HsGA20ox1, HsGA3ox1, and HsGA2ox1 Are Involved in Endogenous Gibberellin Regulation Within Heracleum sosnowskyi Ovaries After Gibberellin A3 Treatment
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Analysis of GA-Oxidase Genes in Heracleum sosnowskyi
2.2. Phylogenetic Analysis of the HsGAox Genes
2.3. Conserved Motif and Gene Structure Analysis of the HsGAox Genes
2.4. Analysis of HsGAoxs Expression in Response to GA3 Within Heracleum sosnowskyi Developing Ovaries
2.5. Changes in Endogenous GA Levels in Heracleum sosnowskyi Ovaries After Treatment with Exogenous GA3
2.6. GA3 Impact on the Phenotype of Heracleum sosnowskyi Ovaries
3. Discussion
4. Materials and Methods
4.1. Research Object and Growth Conditions
4.2. Application of Plants with GA3
4.3. Sample Harvesting
4.4. Bioinformatic Analysis of Heracleum sosnowskyi GAoxs Subfamilies
4.5. Multiple Sequence Alignment and Phylogenetic Analysis
4.6. Extraction of Endogenous GAs
4.7. Endogenous GA Analysis by Gas Chromatography-Mass Spectrometry
4.8. Identification of GA Biosynthesis Gene Fragments
4.9. Real-Time Quantitative PCR
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sponsel, V.M. Signal Achievements in Gibberellin Research: The Second Half-century. In Annual Plant Reviews, Volume 49: The Gibberellins; Wiley Online Library: Hoboken, NJ, USA, 2016; pp. 1–36. [Google Scholar]
- Hedden, P. The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiol. 2020, 61, 1832–1849. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P.; Thomas, S.G. Gibberellin Biosynthesis and Its Regulation. Biochem. J. 2012, 444, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P. Gibberellins. In Encyclopedia of Applied Plant Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 1, pp. 411–420. ISBN 9780123948083. [Google Scholar]
- Hedden, P.; Thomas, S.G. (Eds.) The Gibberellins; Wiley-Blackwell: Hoboken, NJ, USA, 2016; Volume 1, ISBN 9788578110796. [Google Scholar]
- Lange, T.; Hedden, P.; Graebe, J.E. Gibberellin Biosynthesis in Cell-Free Extracts from Developing Cucurbita maxima Embryos and the Identification of New Endogenous Gibberellins. Planta 1993, 189, 350–358. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, J. Occurrence of Gibberellins in Vascular Plants, Fungi, and Bacteria. J. Plant Growth Regul. 2001, 20, 387–442. [Google Scholar] [CrossRef]
- Curaba, J.; Moritz, T.; Blervaque, R.; Parcy, F.; Raz, V.; Herzog, M.; Vachon, G. AtGA3ox2, a Key Gene Responsible for Bioactive Gibberellin Biosynthesis, Is Regulated during Embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol. 2004, 136, 3660–3669. [Google Scholar] [CrossRef]
- Ward, D.A.; MacMillan, J.; Gong, F.; Phillips, A.L.; Hedden, P. Gibberellin 3-Oxidases in Developing Embryos of the Southern Wild Cucumber, Marah macrocarpus. Phytochemistry 2010, 71, 2010–2018. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Kourmpetli, S.; Ward, D.A.; Thomas, S.G.; Gong, F.; Powers, S.J.; Carrera, E.; Taylor, B.; Gonzalez, F.N.d.C.; Tudzynski, B.; et al. Characterization of the Fungal Gibberellin Desaturase as a 2-Oxoglutarate-Dependent Dioxygenase and Its Utilization for Enhancing Plant Growth. Plant Physiol. 2012, 160, 837–845. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin Metabolism and Its Regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Aach, H.; Bode, H.; Robinson, D.G.; Graebe, J.E. Ent-Kaurene Synthase Is Located in Proplastids of Meristematic Shoot Tissues. Planta 1997, 202, 211–219. [Google Scholar] [CrossRef]
- Sun, T.P.; Gubler, F. Molecular Mechanism of Gibberellin Signalling in Plants. Annu. Rev. Plant Biol. 2004, 55, 197–223. [Google Scholar] [CrossRef]
- Helliwell, C.A.; Sullivan, J.A.; Mould, R.M.; Gray, J.C.; James Peacock, W.; Dennis, E.S. A Plastid Envelope Location of Arabidopsis Ent-Kaurene Oxidase Links the Plastid and Endoplasmic Reticulum Steps of the Gibberellin Biosynthesis Pathway. Plant J. 2001, 28, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Schuler, M.A.; Paquette, S.M.; Werck-Reichhart, D.; Bak, S. Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot. Plant Physiol. 2004, 135, 756–772. [Google Scholar] [CrossRef] [PubMed]
- Pimenta Lange, M.J.; Lange, T. Gibberellin Biosynthesis and the Regulation of Plant Development. Plant Biol. 2006, 8, 281–290. [Google Scholar] [CrossRef]
- Sponsel, V.M.; Hedden, P. Gibberellin Biosynthesis and Inactivation. In Plant Hormones; Springer: Berlin/Heidelberg, Germany, 2010; pp. 63–94. [Google Scholar]
- Pimenta Lange, M.J.; Liebrandt, A.; Arnold, L.; Chmielewska, S.M.; Felsberger, A.; Freier, E.; Heuer, M.; Zur, D.; Lange, T. Functional Characterization of Gibberellin Oxidases from Cucumber, Cucumis sativus L. Phytochemistry 2013, 90, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kawai, Y.; Ono, E.; Mizutani, M. Evolution and Diversity of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in Plants. Plant J. 2014, 78, 328–343. [Google Scholar] [CrossRef]
- Pearce, S.; Huttly, A.K.; Prosser, I.M.; Li, Y.D.; Vaughan, S.P.; Gallova, B.; Patil, A.; Coghill, J.A.; Dubcovsky, J.; Hedden, P.; et al. Heterologous Expression and Transcript Analysis of Gibberellin Biosynthetic Genes of Grasses Reveals Novel Functionality in the GA3ox Family. BMC Plant Biol. 2015, 15, 130. [Google Scholar] [CrossRef]
- Rebers, M.; Kaneta, T.; Kawaide, H.; Yamaguchi, S.; Yang, Y.Y.; Imai, R.; Sekimoto, H.; Kamiya, Y. Regulation of Gibberellin Biosynthesis Genes during Flower and Early Fruit Development of Tomato. Plant J. 1999, 17, 241–250. [Google Scholar] [CrossRef]
- Lange, T.; Kappler, J.; Fischer, A.; Frisse, A.; Padeffke, T.; Schmidtke, S.; Lange, M.J.P. Gibberellin Biosynthesis in Developing Pumpkin Seedlings. Plant Physiol. 2005, 139, 213–223. [Google Scholar] [CrossRef]
- Sakamoto, T.; Miura, K.; Itoh, H.; Tatsumi, T.; Ueguchi-Tanaka, M.; Ishiyama, K.; Kobayashi, M.; Agrawal, G.K.; Takeda, S.; Abe, K.; et al. An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice. Plant Physiol. 2004, 134, 1642–1653. [Google Scholar] [CrossRef]
- Lange, T. Purification and Partial Amino-Acid Sequence of Gibberellin 20-Oxidase from Cucurbita maxima L. Endosperm. Planta 1994, 195, 108–115. [Google Scholar] [CrossRef]
- Chiang, H.-H.; Hwang, L.; Goodman, H.M. Lsolation of the Arabidopsis GA4 Locus; American Society of Plant Physiologists: Rockville, MA, USA, 1995; Volume 7. [Google Scholar]
- Thomas, S.G.; Phillips, A.L.; Hedden, P. Molecular Cloning and Functional Expression of Gibberellin 2-Oxidases, Multifunctional Enzymes Involved in Gibberellin Deactivation. Plant Biol. 1999, 96, 4698–4703. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-G.; Jun, S.-H.; Kim, J.; Kawaide, H.; Kamiya, Y.; An, G. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon. Plant Physiol. 1999, 121, 373–382. [Google Scholar] [CrossRef]
- García-Hurtado, N.; Carrera, E.; Ruiz-Rivero, O.; López-Gresa, M.P.; Hedden, P.; Gong, F.; García-Martínez, J.L. The Characterization of Transgenic Tomato Overexpressing Gibberellin 20-Oxidase Reveals Induction of Parthenocarpic Fruit Growth, Higher Yield, and Alteration of the Gibberellin Biosynthetic Pathway. J. Exp. Bot. 2012, 63, 5803–5813. [Google Scholar] [CrossRef]
- Martínez-Bello, L.; Moritz, T.; López-Díaz, I. Silencing C19-GA 2-Oxidases Induces Parthenocarpic Development and Inhibits Lateral Branching in Tomato Plants. J. Exp. Bot. 2015, 66, 5897–5910. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, X.; Zhang, L.; Lin, S.; Liu, D.; Wang, Q.; Cai, S.; El-Tanbouly, R.; Gan, L.; Wu, H.; et al. Identification and Characterization of Tomato Gibberellin 2-Oxidases (GA2oxs) and Effects of Fruit-Specific SlGA2ox1 Overexpression on Fruit and Seed Growth and Development. Hortic. Res. 2016, 3, 16059. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Jiang, Z.; Zhao, L.; Jin, F. Genome-Wide Identification and Expression Analysis of the GA2ox Gene Family in Maize (Zea mays L.) under Various Abiotic Stress Conditions. Plant Physiol. Biochem. 2021, 166, 621–633. [Google Scholar] [CrossRef]
- Lo, S.-F.; Yang, S.-Y.; Chen, K.-T.; Hsing, Y.-I.; Zeevaart, J.A.D.; Chen, L.-J.; Yu, S.-M. A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. Plant Cell 2008, 20, 2603–2618. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, J.; Zheng, X.; Lv, H.; Zhang, M.; Tan, B.; Ye, X.; Wang, W.; Zhang, L.; Li, Z. Functional Analysis of the Gibberellin 2-Oxidase Gene Family in Peach. Front. Plant Sci. 2021, 12, 619158. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, L.; Rota-Stabelli, O.; Masuero, D.; Acheampong, A.K.; Moretto, M.; Caputi, L.; Vrhovsek, U.; Moser, C. Gibberellin Metabolism in Vitis vinifera L. During Bloom and Fruit-Set: Functional Characterization and Evolution of Grapevine Gibberellin Oxidases. J. Exp. Bot. 2013, 64, 4403–4419. [Google Scholar] [CrossRef]
- Sabir, I.A.; Manzoor, M.A.; Shah, I.H.; Abbas, F.; Liu, X.; Fiaz, S.; Shah, A.N.; Jiu, S.; Wang, J.; Abdullah, M.; et al. Evolutionary and Integrative Analysis of Gibberellin-Dioxygenase Gene Family and Their Expression Profile in Three Rosaceae Genomes (F. Vesca, P. Mume, and P. Avium) Under Phytohormone Stress. Front. Plant Sci. 2022, 13, 942969. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Underhill, S.J.R. Breadfruit (Artocarpus altilis) Gibberellin 2-Oxidase Genes in Stem Elongation and Abiotic Stress Response. Plant Physiol. Biochem. 2016, 98, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Fos, M.; Nuez, F.; García-Martínez, J.L. The Gene Pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries. Plant Physiol. 2000, 122, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, T.; Liu, J.; Cong, L.; Zhu, Y.; Zhai, R.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. PbGA20ox2 Regulates Fruit Set and Induces Parthenocarpy by Enhancing GA4 Content. Front. Plant Sci. 2020, 11, 113. [Google Scholar] [CrossRef]
- Gederaas, L.; Loennechen Moen, T.; Skjelseth, S.; Larsen, L.K. Alien Species in Norway—With the Norwegian Black List 2012; Norwegian Biodiversity Infomation Centre (NBIC): Trondheim, Norway, 2012; p. 212. ISBN 9788292838372. [Google Scholar]
- Gudžinskas, Z.; Kazlauskas, M.; Pilate, D.; Balalaikins, M.; Pilats, M.; Šaulys, A.; Šaulienė, I.; Šukienė, L. Invasive Organisms the Border Region of Lithuania and Latvia; BMK Press: Vilnius, Lithuania, 2014. [Google Scholar]
- Tkachenko, K.G. Peculiarities and Seed Productivity in Some Heracleum Species Grown in Leningrad Area. Rastit. Resur. 1989, 1, 52–61. [Google Scholar]
- Gudžinskas, Z.; Žalneravičius, E. Seedling Dynamics and Population Structure of Invasive Heracleum sosnowskyi (Apiaceae) in Lithuania. Ann. Bot. Fenn. 2018, 55, 309–320. [Google Scholar] [CrossRef]
- Zangerl, A.R.; Berenbaum, M.R.; Nitao, J.K. Parthenocarpic Fruits in Wild Parsnip: Decoy Defence against a Specialist Herbivore. Evol. Ecol. 1991, 5, 136–145. [Google Scholar] [CrossRef]
- Koryznienė, D.; Jurkonienė, S.; Žalnierius, T.; Gavelienė, V.; Jankovska-Bortkevič, E.; Bareikienė, N.; Būda, V. Heracleum Sosnowskyi Seed Development under the Effect of Exogenous Application of GA3. PeerJ 2019, 7, e6906. [Google Scholar] [CrossRef]
- Žalnierius, T.; Šveikauskas, V.; Aphalo, P.J.; Gavelienė, V.; Būda, V.; Jurkonienė, S. Gibberellic Acid (GA3) Applied to Flowering Heracleum sosnowskyi Decreases Seed Viability Even If Seed Development Is Not Inhibited. Plants 2022, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Schelkunov, M.I.; Shtratnikova, V.Y.; Klepikova, A.V.; Makarenko, M.S.; Omelchenko, D.O.; Novikova, L.A.; Obukhova, E.N.; Bogdanov, V.P.; Penin, A.A.; Logacheva, M.D. The Genome of the Toxic Invasive Species Heracleum sosnowskyi Carries an Increased Number of Genes despite Absence of Recent Whole-genome Duplications. Plant J. 2024, 117, 449–463. [Google Scholar] [CrossRef]
- Rieu, I.; Eriksson, S.; Powers, S.J.; Gong, F.; Griffiths, J.; Woolley, L.; Benlloch, R.; Nilsson, O.; Thomas, S.G.; Hedden, P. Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. Plant Cell 2008, 20, 2420–2436. [Google Scholar] [CrossRef]
- Dorcey, E.; Urbez, C.; Blázquez, M.A.; Carbonell, J.; Perez-Amador, M.A. Fertilization-Dependent Auxin Response in Ovules Triggers Fruit Development through the Modulation of Gibberellin Metabolism in Arabidopsis. Plant J. 2009, 58, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Vivian-Smith, A.; Koltunow, A.M. Genetic Analysis of Growth-Regulator-Induced Parthenocarpy in Arabidopsis. Plant Physiol. 1999, 121, 437–451. [Google Scholar] [CrossRef]
- Serrani, J.C.; Fos, M.; Atarés, A.; García-Martínez, J.L. Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the Cv Micro-Tom of Tomato. J. Plant Growth Regul. 2007, 26, 211–221. [Google Scholar] [CrossRef]
- Tiwari, A.; Offringa, R.; Heuvelink, E. Auxin-Induced Fruit Set in Capsicum annuum L. Requires Downstream Gibberellin Biosynthesis. J. Plant Growth Regul. 2012, 31, 570–578. [Google Scholar] [CrossRef]
- Asahira, T.; Nitsch, J.P. Tubérisation in Vitro: Ullucus Tuberosus et Dioscorea. Bull. Soc. Bot. Fr. 1968, 115, 345–352. [Google Scholar] [CrossRef]
- Shohat, H.; Cheriker, H.; Kilambi, H.V.; Illouz Eliaz, N.; Blum, S.; Amsellem, Z.; Tarkowská, D.; Aharoni, A.; Eshed, Y.; Weiss, D. Inhibition of Gibberellin Accumulation by Water Deficiency Promotes Fast and Long-term ‘Drought Avoidance’ Responses in Tomato. New Phytol. 2021, 232, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P.; Kamiya, Y. Gibberellin Biosynthesis: Enzymes, Genes and Their Regulation, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 431–460. [Google Scholar] [CrossRef]
- Grennan, A.K. Gibberellin metabolism enzymes in rice. Plant Physiol. 2006, 141, 524–526. [Google Scholar] [CrossRef]
- Itoh, H.; Ueguchi-Tanaka, M.; Sentoku, N.; Kitano, H.; Matsuoka, M.; Kobayashi, M. Cloning and Functional Analysis of Two Gibberellin 3beta-Hydroxylase Genes That Are Differently Expressed during the Growth of Rice. Proc. Natl. Acad. Sci. USA 2001, 98, 8909–8914. [Google Scholar] [CrossRef]
- Han, F.; Zhu, B. Evolutionary Analysis of Three Gibberellin Oxidase Genesin Rice, Arabidopsis, and Soybean. Gene 2011, 473, 23–35. [Google Scholar] [CrossRef]
- Phillips, A.L.; Ward, D.A.; Uknes, S.; Appleford, N.E.J.; Lange, T.; Huttly, A.K.; Gaskin, P.; Graebe, J.E.; Hedden, P. Isolation and Expression of Three Gibberellin 20-Oxidase CDNA Clones from Arabidopsis. Plant Physiol. 1995, 108, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Pang, B.; Yan, J.; Wang, T.; Wang, L.; Chen, C.; Li, Q.; Ren, Z. Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of CsGA20ox1 in Root Development in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 3135. [Google Scholar] [CrossRef]
- Hedden, P.; Phillips, A.L. Gibberellin Metabolism: New Insights Revealed by the Genes. Trends Plant Sci. 2000, 5, 523–530. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. The DNA-Repair Protein AlkB, EGL-9, and Leprecan Define New Families of 2-Oxoglutarate-and Iron-Dependent Dioxygenases. Genome Biol. 2001, 2, RESEARCH0007. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Ge, S.; Rao, G.Y. Divergence and Adaptive Evolution of the Gibberellin Oxidase Genes in Plants. BMC Evol. Biol. 2015, 15, 207. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The Evolutionary Fate and Consequences of Duplicate Genes. Science (1979) 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Sémon, M.; Wolfe, K.H. Consequences of Genome Duplication. Curr. Opin. Genet. Dev. 2007, 17, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, X.-J.; Tan, G.-F.; Zhou, W.-Q.; Wang, G.-L. Gibberellin and the Plant Growth Retardant Paclobutrazol Altered Fruit Shape and Ripening in Tomato. Protoplasma 2020, 257, 853–861. [Google Scholar] [CrossRef]
- Schomburg, F.M.; Bizzell, C.M.; Lee, D.J.; Zeevaart, J.A.D.; Amasino, R.M. Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. Plant Cell 2003, 15, 151–163. [Google Scholar] [CrossRef]
- Litvin, A.G.; van Iersel, M.W.; Malladi, A. Drought Stress Reduces Stem Elongation and Alters Gibberellin-related Gene Expression during Vegetative Growth of Tomato. J. Amer. Soc. Hort. Sci. 2016, 141, 591–597. [Google Scholar] [CrossRef]
- Mitchum, M.G.; Yamaguchi, S.; Hanada, A.; Kuwahara, A.; Yoshioka, Y.; Kato, T.; Tabata, S.; Kamiya, Y.; Sun, T.P. Distinct and Overlapping Roles of Two Gibberellin 3-Oxidases in Arabidopsis Development. Plant J. 2006, 45, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Mitchum, M.G.; Barnaby, N.; Ayele, B.T.; Ogawa, M.; Nam, E.; Lai, W.-C.; Hanada, A.; Alonso, J.M.; Ecker, J.R.; et al. Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in Arabidopsis. Plant Cell 2008, 20, 320–336. [Google Scholar] [CrossRef]
- Lin, J.; Feng, D.; Li, Y.; Xiao, S.; Xuan, W. Comparing the structural characteristics and expression of GA2ox gene in dwarf banana and its wild type. J. Plant Biochem. Biotechnol. 2023, 32, 76–84. [Google Scholar] [CrossRef]
- He, H.; Yamamuro, C. Interplays between Auxin and GA Signaling Coordinate Early Fruit Development. Hortic. Res. 2022, 9, uhab078. [Google Scholar] [CrossRef]
- Wei, H.; Chen, J.; Zhang, X.; Lu, Z.; Liu, G.; Lian, B.; Yu, C.; Chen, Y.; Zhong, F.; Zhang, J. Characterization, Expression Pattern, and Function Analysis of Gibberellin Oxidases in Salix matsudana. Int. J. Biol. Macromol. 2024, 266, 131095. [Google Scholar] [CrossRef] [PubMed]
- Perglova, I.; Pergl, J.; Pysek, P.; Pyšek, P. Reproductive Ecology of Heracleum mantegazzianum. In Ecology and Management of Giant Hogweed; CAB International: Wallingford, UK, 2007; pp. 55–73. ISBN 1845932064. [Google Scholar]
- Koornneef, M.; Van der Veen, J.H. Induction and Analysis of Gibberellin Sensitive Mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 1980, 58, 257–263. [Google Scholar] [CrossRef]
- Goto, N.; Pharis, R.P. Role of Gibberellins in the Development of Floral Organs of the Gibberellin-Deficient Mutant, Ga1-1, of Arabidopsis thaliana. Can. J. Bot. 1999, 77, 944–954. [Google Scholar] [CrossRef]
- Pimenta Lange, M.J.; Knop, N.; Lange, T. Stamen-Derived Bioactive Gibberellin Is Essential for Male Flower Development of Cucurbita maxima L. J. Exp. Bot. 2012, 63, 2681–2691. [Google Scholar] [CrossRef]
- Hirano, K.; Nakajima, M.; Asano, K.; Nishiyama, T.; Sakakibara, H.; Kojima, M.; Katoh, E.; Xiang, H.; Tanahashi, T.; Hasebe, M. The GID1-Mediated Gibberellin Perception Mechanism Is Conserved in the Lycophyte Selaginella moellendorffii but Not in the Bryophyte Physcomitrella patens. Plant Cell 2007, 19, 3058–3079. [Google Scholar] [CrossRef]
- Bell, C.R. Breeding Systems and Floral Biology of the Umbelliferae; or, Evidence for Specialization in Unspecialized Flowers. In The Biology and Chemistry of the Umbelliferae; Academic Press: Cambridge, MA, USA, 1971; pp. 93–107. [Google Scholar]
- Serrani, J.C.; Carrera, E.; Ruiz-Rivero, O.; Gallego-Giraldo, L.; Peres, L.E.P.; García-Martínez, J.L. Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins. Plant Physiol. 2010, 153, 851–862. [Google Scholar] [CrossRef]
- Alabadí, D.; Blázquez, M.A.; Carbonell, J.; Ferrándiz, C.; Pérez-Amador, M.A. Instructive Roles for Hormones in Plant Development. Int. J. Dev. Biol. 2009, 53, 1597–1608. [Google Scholar] [CrossRef]
- Olimpieri, I.; Siligato, F.; Caccia, R.; Soressi, G.P.; Mazzucato, A.; Mariotti, L.; Ceccarelli, N. Tomato Fruit Set Driven by Pollination or by the Parthenocarpic Fruit Allele Are Mediated by Transcriptionally Regulated Gibberellin Biosynthesis. Planta 2007, 226, 877–888. [Google Scholar] [CrossRef]
- Serrani, J.C.; Ruiz-Rivero, O.; Fos, M.; García-Martínez, J.L. Auxin-Induced Fruit-Set in Tomato Is Mediated in Part by Gibberellins. Plant J. 2008, 56, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Yue, R.; Wang, H.; Liu, J.; Zhai, R.; Yang, J.; Wu, M.; Si, M.; Zhang, H.; Yang, C.; et al. 2,4-D-Induced Parthenocarpy in Pear Is Mediated by Enhancement of GA4 Biosynthesis. Physiol. Plant 2018, 166, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Gillaspy, G.; Ben-David, H.; Gruissem, W. Fruits: A Developmental Perspective. Plant Cell 1993, 5, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- McAtee, P.; Karim, S.; Schaffer, R.; David, K. A Dynamic Interplay between Phytohormones Is Required for Fruit Development, Maturation, and Ripening. Front. Plant Sci. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Moravcová, L.; Perglová, I.; Pyšek, P.; Jarošík, V.; Pergl, J. Effects of Fruit Position on Fruit Mass and Seed Germination in the Alien Species Heracleum mantegazzianum (Apiaceae) and the Implications for Its Invasion. Acta Oecologica 2005, 28, 1–10. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs; Oxford University Press: Oxford, UK, 1997; Volume 25. [Google Scholar]
- Bailey, T.L.; Elkan, C. The Value of Prior Knowledge in Discovering Motifs with MEME. In Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, Cambridge, UK, 16–19 July 1995; Volume 3, pp. 21–29. [Google Scholar]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An Upgraded Gene Feature Visualization Server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Chao, J.-T.; Kong, Y.-Z.; Wang, Q.; Sun, Y.-H.; Gong, D.-P.; Lv, J.; Liu, G.-S. MapGene2Chrom, a Tool to Draw Gene Physical Map Based on Perl and SVG Languages. Yi Chuan 2015, 37, 91–97. [Google Scholar]
- Chou, K.-C.; Shen, H.-B. Plant-MPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Olechnovič, K.; Venclovas, Č. VoroMQA: Assessment of Protein Structure Quality Using Interatomic Contact Areas. Proteins Struct. Funct. Bioinform. 2017, 85, 1131–1145. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- De Boer, T.J.; Backer, H.J. A New Method for the Preparation of Diazomethane. Recl. Des. Trav. Chim. Des. Pays-Bas 1954, 73, 229–234. [Google Scholar] [CrossRef]
- Gaskin, P.; MacMillan, J. GC-MS of the Gibberellins and Related Compounds. Methodology and a Library of Spectra; University of Bristol (Cantock’s Enterprises): Bristol, UK, 1991. [Google Scholar]
- Hasegawa, H.; Shinohara, Y.; Hashimoto, T.; Matsuda, R.; Hayashi, Y. Prediction of Measurement Uncertainty in Isotope Dilution Gas Chromatography/Mass Spectrometry. J. Chromatogr. A 2006, 1136, 226–230. [Google Scholar] [CrossRef]
- Frisse, A.; Pimenta, M.J.; Lange, T. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds. Plant Physiol. 2003, 131, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fernald, R.D. Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
Protein Name | Accession no. | Gene Name | CDS (nt) | Length (aa) | MW (kDa) | Domain Location | Type | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
HsGA20ox1 | KAK1403938 | HsGA20ox1 | 1134 | 377 | 42.88 | 44–144 a 209–306 b | GA20ox | Cytoplasm |
HsGA20ox2 | KAK1403864 | HsGA20ox2 | 1134 | 377 | 42.89 | 44–144 a 209–306 b | GA20ox | Cytoplasm |
HsGA20ox3 | KAK1371249 | HsGA20ox3 | 1095 | 364 | 41.33 | 43–144 a 209–306 b | GA20ox | Cytoplasm |
HsGA20ox4 | KAK1376269 | HsGA20ox4 | 1221 | 406 | 46.14 | 63–169 a 227–325 b | GA20ox | Cytoplasm |
HsGA20ox5 | KAK1376896 | HsGA20ox5 | 1140 | 379 | 42.96 | 61–167 a 225–323 b | GA20ox | Cytoplasm |
HsGA20ox6 | KAK1377029 | HsGA20ox6 | 1140 | 379 | 43.02 | 61–167 a 225–323 b | GA20ox | Cytoplasm |
HsGA20ox7 | KAK1392812 | HsGA20ox7 | 978 | 325 | 36.81 | 62–164 a 227–325 b | GA20ox | Cytoplasm |
HsGA20ox8 | KAK1393998 | HsGA20ox8 | 1152 | 383 | 43.73 | 34–135 a 181–260 b | GA20ox | Cytoplasm |
HsGA20ox9 | KAK1399602 | HsGA20ox9 | 1149 | 382 | 43.38 | 66–170 a 230–328 b | GA20ox | Cytoplasm |
HsGA2ox1 | KAK1399227 | HsGA2ox1 | 987 | 328 | 36.87 | 26–115 a 176–273 b | C19-GA2ox | Cytoplasm |
HsGA2ox2 | KAK1348928 | HsGA2ox2 | 1665 | 554 | 61.92 | 20–79 a 172–291 b | C19-GA2ox | Cytoplasm Nucleus |
HsGA2ox3 | KAK1354370 | HsGA2ox3 | 1047 | 348 | 38.86 | 20–88 a 173–291 b | C19-GA2ox | Cytoplasm |
HsGA2ox4 | KAK1354372 | HsGA2ox4 | 1113 | 370 | 41.05 | 20–88 a 173–292 b | C19-GA2ox | Cytoplasm |
HsGA2ox5 | KAK1357410 | HsGA2ox5 | 987 | 328 | 36.77 | 40–96 a 180–275 b | C19-GA2ox | Cytoplasm |
HsGA2ox6 | KAK1362390 | HsGA2ox6 | 975 | 342 | 36.31 | 23–110 a 173–269 b | C19-GA2ox | Cytoplasm |
HsGA2ox7 | KAK1378436 | HsGA2ox7 | 954 | 317 | 35.81 | 26–111 a 170–265 b | C19-GA2ox | Cytoplasm |
HsGA2ox8 | KAK1378437 | HsGA2ox8 | 945 | 314 | 35.39 | 22–123 a 166–261 b | C19-GA2ox | Cytoplasm |
HsGA2ox9 | KAK1380378 | HsGA2ox9 | 999 | 332 | 37.21 | 21–80 a 174–275 b | C19-GA2ox | Cytoplasm |
HsGA2ox10 | KAK1385026 | HsGA2ox10 | 981 | 326 | 36.65 | 19–88 a 169–276 b | C19-GA2ox | Cytoplasm |
HsGA2ox11 | KAK1385558 | HsGA2ox11 | 1035 | 344 | 38.19 | 19–84 a 172–288 b | C19-GA2ox | Cytoplasm |
HsGA2ox12 | KAK1389211 | HsGA2ox12 | 996 | 331 | 37.05 | 27–118 a 177–276 b | C19-GA2ox | Cytoplasm |
HsGA2ox13 | KAK1398725 | HsGA2ox13 | 1593 | 530 | 59.09 | 20–79 a 172–291 b | C19-GA2ox | Cytoplasm |
HsGA3ox1 | KAK1358259 | HsGA3ox1 | 1065 | 354 | 39.98 | 56–158 a 211–308 b | GA3ox | Cytoplasm |
HsGA3ox2 | KAK1360134 | HsGA3ox2 | 1068 | 355 | 40.02 | 57–159 a 210–309 b | GA3ox | Cytoplasm |
HsGA3ox3 | KAK1362989 | HsGA3ox3 | 1047 | 348 | 39.05 | 46–145 a 196–295 b | GA3ox | Cytoplasm |
HsGA3ox4 | KAK1385662 | HsGA3ox4 | 1035 | 344 | 38.59 | 48–141 a 201–297 b | GA3ox | Cytoplasm |
HsGA3ox5 | KAK1385663 | HsGA3ox5 | 1020 | 339 | 38.00 | 50–152 a 206–302 b | GA3ox | Cytoplasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žalnierius, T.; Laibakojis, D.; Rapalytė, S.; Būdienė, J.; Jurkonienė, S. HsGA20ox1, HsGA3ox1, and HsGA2ox1 Are Involved in Endogenous Gibberellin Regulation Within Heracleum sosnowskyi Ovaries After Gibberellin A3 Treatment. Int. J. Mol. Sci. 2025, 26, 4480. https://doi.org/10.3390/ijms26104480
Žalnierius T, Laibakojis D, Rapalytė S, Būdienė J, Jurkonienė S. HsGA20ox1, HsGA3ox1, and HsGA2ox1 Are Involved in Endogenous Gibberellin Regulation Within Heracleum sosnowskyi Ovaries After Gibberellin A3 Treatment. International Journal of Molecular Sciences. 2025; 26(10):4480. https://doi.org/10.3390/ijms26104480
Chicago/Turabian StyleŽalnierius, Tautvydas, Dominykas Laibakojis, Saulė Rapalytė, Jurga Būdienė, and Sigita Jurkonienė. 2025. "HsGA20ox1, HsGA3ox1, and HsGA2ox1 Are Involved in Endogenous Gibberellin Regulation Within Heracleum sosnowskyi Ovaries After Gibberellin A3 Treatment" International Journal of Molecular Sciences 26, no. 10: 4480. https://doi.org/10.3390/ijms26104480
APA StyleŽalnierius, T., Laibakojis, D., Rapalytė, S., Būdienė, J., & Jurkonienė, S. (2025). HsGA20ox1, HsGA3ox1, and HsGA2ox1 Are Involved in Endogenous Gibberellin Regulation Within Heracleum sosnowskyi Ovaries After Gibberellin A3 Treatment. International Journal of Molecular Sciences, 26(10), 4480. https://doi.org/10.3390/ijms26104480