The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs
Abstract
1. Introduction
2. Asthma and Viral Infection
3. Rhinovirus (RV)
4. Respiratory Syncytial Virus (RSV)
5. Influenza Virus
6. Metapneumovirus (MPV)
7. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
8. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biezen, R.; Brijnath, B.; Grando, D.; Mazza, D. Management of Respiratory Tract Infections in Young Children—A Qualitative Study of Primary Care Providers’ Perspectives. NPJ Prim. Care Respir. Med. 2017, 27, 15. [Google Scholar] [CrossRef]
- de Steenhuijsen Piters, W.A.A.; Sanders, E.A.M.; Bogaert, D. The Role of the Local Microbial Ecosystem in Respiratory Health and Disease. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140294. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xu, D.; Zhang, Y.; Wang, T.; Zhang, L.; Gu, W.; Shen, M. Epidemiological Characteristics of Four Common Respiratory Viral Infections in Children. Virol. J. 2021, 18, 10. [Google Scholar] [CrossRef]
- Drysdale, S.B.; Kelly, D.F. How to Use…respiratory Viral Studies. Arch. Dis. Child. Educ. Pract. Ed. 2019, 104, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Urbani, F.; Cometa, M.; Martelli, C.; Santoli, F.; Rana, R.; Ursitti, A.; Bonato, M.; Baraldo, S.; Contoli, M.; Papi, A. Update on Virus-Induced Asthma Exacerbations. Expert. Rev. Clin. Immunol. 2023, 19, 1259–1272. [Google Scholar] [CrossRef]
- Schaad, U.B.; Esposito, S.; Razi, C.H. Diagnosis and Management of Recurrent Respiratory Tract Infections in Children: A Practical Guide. Arch. Pediatr. Infect. Dis. 2015, 4, e31039. [Google Scholar] [CrossRef]
- Calderaro, A.; Buttrini, M.; Farina, B.; Montecchini, S.; De Conto, F.; Chezzi, C. Respiratory Tract Infections and Laboratory Diagnostic Methods: A Review with A Focus on Syndromic Panel-Based Assays. Microorganisms 2022, 10, 1856. [Google Scholar] [CrossRef]
- van Doorn, H.R.; Yu, H. Viral Respiratory Infections. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 284–288. [Google Scholar]
- Jartti, T.; Gern, J.E. Role of Viral Infections in the Development and Exacerbation of Asthma in Children. J. Allergy Clin. Immunol. 2017, 140, 895–906. [Google Scholar] [CrossRef]
- Kim, S.R. Viral Infection and Airway Epithelial Immunity in Asthma. Int. J. Mol. Sci. 2022, 23, 9914. [Google Scholar] [CrossRef] [PubMed]
- Adeli, M.; El-Shareif, T.; Hendaus, M. Asthma Exacerbation Related to Viral Infections: An up to Date Summary. J. Family Med. Prim. Care 2019, 8, 2753. [Google Scholar] [CrossRef]
- Soccio, P.; Moriondo, G.; Lacedonia, D.; Tondo, P.; Pescatore, D.; Quarato, C.M.I.; Carone, M.; Foschino Barbaro, M.P.; Scioscia, G. MiRNA and Exosomal MiRNA as New Biomarkers Useful to Phenotyping Severe Asthma. Biomolecules 2023, 13, 1542. [Google Scholar] [CrossRef]
- Kierbiedź-Guzik, N.; Sozańska, B. MiRNAs as Modern Biomarkers in Asthma Therapy. Int. J. Mol. Sci. 2023, 24, 11499. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Mansbach, J.M.; Camargo, C.A. Infectious Pathogens and Bronchiolitis Outcomes. Expert. Rev. Anti Infect. Ther. 2014, 12, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Townshend, J.; Brodlie, M. Diagnosis and Management of Asthma in Children. BMJ Paediatr. Open 2022, 6, e001277. [Google Scholar] [CrossRef] [PubMed]
- Sarikloglou, E.; Fouzas, S.; Paraskakis, E. Prediction of Asthma Exacerbations in Children. J. Pers. Med. 2023, 14, 20. [Google Scholar] [CrossRef]
- Padayachee, Y.; Faiez, T.S.; Singanayagam, A.; Mallia, P.; Johnston, S.L. Asthma and Viruses: A Focus on Rhinoviruses and SARS-CoV-2. J. Allergy Clin. Immunol. 2021, 147, 1648–1651. [Google Scholar] [CrossRef]
- Kierbiedź-Guzik, N.; Sozańska, B. The Potential Role of Serum and Exhaled Breath Condensate MiRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023, 11, 763. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Ding, J.; Zhang, Y.; Cai, M.; Yang, J.; Cho, W.C.; Zheng, Y. MicroRNA-21: A Key Modulator in Oncogenic Viral Infections. RNA Biol. 2021, 18, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martínez, M.; Lorente-Sorolla, C.; Naharro, S.; Rodrigo-Muñoz, J.M.; del Pozo, V. Advances and Highlights of MiRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 1628. [Google Scholar] [CrossRef] [PubMed]
- Barbu, M.G.; Condrat, C.E.; Thompson, D.C.; Bugnar, O.L.; Cretoiu, D.; Toader, O.D.; Suciu, N.; Voinea, S.C. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front. Cell Dev. Biol. 2020, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Leon-Icaza, S.A.; Zeng, M.; Rosas-Taraco, A.G. MicroRNAs in Viral Acute Respiratory Infections: Immune Regulation, Biomarkers, Therapy, and Vaccines. ExRNA 2019, 1, 1. [Google Scholar] [CrossRef]
- Lejeune, S.B.; Deschildre, A.; Morel, C.L.; Béghin, L.R.; Drumez, E.; Pichavant, M.; Gosset, P.; Engelmann, I. Rhinovirus Characteristics Associated with Viremia in Childhood Asthma. J. Med. Virol. 2024, 96, e29804. [Google Scholar] [CrossRef]
- Restori, K.H.; Srinivasa, B.T.; Ward, B.J.; Fixman, E.D. Neonatal Immunity, Respiratory Virus Infections, and the Development of Asthma. Front. Immunol. 2018, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Makrinioti, H.; Rana, B.M.J.; Shamji, B.W.H.; Trujillo-Torralbo, M.-B.; Footitt, J.; del-Rosario, J.; Telcian, A.G.; Nikonova, A.; Zhu, J.; et al. IL-33–Dependent Type 2 Inflammation during Rhinovirus-Induced Asthma Exacerbations In Vivo. Am. J. Respir. Crit. Care Med. 2014, 190, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Anderson, D.; Galbraith, S.; Fantino, E.; Gutierrez Cardenas, D.; Read, J.F.; Serralha, M.; Holt, B.J.; Strickland, D.H.; Sly, P.D.; et al. Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis. Am. J. Respir. Crit. Care Med. 2019, 199, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Kivihall, A.; Aab, A.; Soja, J.; Sładek, K.; Sanak, M.; Altraja, A.; Jakiela, B.; Bochenek, G.; Rebane, A. Reduced Expression of MiR-146a in Human Bronchial Epithelial Cells Alters Neutrophil Migration. Clin. Transl. Allergy 2019, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Gilyazova, I.; Asadullina, D.; Kagirova, E.; Sikka, R.; Mustafin, A.; Ivanova, E.; Bakhtiyarova, K.; Gilyazova, G.; Gupta, S.; Khusnutdinova, E.; et al. MiRNA-146a—A Key Player in Immunity and Diseases. Int. J. Mol. Sci. 2023, 24, 12767. [Google Scholar] [CrossRef]
- Laanesoo, A.; Urgard, E.; Periyasamy, K.; Laan, M.; Bochkov, Y.A.; Aab, A.; Magilnick, N.; Pooga, M.; Gern, J.E.; Johnston, S.L.; et al. Dual Role of the MiR-146 Family in Rhinovirus-induced Airway Inflammation and Allergic Asthma Exacerbation. Clin. Transl. Med. 2021, 11, e427. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Sarkar, N. The Role of MicroRNA-155 in Viral Diseases 2023. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Naseri, A.; Shojaie, L.; Nemati, M.; Jafarzadeh, S.; Bannazadeh Baghi, H.; Hamblin, M.R.; Akhlagh, S.A.; Mirzaei, H. MicroRNA-155 and Antiviral Immune Responses. Int. Immunopharmacol. 2021, 101, 108188. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Salka, K.; Chorvinsky, E.; Xuchen, X.; Abutaleb, K.; Perez, G.F.; Weinstock, J.; Gaviria, S.; Gutierrez, M.J.; Nino, G. Airway Mir-155 Responses Are Associated with TH1 Cytokine Polarization in Young Children with Viral Respiratory Infections. PLoS ONE 2020, 15, e0233352. [Google Scholar] [CrossRef]
- Hu, J.; Huang, S.; Liu, X.; Zhang, Y.; Wei, S.; Hu, X. MiR-155: An Important Role in Inflammation Response. J. Immunol. Res. 2022, 2022, 7437281. [Google Scholar] [CrossRef]
- Solberg, O.D.; Ostrin, E.J.; Love, M.I.; Peng, J.C.; Bhakta, N.R.; Hou, L.; Nguyen, C.; Solon, M.; Nguyen, C.; Barczak, A.J.; et al. Airway Epithelial MiRNA Expression Is Altered in Asthma. Am. J. Respir. Crit. Care Med. 2012, 186, 965–974. [Google Scholar] [CrossRef]
- Bondanese, V.P. Identification of Host MiRNAs That May Limit Human Rhinovirus Replication. World J. Biol. Chem. 2014, 5, 437. [Google Scholar] [CrossRef]
- Wang, W.; Guo, J.; Wang, Y. MicroRNA-30b-5p Promotes the Proliferation and Migration of Human Airway Smooth Muscle Cells Induced by Platelet-Derived Growth Factor by Targeting Phosphatase and Tensin Homolog Deleted on Chromosome Ten. Bioengineered 2021, 12, 3662–3673. [Google Scholar] [CrossRef] [PubMed]
- Bosner, P.; Cappleman, V.; Tomicic, A.; Kyyaly, A.; Jubrail, J. Human Rhinovirus 16 Infection Modifies the MicroRNA Landscape during Epithelial Cell Infection. bioRxiv 2023, 2023-12. [Google Scholar] [CrossRef]
- Mazumdar, A.; Haddad, Y.; Milosavljevic, V.; Michalkova, H.; Guran, R.; Bhowmick, S.; Moulick, A. Peptide-Carbon Quantum Dots Conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria. Nanomaterials 2020, 10, 325. [Google Scholar] [CrossRef]
- Hansel, T.T.; Tunstall, T.; Trujillo-Torralbo, M.-B.; Shamji, B.; del-Rosario, A.; Dhariwal, J.; Kirk, P.D.W.; Stumpf, M.P.H.; Koopmann, J.; Telcian, A.; et al. A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). eBioMedicine 2017, 19, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Contoli, M.; Ito, K.; Padovani, A.; Poletti, D.; Marku, B.; Edwards, M.R.; Stanciu, L.A.; Gnesini, G.; Pastore, A.; Spanevello, A.; et al. Th2 Cytokines Impair Innate Immune Responses to Rhinovirus in Respiratory Epithelial Cells. Allergy 2015, 70, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sinha, A.; Lutter, R.; Yang, J.; Ascoli, C.; Sterk, P.J.; Nemsick, N.K.; Perkins, D.L.; Finn, P.W. Analysis of Exosomal MicroRNA Dynamics in Response to Rhinovirus Challenge in a Longitudinal Case-Control Study of Asthma. Viruses 2022, 14, 2444. [Google Scholar] [CrossRef]
- Wardzyńska, A.; Pawełczyk, M.; Rywaniak, J.; Makowska, J.S.; Kowalski, M.L.; Chałubiński, M. miRNA Expression in Serum and PBMCs Isolated from Middle-aged and Elderly Patients during Asthma Exacerbation. APMIS 2023, 131, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Piedimonte, G. RSV Infections: State of the Art. Cleve Clin. J. Med. 2015, 82, S13–S18. [Google Scholar] [CrossRef]
- Kaler, J.; Hussain, A.; Patel, K.; Hernandez, T.; Ray, S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus 2023, 15, e36342. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Tan, S.; Ma, D. Respiratory Syncytial Virus: From Pathogenesis to Potential Therapeutic Strategies. Int. J. Biol. Sci. 2021, 17, 4073–4091. [Google Scholar] [CrossRef]
- Makrinioti, H.; Hasegawa, K.; Lakoumentas, J.; Xepapadaki, P.; Tsolia, M.; Castro-Rodriguez, J.A.; Feleszko, W.; Jartti, T.; Johnston, S.L.; Bush, A.; et al. The Role of Respiratory Syncytial Virus- and Rhinovirus-induced Bronchiolitis in Recurrent Wheeze and Asthma—A Systematic Review and Meta-analysis. Pediatr. Allergy Immunol. 2022, 33, e13741. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Pérez-Losada, M.; Hoptay, C.E.; Epstein, S.; Mansbach, J.M.; Teach, S.J.; Piedra, P.A.; Camargo, C.A.; Freishtat, R.J. RSV vs. Rhinovirus Bronchiolitis: Difference in Nasal Airway MicroRNA Profiles and NFκB Signaling. Pediatr. Res. 2018, 83, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Panganiban, R.P.; Wang, Y.; Howrylak, J.; Chinchilli, V.M.; Craig, T.J.; August, A.; Ishmael, F.T. Circulating MicroRNAs as Biomarkers in Patients with Allergic Rhinitis and Asthma. J. Allergy Clin. Immunol. 2016, 137, 1423–1432. [Google Scholar] [CrossRef]
- Girkin, J.; Hatchwell, L.; Foster, P.; Johnston, S.L.; Bartlett, N.; Collison, A.; Mattes, J. CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses Following Rhinovirus 1B Infection. J. Immunol. 2015, 194, 4924–4930. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Wu, X.; Chen, M.; Yu, W. MiR-146a Alleviates Lung Injury Caused by RSV Infection in Young Rats by Targeting TRAF-6 and Regulating JNK/ERKMAPK Signaling Pathways. Sci. Rep. 2022, 12, 3481. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Muñoz, J.M.; Gil-Martínez, M.; Lorente-Sorolla, C.; Sastre, B.; García-García, M.L.; Calvo, C.; Casas, I.; del Pozo, V. Reduced MiR-146a-5p Is a Biomarker of Infant Respiratory Diseases Contributing to Immune Dysregulation in Small Airway Epithelial Cells. Cells 2022, 11, 2746. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Tang, Z.; Qi, M.; Liu, D.; Bajinka, O.; Tan, Y. Dispersion and Utilization of Lipid Droplets Mediates Respiratory Syncytial Virus-induced Airway Hyperresponsiveness. Pediatr. Allergy Immunol. 2022, 33, e13651. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Du, X.; Yang, Y.; Yuan, L.; Yang, M.; Qin, L.; Wang, L.; Zhou, K.; Xiang, Y.; Qu, X.; et al. MiRNA-34b/c Regulates Mucus Secretion in RSV-infected Airway Epithelial Cells by Targeting FGFR1. J. Cell Mol. Med. 2021, 25, 10565–10574. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Bajinka, O.; Dai, P.; Wu, G.; Qin, L.; Tan, Y. MiR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. Biology 2023, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Ressel, S.; Kumar, S.; Bermúdez-Barrientos, J.R.; Gordon, K.; Lane, J.; Wu, J.; Abreu-Goodger, C.; Schwarze, J.; Buck, A.H. RNA–RNA Interactions between Respiratory Syncytial Virus and MiR-26 and MiR-27 Are Associated with Regulation of Cell Cycle and Antiviral Immunity. Nucleic Acids Res. 2024, 52, 4872–4888. [Google Scholar] [CrossRef]
- Inchley, C.S.; Sonerud, T.; Fjærli, H.O.; Nakstad, B. Nasal Mucosal MicroRNA Expression in Children with Respiratory Syncytial Virus Infection. BMC Infect. Dis. 2015, 15, 150. [Google Scholar] [CrossRef]
- Kyo, M.; Zhu, Z.; Shibata, R.; Ooka, T.; Mansbach, J.M.; Harmon, B.; Hahn, A.; Pérez-Losada, M.; Camargo, C.A.; Hasegawa, K. Nasal MicroRNA Signatures for Disease Severity in Infants with Respiratory Syncytial Virus Bronchiolitis: A Multicentre Prospective Study. BMJ Open Respir. Res. 2024, 11, e002288. [Google Scholar] [CrossRef]
- Nguyen-Van-Tam, J.S.; O’Leary, M.; Martin, E.T.; Heijnen, E.; Callendret, B.; Fleischhackl, R.; Comeaux, C.; Tran, T.M.P.; Weber, K. Burden of Respiratory Syncytial Virus Infection in Older and High-Risk Adults: A Systematic Review and Meta-Analysis of the Evidence from Developed Countries. Eur. Respir. Rev. 2022, 31, 220105. [Google Scholar] [CrossRef]
- Bouzid, D.; Visseaux, B.; Ferré, V.M.; Peiffer-Smadja, N.; Le Hingrat, Q.; Loubet, P. Respiratory Syncytial Virus in Adults with Comorbidities: An Update on Epidemiology, Vaccines, and Treatments. Clin. Microbiol. Infect. 2023, 29, 1538–1550. [Google Scholar] [CrossRef]
- Atherton, L.J.; Jorquera, P.A.; Bakre, A.A.; Tripp, R.A. Determining Immune and MiRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types. Front. Immunol. 2019, 10, 2323. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Hui, D.S.; Zambon, M.; Wentworth, D.E.; Monto, A.S. Influenza. Lancet 2022, 400, 693–706. [Google Scholar] [CrossRef]
- Nayak, J.; Hoy, G.; Gordon, A. Influenza in Children. Cold Spring Harb. Perspect. Med. 2021, 11, a038430. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, F.; Koops, J.; Williams, T.; Reid, A.T.; Hansbro, P.M.; Wark, P.A.; Knight, D.A. Influenza A Virus Infection Dysregulates the Expression of MicroRNA-22 and Its Targets; CD147 and HDAC4, in Epithelium of Asthmatics. Respir. Res. 2018, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, C.M.; Podyminogin, R.L.; Diercks, A.H.; Treuting, P.M.; Peschon, J.J.; Rodriguez, D.; Gundapuneni, M.; Weiss, M.J.; Aderem, A. MiR-144 Attenuates the Host Response to Influenza Virus by Targeting the TRAF6-IRF7 Signaling Axis. PLoS Pathog. 2017, 13, e1006305. [Google Scholar] [CrossRef]
- Vaswani, C.M.; Varkouhi, A.K.; Gupta, S.; Ektesabi, A.M.; Tsoporis, J.N.; Yousef, S.; Plant, P.J.; da Silva, A.L.; Cen, Y.; Tseng, Y.-C.; et al. Preventing Occludin Tight-Junction Disruption via Inhibition of MicroRNA-193b-5p Attenuates Viral Load and Influenza-Induced Lung Injury. Mol. Ther. 2023, 31, 2681–2701. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.W.J.; Tan, K.S.; Lee, J.J.X.; Seet, J.E.; Choi, H.W.; Ler, S.G.; Gunaratne, J.; Narasaraju, T.; Sham, L.; Patzel, V.; et al. Differential Effects of MicroRNAs MiR-21, MiR-99 and MiR-145 on Lung Regeneration and Inflammation during Recovery from Influenza Pneumonia. J. Med. Virol. 2023, 95, e29286. [Google Scholar] [CrossRef] [PubMed]
- Othumpangat, S.; Bryan, N.; Beezhold, D.; Noti, J. Upregulation of MiRNA-4776 in Influenza Virus Infected Bronchial Epithelial Cells Is Associated with Downregulation of NFKBIB and Increased Viral Survival. Viruses 2017, 9, 94. [Google Scholar] [CrossRef]
- Wu, W.; Wang, C.; Xia, C.; Liu, S.; Mei, Q. MicroRNA Let-7 Suppresses Influenza A Virus Infection by Targeting RPS16 and Enhancing Type I Interferon Response. Front. Cell Infect. Microbiol. 2022, 12, 904775. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Yuan, Y.; Sui, B.; Wang, Z.; Zhang, Y.; Zhou, M.; Chen, H.; Fu, Z.F.; Zhao, L. Inhibition of MiR-200b-3p Confers Broad-Spectrum Resistance to Viral Infection by Targeting TBK1. mBio 2023, 14, e0086723. [Google Scholar] [CrossRef] [PubMed]
- Khongnomnan, K.; Saengchoowong, S.; Mayuramart, O.; Nimsamer, P.; Pisitkun, T.; Poovorawan, Y.; Payungporn, S. Hsa-MiR-30e-3p Inhibits Influenza B Virus Replication by Targeting Viral NA and NP Genes. Exp. Biol. Med. 2020, 245, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Shi, Y.; Zhou, L.; Gao, S.; Yao, R.; Guo, S.; Geng, Z.; Bao, L.; Zhao, R.; Cui, X. MicroRNA-205-5p: A Potential Therapeutic Target for Influenza A. J. Cell Mol. Med. 2022, 26, 5917–5928. [Google Scholar] [CrossRef]
- Khongnomnan, K.; Makkoch, J.; Poomipak, W.; Poovorawan, Y.; Payungporn, S. Human MiR-3145 Inhibits Influenza A Viruses Replication by Targeting and Silencing Viral PB1 Gene. Exp. Biol. Med. 2015, 240, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Lu, J.; Wang, R.; Yang, Z.; Zhou, X.; Huang, P. MiR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front. Cell Infect. Microbiol. 2018, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Alalem, M.; Dabous, E.; Awad, A.M.; Alalem, N.; Guirgis, A.A.; El-Masry, S.; Khalil, H. Influenza a Virus Regulates Interferon Signaling and Its Associated Genes; MxA and STAT3 by Cellular MiR-141 to Ensure Viral Replication. Virol. J. 2023, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, C.; Bamunuarachchi, G.; Wang, Y.; Liang, Y.; Huang, C.; Zhu, Z.; Xu, D.; Lin, K.; Senavirathna, L.K.; et al. MiR-193b Represses Influenza A Virus Infection by Inhibiting Wnt/Β-catenin Signalling. Cell Microbiol. 2019, 21, e13001. [Google Scholar] [CrossRef] [PubMed]
- Othumpangat, S.; Lindsley, W.G.; Beezhold, D.H.; Kashon, M.L.; Burrell, C.N.; Mubareka, S.; Noti, J.D. Differential Expression of Serum Exosome MicroRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons. Pathogens 2021, 10, 149. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Huang, C.-H.; Chen, C.-J.; Chen, T.-W.; Lin, C.-Y.; Lin, Y.-T.; Kuo, S.-M.; Huang, C.-G.; Lee, L.-A.; Chen, Y.-H.; et al. Novel Role for MiR-1290 in Host Species Specificity of Influenza A Virus. Mol. Ther. Nucleic Acids 2019, 17, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.M.; Edwards, K.M.; Zhu, Y.; Grijalva, C.G.; Self, W.H.; Jain, S.; Ampofo, K.; Pavia, A.T.; Arnold, S.R.; McCullers, J.A.; et al. Clinical Features of Human Metapneumovirus-Associated Community-Acquired Pneumonia Hospitalizations. Clin. Infect. Dis. 2020, 72, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Shafagati, N.; Williams, J. Human Metapneumovirus—What We Know Now. F1000Res 2018, 7, 135. [Google Scholar] [CrossRef]
- Deng, J.; Ptashkin, R.N.; Wang, Q.; Liu, G.; Zhang, G.; Lee, I.; Lee, Y.S.; Bao, X. Human Metapneumovirus Infection Induces Significant Changes in Small Noncoding RNA Expression in Airway Epithelial Cells. Mol. Ther. Nucleic Acids 2014, 3, e163. [Google Scholar] [CrossRef]
- Baños-Lara, M.D.R.; Zabaleta, J.; Garai, J.; Baddoo, M.; Guerrero-Plata, A. Comparative Analysis of MiRNA Profile in Human Dendritic Cells Infected with Respiratory Syncytial Virus and Human Metapneumovirus. BMC Res. Notes 2018, 11, 432. [Google Scholar] [CrossRef]
- Soltan, M.A.; Alhanshani, A.A.; Shati, A.A.; Alqahtani, Y.A.; Alshaya, D.S.; Alharthi, J.; Altalhi, S.A.; Fayad, E.; Zaki, M.S.A.; Eid, R.A. Cyclin Dependent Kinase Inhibitor 2A Genetic and Epigenetic Alterations Interfere with Several Immune Components and Predict Poor Clinical Outcome. Biomedicines 2023, 11, 2254. [Google Scholar] [CrossRef] [PubMed]
- Moen, S.H.; Ehrnström, B.; Kojen, J.F.; Yurchenko, M.; Beckwith, K.S.; Afset, J.E.; Damås, J.K.; Hu, Z.; Yin, H.; Espevik, T.; et al. Human Toll-like Receptor 8 (TLR8) Is an Important Sensor of Pyogenic Bacteria, and Is Attenuated by Cell Surface TLR Signaling. Front. Immunol. 2019, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espinoza, I.; Bungwon, A.D.; Guerrero-Plata, A. Human Metapneumovirus-Induced Host MicroRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023, 15, 2272. [Google Scholar] [CrossRef]
- Martinez-Espinoza, I.; Banos-Lara, M.D.R.; Guerrero-Plata, A. The Importance of MiRNA Identification During Respiratory Viral Infections. J. Cell Immunol. 2021, 3, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Halaji, M.; Heiat, M.; Faraji, N.; Ranjbar, R. Epidemiology of COVID-19. J. Res. Med. Sci. 2021, 26, 82. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.T.; Enguita, F.J.; Taylor, D.; Griffin, R.J.; Priebe, W.; Emmett, M.R.; Sajadi, M.M.; Harris, A.D.; Clement, J.; Dybas, J.M.; et al. Role of MiR-2392 in Driving SARS-CoV-2 Infection. Cell Rep. 2021, 37, 109839. [Google Scholar] [CrossRef]
- Akula, S.M.; Bolin, P.; Cook, P.P. Cellular MiR-150-5p May Have a Crucial Role to Play in the Biology of SARS-CoV-2 Infection by Regulating Nsp10 Gene. RNA Biol. 2022, 19, 1–11. [Google Scholar] [CrossRef]
- Gedikbasi, A.; Adas, G.; Isiksacan, N.; Kart Yasar, K.; Canbolat Unlu, E.; Yilmaz, R.; Hergunsel, G.O.; Cukurova, Z. The Effect of Host MiRNAs on Prognosis in COVID-19: MiRNA-155 May Promote Severity via Targeting Suppressor of Cytokine Signaling 1 (SOCS1) Gene. Genes 2022, 13, 1146. [Google Scholar] [CrossRef] [PubMed]
- Kassif-Lerner, R.; Zloto, K.; Rubin, N.; Asraf, K.; Doolman, R.; Paret, G.; Nevo-Caspi, Y. MiR-155: A Potential Biomarker for Predicting Mortality in COVID-19 Patients. J. Pers. Med. 2022, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Gronau, L.; Duecker, R.P.; Jerkic, S.-P.; Eickmeier, O.; Trischler, J.; Chiocchetti, A.G.; Blumchen, K.; Zielen, S.; Schubert, R. Dual Role of MicroRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. Int. J. Mol. Sci. 2024, 25, 7686. [Google Scholar] [CrossRef]
- Hicks, S.D.; Zhu, D.; Sullivan, R.; Kannikeswaran, N.; Meert, K.; Chen, W.; Suresh, S.; Sethuraman, U. Saliva MicroRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int. J. Mol. Sci. 2023, 24, 8175. [Google Scholar] [CrossRef]
- Yuan, J.; Feng, Z.; Wang, Q.; Han, L.; Guan, S.; Liu, L.; Ye, H.; Xu, L.; Han, X. 3’UTR of SARS-CoV-2 Spike Gene Hijack Host MiR-296 or MiR-520h to Disturb Cell Proliferation and Cytokine Signaling. Front. Immunol. 2022, 13, 924667. [Google Scholar] [CrossRef]
- Bertolazzi, G.; Cipollina, C.; Benos, P.V.; Tumminello, M.; Coronnello, C. MiR-1207-5p Can Contribute to Dysregulation of Inflammatory Response in COVID-19 via Targeting SARS-CoV-2 RNA. Front. Cell Infect. Microbiol. 2020, 10, 586592. [Google Scholar] [CrossRef]
- Khan, M.A.-A.-K.; Sany, M.R.U.; Islam, M.S.; Islam, A.B.M.M.K. Epigenetic Regulator MiRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19. Front. Genet. 2020, 11, 765. [Google Scholar] [CrossRef]
- Nunnari, G. MicroRNA-122: A Therapeutic Target For Hepatitis C Virus (HCV) Infection. Front. Biosci. 2011, S3, 1032. [Google Scholar] [CrossRef]
- Hill, J.M.; Zhao, Y.; Clement, C.; Neumann, D.M.; Lukiw, W.J. HSV-1 Infection of Human Brain Cells Induces MiRNA-146a and Alzheimer-Type Inflammatory Signaling. Neuroreport 2009, 20, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kierbiedź-Guzik, N.; Sozańska, B. The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs. Int. J. Mol. Sci. 2025, 26, 120. https://doi.org/10.3390/ijms26010120
Kierbiedź-Guzik N, Sozańska B. The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs. International Journal of Molecular Sciences. 2025; 26(1):120. https://doi.org/10.3390/ijms26010120
Chicago/Turabian StyleKierbiedź-Guzik, Natalia, and Barbara Sozańska. 2025. "The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs" International Journal of Molecular Sciences 26, no. 1: 120. https://doi.org/10.3390/ijms26010120
APA StyleKierbiedź-Guzik, N., & Sozańska, B. (2025). The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs. International Journal of Molecular Sciences, 26(1), 120. https://doi.org/10.3390/ijms26010120