimodal Weak Anion Exchange Chromatographic Purification for Stable mRNA Drug Substance. Electrophoresis 2023, 44, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Mencin, N.; Štepec, D.; Margon, A.; Vidič, J.; Dolenc, D.; Simčič, T.; Rotar, S.; Sekirnik, R.; Štrancar, A.; Černigoj, U. Development and Scale-up of Oligo-dT Monolithic Chromatographic Column for mRNA Capture through Understanding of Base-Pairing Interactions. Sep. Purif. Technol. 2023, 304, 122320. [Google Scholar] [CrossRef]
- Černigoj, U.; Martinuč, U.; Cardoso, S.; Sekirnik, R.; Krajnc, N.L.; Štrancar, A. Sample Displacement Chromatography of Plasmid DNA Isoforms. J. Chromatogr. A 2015, 1414, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Smrekar, F.; Podgornik, A.; Ciringer, M.; Kontrec, S.; Raspor, P.; Štrancar, A.; Peterka, M. Preparation of Pharmaceutical-Grade Plasmid DNA Using Methacrylate Monolithic Columns. Vaccine 2010, 28, 2039–2045. [Google Scholar] [CrossRef]
- Pavlin, N.; Černigoj, U.; Bavčar, M.; Plesničar, T.; Mavri, J.; Zidar, M.; Bone, M.; Kralj Savič, U.; Sever, T.; Štrancar, A. Analytical Separation of Plasmid DNA Isoforms Using Anion Exchanging Chromatographic Monoliths with 6 Μm Channels. Electrophoresis 2023, 44, 1967–1977. [Google Scholar] [CrossRef]
- Kralj, Š.; Kodermac, Š.M.; Bergoč, I.; Kostelec, T.; Podgornik, A.; Štrancar, A.; Černigoj, U. Effect of Plasmid DNA Isoforms on Preparative Anion Exchange Chromatography. Electrophoresis 2023, 44, 1953–1966. [Google Scholar] [CrossRef]
- Kodermac, M.Š.; Rotar, S.; Dolenc, D.; Božič, K.; Štrancar, A.; Černigoj, U. Grafting Chromatographic Monoliths with Charged Linear Polymers for Highly Productive and Selective Protein or Plasmid DNA Purification. Sep. Purif. Technol. 2025, 353, 128253. [Google Scholar] [CrossRef]
- Leskovec, M.; Raspor, A.; Fujs, V.; Mihevc, A.; Štrancar, A. Preferential Exclusion Chromatography as a Capture Step for Extracellular AAV Harvest from Adherent and Suspension Productions. Electrophoresis 2023, 44, 1934–1942. [Google Scholar] [CrossRef]
- Rajamanickam, V.; Herwig, C.; Spadiut, O. Monoliths in Bioprocess Technology. Chromatography 2015, 2, 195–212. [Google Scholar] [CrossRef]
- Martinović, T.; Andjelković, U.; Klobučar, M.; Černigoj, U.; Vidič, J.; Lučić, M.; Pavelić, K.; Josić, D. Affinity Chromatography on Monolithic Supports for Simultaneous and High-throughput Isolation of Immunoglobulins from Human Serum. Electrophoresis 2017, 38, 2909–2913. [Google Scholar] [CrossRef]
- Pučić, M.; Knežević, A.; Vidič, J.; Adamczyk, B.; Novokmet, M.; Polašek, O.; Gornik, O.; Šupraha-Goreta, S.; Wormald, M.R.; Redžić, I.; et al. High Throughput Isolation and Glycosylation Analysis of IgG–Variability and Heritability of the IgG Glycome in Three Isolated Human Populations. Mol. Cell. Proteom. 2011, 10, M111.010090. [Google Scholar] [CrossRef] [PubMed]
- Trbojević-Akmačić, I.; Nemec, B.; Vidic, U.; Malić, S.; Miklić, K.; Černigoj, U.; Vidič, J.; Lendero Krajnc, N.; Štrancar, A.; Lauc, G.; et al. Chromatographic Monoliths for High-Throughput Immunoaffinity Isolation of Transferrin from Human Plasma. Croat. Chem. Acta 2016, 89, 203–211. [Google Scholar] [CrossRef]
- Vidic, U.; Trbojević-Akmačić, I.; Černigoj, U.; Albers, M.; Gašperšič, J.; Pučić-Baković, M.; Vidič, J.; Štrancar, A.; Lauc, G. Semi-high-throughput Isolation and N -glycan Analysis of Human Fibrinogen Using Monolithic Supports Bearing Monoclonal Anti-human Fibrinogen Antibodies. Electrophoresis 2017, 38, 2922–2930. [Google Scholar] [CrossRef]
- Begić, M.; Pečenković, S.; Gajdošik, M.Š.; Josić, D.; Müller, E. Salt-tolerant Cation Exchanger-containing Sulfate Groups as a Viable Alternative for Mixed-mode Type and Heparin-based Affinity Resins. Biotechnol. J. 2021, 16, 2100100. [Google Scholar] [CrossRef]
- Josić, D.; Begić, M.; Jelković, U. A Process for the Purification of Prothrombin Complex Concentrate (PCC) and FIX from Complete Plasma or Cryo-Poor Plasma. U.S. Patent Application 18/017,552, 2023. [Google Scholar]
- Harry, E.; John, E.; Gary, B. Advanced Reprocessing—The Potential for Continuous Chromatographic Separations. J. Chromatogr. Sep. Technol. 2017, 8, 348. [Google Scholar] [CrossRef]
- Kochmann, S.; Ivanov, N.A.; Le Blanc, J.C.Y.; Gorin, B.I.; Krylov, S.N. Circular Geometry in Molecular Stream Separation to Facilitate Nonorthogonal Field-to-Flow Orientation. Anal. Chem. 2022, 94, 9519–9524. [Google Scholar] [CrossRef]
Diffusion Constants for Selected Solutes | Approximate Diameters of Selected Viral Particles | |||
---|---|---|---|---|
Solute | Size | Kdiff | Virus | Diameter |
Light chain | 23 kDa | 9.1 × 10−7 | AAV | 20–26 nm |
BSA | 66 kDa | 6.7 × 10−7 | MVM | 25 nm |
IgG | 150 kDa | 4.9 × 10−7 | Rhinovirus | 30 nm |
Urease | 480 kDa | 3.5 × 10−7 | HBV | 42 nm |
IgM | 960 kDa | 2.6 × 10−7 | Adenovirus | 59–67 nm |
ETX | 2 MDa | 2.1 × 10−7 | EBV | 80–100 nm |
CMV | 5 MDa | 1.2 × 10−7 | HIV | 100–120 nm |
TMV | 40 MDa | 5.0 × 10−8 | HSV | 110–200 nm |
DNA1 | 4.4 kbp | 1.9 × 10−8 | MuLV | 120–150 nm |
DNA2 | 33.0 kbp | 4.0 × 10−9 |
Chromatography Type | Selected References |
---|---|
High-performance “membrane” chromatography | Tennikova, T.B.; Svec, F.; Belenkii, B.g. High-Performance Membrane Chromatography. A Novel Method of Protein Separation [41]. Journal of Liquid Chromatography 1990, 13, 63–70 Josić, D.; Reusch, J.; Löster, K.; Baum, O.; Reutter, W. High-Performance Membrane Chromatography of Serum and Plasma Membrane Proteins [57]. Journal of Chromatography A 1992, 590, 59–76 |
Affinity chromatography | Abou-Rebyeh, H.; Körber, F.; Schubert-Rehberg, K.; Reusch, J.; Josić, Dj. Carrier Membrane as a Stationary Phase for Affinity Chromatography and Kinetic Studies of Membrane-Bound Enzymes [44]. Journal of Chromatography B: Biomedical Sciences and Applications 1991, 566, 341–350 Neumair, J.; D’Ercole, C.; De March, M.; Elsner, M.; Seidel, M.; de Marco, A. Macroporous Epoxy-Based Monoliths Functionalized with Anti-CD63 Nanobodies for Effective Isolation of Extracellular Vesicles in Urine [64]. IJMS 2023, 24, 6131. |
Ion exchange chromatography | Podgornik, A.; Barut, M.; Štrancar, A.; Josić, D.; Koloini, T. Construction of Large-Volume Monolithic Columns [60]. Anal. Chem. 2000, 72, 5693–5699 Kramberger, P.; Peterka, M.; Boben, J.; Ravnikar, M.; Štrancar, A. Short Monolithic Columns—A Breakthrough in Purification and Fast Quantification of Tomato Mosaic Virus [73]. Journal of Chromatography A 2007, 1144, 143–149 |
Hydrophobic interaction chromatography | Svec, F.; Fréchet, J.M.J. New Designs of Macroporous Polymers and Supports: From Separation to Biocatalysis [53]. Science 1996, 273, 205–211 Sviben, D.; Forcic, D.; Ivancic-Jelecki, J.; Halassy, B.; Brgles, M. Recovery of Infective Virus Particles in Ion-Exchange and Hydrophobic Interaction Monolith Chromatography Is Influenced by Particle Charge and Total-to-Infective Particle Ratio [66]. Journal of Chromatography B 2017, 1054, 10–19 |
Sample displacement chromatography | Srajer Gajdosik, M.; Clifton, J.; Josic, D. Sample Displacement Chromatography as a Method for Purification of Proteins and Peptides from Complex Mixtures [6]. Journal of Chromatography A 2012, 1239, 1–9 Černigoj, U.; Martinuč, U.; Cardoso, S.; Sekirnik, R.; Krajnc, N.L.; Štrancar, A. Sample Displacement Chromatography of Plasmid DNA Isoforms [83]. Journal of Chromatography A 2015, 1414, 103–109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friganović, T.; Josić, D. Development of Liquid Chromatography on Monolithic Supports—From First Concepts to Real Analytical and Preparative Techniques. Int. J. Mol. Sci. 2025, 26, 4695. https://doi.org/10.3390/ijms26104695
Friganović T, Josić D. Development of Liquid Chromatography on Monolithic Supports—From First Concepts to Real Analytical and Preparative Techniques. International Journal of Molecular Sciences. 2025; 26(10):4695. https://doi.org/10.3390/ijms26104695
Chicago/Turabian StyleFriganović, Tomislav, and Djuro Josić. 2025. "Development of Liquid Chromatography on Monolithic Supports—From First Concepts to Real Analytical and Preparative Techniques" International Journal of Molecular Sciences 26, no. 10: 4695. https://doi.org/10.3390/ijms26104695
APA StyleFriganović, T., & Josić, D. (2025). Development of Liquid Chromatography on Monolithic Supports—From First Concepts to Real Analytical and Preparative Techniques. International Journal of Molecular Sciences, 26(10), 4695. https://doi.org/10.3390/ijms26104695