Special Issue: Discovery of Bioactive Phytochemicals’ Molecular Mechanisms Against Different Diseases Based on Network Pharmacology and Molecular Docking
1. Introduction
2. Overview of Published Articles
3. Conclusions
Conflicts of Interest
References
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska, J.; Czubacka, A.; Oleszek, W. Dietary phytochemicals and human health. Adv. Exp. Med. Biol. 2010, 698, 74–98. [Google Scholar] [CrossRef] [PubMed]
- Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Makela, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep. 2015, 32, 1249–1266. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023, 25, bbad518. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wang, X.; Zhang, D.Y.; Hu, Y.J.; Li, S. Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance. Zhongguo Zhong Yao Za Zhi 2022, 47, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Jin, X.; Ma, Y.; Yang, Y.; Li, J.; Liang, L.; Liu, R.; Li, Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput. Biol. Chem. 2021, 90, 107402. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Luo, J.; Xu, B. Network pharmacology and bioinformatics study of Geniposide regulating oxidative stress in colorectal cancer. Int. J. Mol. Sci. 2023, 24, 15222. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Alarcon, D.; Castro-Guillen, J.L.; Fitches, E.; Gatehouse, J.A.; Przyborski, S.; Moreno-Celis, U.; Blanco-Labra, A.; Garcia-Gasca, T. Directed mutagenesis for arginine substitution of a Phaseolus acutifolius recombinant lectin disrupts its cytotoxic activity. Int. J. Mol. Sci. 2024, 25, 13258. [Google Scholar] [CrossRef] [PubMed]
- Alotaiq, N.; Dermawan, D.; Elwali, N.E. Leveraging therapeutic proteins and peptides from Lumbricus earthworms: Targeting SOCS2 E3 ligase for cardiovascular therapy through molecular dynamics simulations. Int. J. Mol. Sci. 2024, 25, 10818. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yu, J.; Wang, D.; Liu, S.; Wang, K.; Zhao, M.; Chen, P.; Wang, Y.; Wang, Y.; Zhang, M. A novel biosynthetic strategy for ginsenoside Ro: Construction of a metabolically engineered Saccharomyces cerevisiae strain using a newly identified UGAT gene from Panax ginseng as the key enzyme gene and optimization of fermentation conditions. Int. J. Mol. Sci. 2024, 25, 11331. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alcaraz, A.J.; Baquero, L.; Perez-Munar, P.M.; Oliva-Bolarin, A.; Sanchez-Martinez, M.A.; Ramos-Molina, B.; Nunez-Sanchez, M.A.; Moreno, D.A. In vitro study of the differential anti-inflammatory activity of dietary phytochemicals upon human macrophage-like cells as a previous step for dietary intervention. Int. J. Mol. Sci. 2024, 25, 10728. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Xu, R.; Xiong, P.; Liu, J.; Zhou, Z.; Shen, T.; Zhang, X. Exploring the effects and potential mechanisms of hesperidin for the treatment of CPT-11-induced diarrhea: Network pharmacology, molecular docking, and experimental validation. Int. J. Mol. Sci. 2024, 25, 9309. [Google Scholar] [CrossRef] [PubMed]
- Dura-Trave, T.; Gallinas-Victoriano, F. COVID-19 in children and vitamin, D. Int. J. Mol. Sci. 2024, 25, 2205. [Google Scholar] [CrossRef] [PubMed]
- Stompor-Goracy, M.; Bajek-Bil, A.; Potocka, N.; Zawlik, I. Therapeutic perspectives of aminoflavonoids—A review. Int. J. Mol. Sci. 2025, 26, 2014. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B. Special Issue: Discovery of Bioactive Phytochemicals’ Molecular Mechanisms Against Different Diseases Based on Network Pharmacology and Molecular Docking. Int. J. Mol. Sci. 2025, 26, 4516. https://doi.org/10.3390/ijms26104516
Xu B. Special Issue: Discovery of Bioactive Phytochemicals’ Molecular Mechanisms Against Different Diseases Based on Network Pharmacology and Molecular Docking. International Journal of Molecular Sciences. 2025; 26(10):4516. https://doi.org/10.3390/ijms26104516
Chicago/Turabian StyleXu, Baojun. 2025. "Special Issue: Discovery of Bioactive Phytochemicals’ Molecular Mechanisms Against Different Diseases Based on Network Pharmacology and Molecular Docking" International Journal of Molecular Sciences 26, no. 10: 4516. https://doi.org/10.3390/ijms26104516
APA StyleXu, B. (2025). Special Issue: Discovery of Bioactive Phytochemicals’ Molecular Mechanisms Against Different Diseases Based on Network Pharmacology and Molecular Docking. International Journal of Molecular Sciences, 26(10), 4516. https://doi.org/10.3390/ijms26104516