MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications
Abstract
:1. Introduction
2. MiRNAs Biomarkers in Pancreatic Cancer
2.1. Diagnostic Potential of miRNAs in Pancreatic Cancers
2.2. Prognostic Potential of miRNAs in Pancreatic Cancer
2.3. Therapeutic Implications of miRNAs in Pancreatic Cancers
MiRNA | Expression | Validated Targets | Carcinogenic Effects | Reference |
---|---|---|---|---|
miR-21 | Up | PTEN, PDCD4, Spry2 MAPK/ERK and PI3K/AKT signaling pathways | Chemoresistance, activated cell migration and invasion | [91,92] |
miR-27 | Up | BTG2 Wnt/β-catenin pathway | Enhanced angiogenesis | [93] |
miR-194-5p | Up | PD-L1 | Enhanced anti-tumor immunity | [28] |
miR-29a | Up | TTP EMT | Pro-inflammatory, increased cell viability, invasion | [100] |
miR-15a | Down | WEE1, CHK1, Yap-1, BMI-1 | Induced cell cycle arrest and inhibition of cell proliferation | [94] |
miR-145 | Down | MUC13, TGF-β receptor, and SMAD2 | Suppressed cell proliferation, migration, invasion | [95,96] |
miR-34 | Down | Snail1, Notch1 EMT and Notch signaling | Induced apoptosis and inhibition of migration and invasion | [97] |
miR-873 | Down | KRAS | Suppressed proliferation | [101] |
miR-4739 | Down | VEGFA PI3K/AKT signaling, aerobic glycolysis | Inhibited cell growth and metastasis | [45] |
miR-433 | Down | GOT1 glutamine catabolism | Repressed cell proliferation and metastasis and activated apoptosis | [99] |
3. Challenges, Solutions, and Future Directions
3.1. Discrepancies in Reported Biomarkers
- In tissue, there are 250, 93, and 83 differentially expressed (DE) miRNAs identified in each of the three datasets, respectively, with a fold change >2 and p-value < 0.05 (detailed lists in Supplementary Materials (Table S1)).
- ○
- No single common DE miRNAs were found among all three datasets.
- ○
- Two, nine, and twenty-two DE miRNAs were common among 2/3 datasets.
- In serum, 238, 122, and 203 DE miRNAs are identified in each of the three datasets, respectively, using less stringent criteria (Table S2).
- ○
- Two common DE miRNAs were found among all three datasets, namely, miR-1246 and miR-1290.
- ○
- Eleven, fourteen, and twenty-six DE miRNAs were common among 2/3 datasets.
- Tissue vs. serum groups: 117 miRNAs were differentially expressed in one or more datasets of each group (Table S3).
- ○
- No single miRNA is common in all six datasets.
- ○
- MiR-1246 is common in all serum datasets and 2/3 tissue datasets, while miR-205-5p is common in 2/3 of each group. However, the dysregulation trend is not consistent.
- Standardizing methodologies for exosome isolation, miRNA extraction, quantification, and data normalization across studies.
- Exploring associated clinical metadata to understand how variables such as disease subtypes, stages, previous treatments, or comorbidities influence miRNA expression patterns.
- Investigating composite biomarkers that combine miRNAs with clinical characteristics or other molecular markers such as differentiation 82 (CD82), CA 19–9, exosomal proteins (e.g., zinc transporter protein 4 (ZIP4) and Glypican-1 (GPC1)), and other types of non-coding RNAs for improved effectiveness in capturing the heterogeneity and complexity.
- Integrating functional analysis to predict gene targets and associated pathways, enhancing the relevance of miRNAs to pancreatic cancer.
3.2. Discrepancies in Analytical Methods
- The utilization of example datasets from GSE59856, comprising serum miRNA expression data of 100 pancreatic cancer patients and 150 healthy controls.
- The use of Principal Component Analysis (PCA) for dimensionality reduction and visualization to understand the distribution of normal healthy and pancreatic cancer samples.
- The employment of the Limma package for differential gene expression analysis, aiding in the identification of top circulating miRNA biomarkers differentiating cancer patients from healthy controls.
- The construction of binary cancer classification models using several machine learning algorithms, including SVM, Decision Tree Classifier, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Gaussian Naive Bayes. The models’ performance was evaluated using k-fold cross-validation and standardized evaluation metrics such as accuracy, recall, precision, and F1 score.
3.3. Alternative Approaches
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Available online: http://www.cancer.org/ (accessed on 15 February 2024).
- Ballehaninna, U.K.; Chamberlain, R.S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J. Gastrointest. Oncol. 2012, 3, 105–119. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Kandeel, M.; Al-Taher, A.; Nakashima, R.; Sakaguchi, T.; Kandeel, A.; Nagaya, Y.; Kitamura, Y.; Kitade, Y. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain. PLoS ONE 2014, 9, e94538. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Y.; Chen, X. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs. Front. Microbiol. 2017, 8, 768. [Google Scholar] [CrossRef]
- Lee, J.; Padhye, A.; Sharma, A.; Song, G.; Miao, J.; Mo, Y.Y.; Wang, L.; Kemper, J.K. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 2010, 285, 12604–12611. [Google Scholar] [CrossRef]
- Choi, S.E.; Fu, T.; Seok, S.; Kim, D.H.; Yu, E.; Lee, K.W.; Kang, Y.; Li, X.; Kemper, B.; Kemper, J.K. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 2013, 12, 1062–1072. [Google Scholar] [CrossRef]
- Lim, S.H.; Chua, W.; Ng, W.; Ip, E.; Marques, T.M.; Tran, N.T.; Gama-Carvalho, M.; Asghari, R.; Henderson, C.; Ma, Y.; et al. Circulating Tumour Cell Associated MicroRNA Profiles Change during Chemoradiation and Are Predictive of Response in Locally Advanced Rectal Cancer. Cancers 2023, 15, 4184. [Google Scholar] [CrossRef]
- Rawat, M.; Kadian, K.; Gupta, Y.; Kumar, A.; Chain, P.S.G.; Kovbasnjuk, O.; Kumar, S.; Parasher, G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes 2019, 10, 752. [Google Scholar] [CrossRef]
- Yu, Y.; Tong, Y.; Zhong, A.; Wang, Y.; Lu, R.; Guo, L. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer. Medicine 2020, 99, e23863. [Google Scholar] [CrossRef]
- Carotenuto, P.; Amato, F.; Lampis, A.; Rae, C.; Hedayat, S.; Previdi, M.C.; Zito, D.; Raj, M.; Guzzardo, V.; Sclafani, F.; et al. Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nat. Commun. 2021, 12, 6738. [Google Scholar] [CrossRef]
- Lisa, K.; Atreyee, K. Potential role of microRNAs in pancreatic cancer manifestation: A review. J. Egypt. Natl. Cancer Inst. 2022, 34, 26. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef]
- Ma, J.; Fang, B.; Zeng, F.; Pang, H.; Zhang, J.; Shi, Y.; Wu, X.; Cheng, L.; Ma, C.; Xia, J.; et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol. Lett. 2014, 231, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Cao, T.; Ma, C.; Shi, Y.; Sun, Y.; Wang, Z.P.; Ma, J. miR-7 Suppresses Tumor Progression by Directly Targeting MAP3K9 in Pancreatic Cancer. Mol. Ther. Nucleic Acids 2018, 13, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Seike, M.; Goto, A.; Okano, T.; Bowman, E.D.; Schetter, A.J.; Horikawa, I.; Mathe, E.A.; Jen, J.; Yang, P.; Sugimura, H.; et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc. Natl. Acad. Sci. USA 2009, 106, 12085–12090. [Google Scholar] [CrossRef] [PubMed]
- Bullock, M.D.; Pickard, K.M.; Nielsen, B.S.; Sayan, A.E.; Jenei, V.; Mellone, M.; Mitter, R.; Primrose, J.N.; Thomas, G.J.; Packham, G.K.; et al. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis. 2013, 4, e684. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ahmad, A.; Banerjee, S.; Padhye, S.; Dominiak, K.; Schaffert, J.M.; Wang, Z.; Philip, P.A.; Sarkar, F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70, 3606–3617. [Google Scholar] [CrossRef]
- Wu, Y.; Hong, Q.; Lu, F.; Zhang, Z.; Li, J.; Nie, Z.; He, B. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis. Mol. Diagn. Ther. 2023, 27, 283–301. [Google Scholar] [CrossRef]
- Pal, A.; Ojha, A.; Ju, J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int. J. Mol. Sci. 2023, 24, 17523. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Azmi, A.S.; Philip, P.A. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. Am. J. Pathol. 2019, 189, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, X.; Zhao, J.; Zhao, X. MicroRNA-634 functions as a tumor suppressor in pancreatic cancer via directly targeting heat shock-related 70-kDa protein 2. Exp. Ther. Med. 2019, 17, 3949–3956. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Li, S.; Fang, K.; Yang, L.; Wang, L. microRNA-1225 inhibit apoptosis of pancreatic cancer cells via targeting JAK1. Cell Cycle 2019, 18, 990–1000. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, S.; Cen, H.; Lin, Y.; Huang, C.; Chen, Y.; Shan, H.; Su, Y.; Zeng, L. MicroRNA hsa-miR-623 directly suppresses MMP1 and attenuates IL-8-induced metastasis in pancreatic cancer. Int. J. Oncol. 2019, 55, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Mou, T.; Xie, F.; Zhong, P.; Hua, H.; Lai, L.; Yang, Q.; Wang, J. MiR-345-5p functions as a tumor suppressor in pancreatic cancer by directly targeting CCL8. Biomed. Pharmacother. 2019, 111, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.L.; Cheng, M.; Xu, X.D. MicroRNA-30c inhibits pancreatic cancer cell proliferation by targeting twinfilin 1 and indicates a poor prognosis. World J. Gastroenterol. 2019, 25, 6311–6321. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Zhang, L.; Chen, Y.; Dong, R.; Zhang, J.; Zhao, J.; Guo, X.; Yang, G.; Li, Y.; et al. miR-194-5p down-regulates tumor cell PD-L1 expression and promotes anti-tumor immunity in pancreatic cancer. Int. Immunopharmacol. 2021, 97, 107822. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, J.W.; Wang, L.; Liu, H.; Yan, Y.; Hu, S.Y. MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 482–487. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, H.; Wang, Y.; Song, Y.; Zhang, P.; Wang, Z.; Gao, J.; Li, Z.; Du, Y. MicroRNA-132 Plays an Independent Prognostic Role in Pancreatic Ductal Adenocarcinoma and Acts as a Tumor Suppressor. Technol. Cancer Res. Treat. 2019, 18, 1533033818824314. [Google Scholar] [CrossRef]
- Kojima, M.; Sudo, H.; Kawauchi, J.; Takizawa, S.; Kondou, S.; Nobumasa, H.; Ochiai, A. MicroRNA markers for the diagnosis of pancreatic and biliary-tract cancers. PLoS ONE 2015, 10, e0118220. [Google Scholar] [CrossRef]
- Ye, Z.-Q.; Zou, C.-L.; Chen, H.-B.; Jiang, M.-J.; Mei, Z.; Gu, D.-N. MicroRNA-7 as a Potential Biomarker for Prognosis in Pancreatic Cancer. Dis. Markers 2020, 2020, 2782101. [Google Scholar] [CrossRef] [PubMed]
- Halkova, T.; Cuperkova, R.; Minarik, M.; Benesova, L. MicroRNAs in Pancreatic Cancer: Involvement in Carcinogenesis and Potential Use for Diagnosis and Prognosis. Gastroenterol. Res. Pract. 2015, 2015, 892903. [Google Scholar] [CrossRef] [PubMed]
- Kt, R.D.; Karthick, D.; Saravanaraj, K.S.; Jaganathan, M.K.; Ghorai, S.; Hemdev, S.P. The Roles of MicroRNA in Pancreatic Cancer Progression. Cancer Investig. 2022, 40, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Durczynski, A.; Romanowicz, H.; Hogendorf, P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021, 9, 1322. [Google Scholar] [CrossRef] [PubMed]
- Fesler, A.; Ju, J. Development of microRNA-based therapy for pancreatic cancer. J. Pancreatol. 2019, 2, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Orlandella, F.M.; De Stefano, A.E.; Braile, M.; Luciano, N.; Mancini, A.; Franzese, M.; Buono, P.; Salvatore, G. Unveiling the miRNAs responsive to physical activity/exercise training in cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2022, 180, 103844. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Shu, J.; Silva, B.V.; Gao, T.; Xu, Z.; Cui, J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancer. Sci. Rep. 2017, 13356. [Google Scholar] [CrossRef] [PubMed]
- Bindhu, K.M.; Shijing, Y.; Uwe, G.; Sanyukta, R.; Wolfgang, G.; Miryam, M.; Nathalia, A.G.; Holger, K.; Thomas, B.; Markus, W.B.; et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int. J. Cancer 2014, 136, 2616–2627. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.; Yan, J.; Ban, X.; Fan, X.; Chang, X.; Lu, Z.; Wu, Y.; Zong, L.; Mo, S.; et al. Upregulated MicroRNA-483-3p is an Early Event in Pancreatic Ductal Adenocarcinoma (PDAC) and as a Powerful Liquid Biopsy Biomarker in PDAC. OncoTargets Ther. 2021, 14, 2163–2175. [Google Scholar] [CrossRef]
- Dan, C.; Christian, D.; Mogens, K.B.; Jane Preuss, H.; Nicolai Aagaard, S.; Jens, W.; Heike, I.; Anders, M.; Carsten Palnæs, H.; Julia, S.J. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark. Res. 2017, 5, 8. [Google Scholar] [CrossRef]
- Reyaz, I.; Khan, B.; James, N.; Azhar, H.; Rehman, A.; Younas, M.W.; Rashid, H.; Al-Shaikhly, F.F.; Almomani, M.M.; MK, I.K.A.; et al. Emerging Horizons in the Diagnosis of Pancreatic Cancer: The Role of Circulating microRNAs as Early Detection Biomarkers for Pancreatic Ductal Adenocarcinoma. Cureus 2024, 16, e53023. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhuang, L.; Zhang, J.; Fan, J.; Luo, J.; Chen, H.; Wang, K.; Liu, L.; Chen, Z.; Meng, Z. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 2013, 7, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Marin, A.M.; Mattar, S.B.; Amatuzzi, R.F.; Chammas, R.; Uno, M.; Zanette, D.L.; Aoki, M.N. Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules 2022, 12, 769. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, X.; Xia, M.; Wu, F.; Ding, J.; Jiao, Y.; Zhan, Q.; An, F. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol. Rep. 2017, 38, 2182–2188. [Google Scholar] [CrossRef]
- Takahasi, K.; Iinuma, H.; Wada, K.; Minezaki, S.; Kawamura, S.; Kainuma, M.; Ikeda, Y.; Shibuya, M.; Miura, F.; Sano, K. Usefulness of exosome-encapsulated microRNA-451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci. 2018, 25, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, S.; Iinuma, H.; Wada, K.; Takahashi, K.; Minezaki, S.; Kainuma, M.; Shibuya, M.; Miura, F.; Sano, K. Exosome-encapsulated microRNA-4525, microRNA-451a and microRNA-21 in portal vein blood is a high-sensitive liquid biomarker for the selection of high-risk pancreatic ductal adenocarcinoma patients. J. Hepatobiliary Pancreat. Sci. 2019, 26, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.H.; Al-Hallak, M.N.; Philip, P.A.; Mohammad, R.M.; Viola, N.; Wagner, K.U.; Azmi, A.S. Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers 2021, 13, 2777. [Google Scholar] [CrossRef] [PubMed]
- Andre, M.; Caobi, A.; Miles, J.S.; Vashist, A.; Ruiz, M.A.; Raymond, A.D. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024, 24, 322. [Google Scholar] [CrossRef]
- Reese, M.; Dhayat, S.A. Small extracellular vesicle non-coding RNAs in pancreatic cancer: Molecular mechanisms and clinical implications. J. Hematol. Oncol. 2021, 14, 141. [Google Scholar] [CrossRef]
- Lai, X.; Wang, M.; McElyea, S.D.; Sherman, S.; House, M.; Korc, M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017, 393, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gao, C.; Yu, T.; Qu, Y.; Xiao, G.G.; Huang, Z. Bioinformatics Analysis of a Prognostic miRNA Signature and Potential Key Genes in Pancreatic Cancer. Front. Oncol. 2021, 11, 641289. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, J.; Pan, X.; Zhang, C.; Jiang, X.; Li, Y.; Chen, Y.; Pang, B. An immune-related microRNA signature prognostic model for pancreatic carcinoma and association with immune microenvironment. Sci. Rep. 2022, 12, 9123. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Y.; Xinpeng, Y.; Xu, R.; Song, J.; Ruze, R.; Xu, Q.; Zhao, Y. Construction of immune-related signature and identification of S100A14 determining immune-suppressive microenvironment in pancreatic cancer. BMC Cancer 2022, 22, 879. [Google Scholar] [CrossRef] [PubMed]
- Seimiya, T.; Suzuki, T.; Iwata, T.; Kishikawa, T.; Sekiba, K.; Shibata, C.; Ishigaki, K.; Fujiwara, H.; Oyama, H.; Kanai, S.; et al. Combination of serum human satellite RNA and miR-21-5p levels as a biomarker for pancreatic cancer. iScience 2023, 26, 106021. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Ideno, N.; Araki, T.; Miura, S.; Yamamoto, M.; Nakafusa, T.; Higashijima, N.; Yamamoto, T.; Tamura, K.; Nakamura, S.; et al. MicroRNA-20a in extracellular vesicles derived from duodenal fluid is a possible biomarker for pancreatic ductal adenocarcinoma. DEN Open 2024, 4, e333. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Feng, K.; Xia, L.; Wang, C.; Zhu, J. Combined use of Serum miR-499a-5p and CA199 Increases the Diagnostic Sensitivity of Pancreatic Cancer. Clin. Lab. 2019, 65, 2119. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.S.; Park, S.B.; Kim, C.; Kim, K.; Jung, D.E.; Song, S.Y. Identification of Circulating Serum miRNAs as Novel Biomarkers in Pancreatic Cancer Using a Penalized Algorithm. Int. J. Mol. Sci. 2021, 22, 1007. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Sadakari, Y.; Ohtsuka, T.; Okayama, T.; Nakashima, Y.; Gotoh, Y.; Saeki, K.; Mori, Y.; Nakata, K.; Miyasaka, Y.; et al. Pancreatic Juice Exosomal MicroRNAs as Biomarkers for Detection of Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2019, 26, 2104–2111. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, C.; Li, H.; Qu, G.; Chen, L.; Liu, Y.; Zhang, Y.; Zhao, Q.; Lian, C.; Ji, A.; et al. Role of a novel circRNA-CGNL1 in regulating pancreatic cancer progression via NUDT4-HDAC4-RUNX2-GAMT-mediated apoptosis. Mol. Cancer 2024, 23, 27. [Google Scholar] [CrossRef]
- Huang, D.; Quan, Y.; He, M.; Zhou, B. Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data. J. Exp. Clin. Cancer Res. CR 2009, 28, 149. [Google Scholar] [CrossRef] [PubMed]
- Arevalillo, J.M.; Navarro, H. A new method for identifying bivariate differential expression in high dimensional microarray data using quadratic discriminant analysis. BMC Bioinform. 2011, 12, S6. [Google Scholar] [CrossRef]
- Goto, T.; Fujiya, M.; Konishi, H.; Sasajima, J.; Fujibayashi, S.; Hayashi, A.; Utsumi, T.; Sato, H.; Iwama, T.; Ijiri, M.; et al. An elevated expression of serum exosomal microRNA-191, −21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 2018, 18, 116. [Google Scholar] [CrossRef]
- Hassan, M.; Kotagiri, R. A new approach to enhance the performance of decision tree for classifying gene expression data. BMC Proc. 2013, 7, S3. [Google Scholar] [CrossRef] [PubMed]
- Dobrzycka, M.; Sulewska, A.; Biecek, P.; Charkiewicz, R.; Karabowicz, P.; Charkiewicz, A.; Golaszewska, K.; Milewska, P.; Michalska-Falkowska, A.; Nowak, K.; et al. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 14699. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Rashid, S.; Singh, N.; Rashid, S.; Singh, V.; Gunjan, D.; Das, P.; Dash, N.R.; Pandey, R.M.; Chauhan, S.S.; et al. Panel of serum miRNAs as potential non-invasive biomarkers for pancreatic ductal adenocarcinoma. Sci. Rep. 2021, 11, 2824. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yoo, D.; Lee, H.S.; Lee, K.J.; Park, S.B.; Kim, C.; Jo, J.H.; Jung, D.E.; Song, S.Y. Identification of potential biomarkers for diagnosis of pancreatic and biliary tract cancers by sequencing of serum microRNAs. BMC Med. Genom. 2019, 12, 62. [Google Scholar] [CrossRef]
- Hussein, N.A.E.M.; Kholy, Z.A.E.; Anwar, M.M.; Ahmad, M.A.; Ahmad, S.M. Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer. J. Cancer Res. Clin. Oncol. 2017, 143, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Yuan, Y.; Zhang, C.; Zhang, C.; Yao, W.; Wang, C.; Liu, R.; Ba, Y. Identification of Circulating MiR-25 as a Potential Biomarker for Pancreatic Cancer Diagnosis. Cell. Physiol. Biochem. 2016, 39, 1716–1722. [Google Scholar] [CrossRef]
- Gong, Y.; Song, L.; Ou, L.; Lu, Y.Y.; Huang, X.; Zeng, Q. Diagnostic and Prognostic Performance of MicroRNA-25, Carbohydrate Antigen 19-9, Carcinoembryonic Antigen, and Carbohydrate Antigen 125 in Pancreatic Ductal Adenocarcinoma. Iran J. Med. Sci. 2023, 48, 401–413. [Google Scholar] [CrossRef]
- Dittmar, R.L.; Liu, S.; Tai, M.C.; Rajapakshe, K.; Huang, Y.; Longton, G.; DeCapite, C.; Hurd, M.W.; Paris, P.L.; Kirkwood, K.S.; et al. Plasma miRNA Biomarkers in Limited Volume Samples for Detection of Early-stage Pancreatic Cancer. Cancer Prev. Res. 2021, 14, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Ishige, F.; Hoshino, I.; Iwatate, Y.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Nagase, H.; Takayama, W. MIR1246 in body fluids as a biomarker for pancreatic cancer. Sci. Rep. 2020, 10, 8723. [Google Scholar] [CrossRef] [PubMed]
- Shams, R.; Saberi, S.; Zali, M.; Sadeghi, A.; Ghafouri-Fard, S.; Aghdaei, H.A. Identification of potential microRNA panels for pancreatic cancer diagnosis using microarray datasets and bioinformatics methods. Sci. Rep. 2020, 10, 7559. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Gao, G.; Ge, Y.; Liu, J.; Cui, H.; Zheng, R.; Wang, J.; Wang, S.; Go, V.L.; Hu, S.; et al. Development of a Serum-Based MicroRNA Signature for Early Detection of Pancreatic Cancer: A Multicenter Cohort Study. Dig. Dis. Sci. 2024. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, J.; Wu, X.; Zhou, Y.; Tang, Y.; Zhu, Y.; Li, B.; Chen, X.; Yao, W. Contribution of a Circulating 2′-O-methylated MicroRNA Panel to the Diagnosis of Pancreatic Ductal Adenocarcinoma. J. Cancer 2024, 15, 1583–1592. [Google Scholar] [CrossRef]
- Seyed Salehi, A.; Parsa-Nikoo, N.; Roshan-Farzad, F.; Shams, R.; Fathi, M.; Asaszadeh Aghdaei, H.; Behmanesh, A. MicroRNA-125a-3p, -4530, and -92a as a Potential Circulating MicroRNA Panel for Noninvasive Pancreatic Cancer Diagnosis. Dis. Markers 2022, 2022, 8040419. [Google Scholar] [CrossRef]
- Xu, Y.F.; Hannafon, B.N.; Zhao, Y.D.; Postier, R.G.; Ding, W.Q. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017, 8, 77028–77040. [Google Scholar] [CrossRef]
- Xu, X.; Bhandari, K.; Xu, C.; Morris, K.; Ding, W.Q. miR-18a and miR-106a Signatures in Plasma Small EVs Are Promising Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 7215. [Google Scholar] [CrossRef]
- Pu, X.; Zhang, C.; Ding, G.; Gu, H.; Lv, Y.; Shen, T.; Pang, T.; Cao, L.; Jia, S. Diagnostic plasma small extracellular vesicles miRNA signatures for pancreatic cancer using machine learning methods. Transl. Oncol. 2024, 40, 101847. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Sugimoto, K.; Tameda, M.; Inagaki, Y.; Ikejiri, M.; Inoue, H.; Usui, M.; Ito, M.; Takei, Y. miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol. Lett. 2020, 19, 2677–2684. [Google Scholar] [CrossRef]
- Machida, T.; Tomofuji, T.; Maruyama, T.; Yoneda, T.; Ekuni, D.; Azuma, T.; Miyai, H.; Mizuno, H.; Kato, H.; Tsutsumi, K.; et al. miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol. Rep. 2016, 36, 2375–2381. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Wang, Y.; Wang, X. Blood-Derived microRNAs for Pancreatic Cancer Diagnosis: A Narrative Review and Meta-Analysis. Front. Physiol. 2018, 9, 685. [Google Scholar] [CrossRef]
- Harada, T.; Uemura, K.; Sumiyoshi, T.; Shintakuya, R.; Okada, K.; Hara, T.; Takahashi, S.; Hiyama, E. Increased plasma miR-370-3p expression in poor-outcome patients with pancreatic ductal adenocarcinoma. Pancreatology 2023, 23, 996–1002. [Google Scholar] [CrossRef]
- Caputo, C.; Falco, M.; Grimaldi, A.; Lombardi, A.; Miceli, C.C.; Cocule, M.; Montella, M.; Pompella, L.; Tirino, G.; Campione, S.; et al. Identification of Tissue miRNA Signatures for Pancreatic Ductal Adenocarcinoma. Cancers 2024, 16, 824. [Google Scholar] [CrossRef]
- Benke, M.; Zeold, A.; Kittel, A.; Khamari, D.; Hritz, I.; Horvath, M.; Keczer, B.; Borka, K.; Szucs, A.; Wiener, Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci. Rep. 2023, 13, 19820. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Xue, W.; Fang, Y.; Chen, X.; Xu, L.; Zhang, L.; Guan, K.; Pan, J.; Zheng, L.; et al. ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p. Cell Death Dis. 2020, 11, 692. [Google Scholar] [CrossRef]
- Ma, G.; Li, G.; Fan, W.; Xu, Y.; Song, S.; Guo, K.; Liu, Z. Circ-0005105 activates COL11A1 by targeting miR-20a-3p to promote pancreatic ductal adenocarcinoma progression. Cell Death Dis. 2021, 12, 656. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Wang, L.; Li, X.; Feng, D.; Liu, M.; Li, J.; Cheng, M.; Song, N.; Yang, X.; et al. Circular RNA hsa_circ_0007367 promotes the progression of pancreatic ductal adenocarcinoma by sponging miR-6820-3p and upregulating YAP1 expression. Cell Death Dis. 2022, 13, 736. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, X.; Ni, J.; Shen, L.; Cai, M.; Jiang, D. Gain of microRNA-103 triggers metastatic behavior by targeting ubiquitin specific peptidase 10 in pancreatic cancer. Int. J. Clin. Exp. Pathol. 2019, 12, 1214–1223. [Google Scholar]
- Wei, X.; Wang, W.; Wang, L.; Zhang, Y.; Zhang, X.; Chen, M.; Wang, F.; Yu, J.; Ma, Y.; Sun, G. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 2016, 5, 693–702. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, S.; Zhu, Z.; Yu, L.; Ren, Y.; Jiang, M.; Weng, J.; Li, B. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis. 2018, 9, 1157. [Google Scholar] [CrossRef]
- Shang, D.; Xie, C.; Hu, J.; Tan, J.; Yuan, Y.; Liu, Z.; Yang, Z. Pancreatic cancer cell-derived exosomal microRNA-27a promotes angiogenesis of human microvascular endothelial cells in pancreatic cancer via BTG2. J. Cell. Mol. Med. 2020, 24, 588–604. [Google Scholar] [CrossRef]
- Guo, S.; Fesler, A.; Huang, W.; Wang, Y.; Yang, J.; Wang, X.; Zheng, Y.; Hwang, G.R.; Wang, H.; Ju, J. Functional Significance and Therapeutic Potential of miR-15a Mimic in Pancreatic Ductal Adenocarcinoma. Mol. Ther. Nucleic Acids 2020, 19, 228–239. [Google Scholar] [CrossRef]
- Khan, S.; Ebeling, M.C.; Zaman, M.S.; Sikander, M.; Yallapu, M.M.; Chauhan, N.; Yacoubian, A.M.; Behrman, S.W.; Zafar, N.; Kumar, D.; et al. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 2014, 5, 7599–7609. [Google Scholar] [CrossRef]
- Chen, S.; Xu, J.; Su, Y.; Hua, L.; Feng, C.; Lin, Z.; Huang, H.; Li, Y. MicroRNA-145 suppresses epithelial to mesenchymal transition in pancreatic cancer cells by inhibiting TGF-beta signaling pathway. J. Cancer 2020, 11, 2716–2723. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Y.; Cheng, Y.S. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci. Rep. 2017, 7, 38232. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, X.; Peng, J.; Zhuang, Y.; Li, Y.; Qu, J.; Zhang, S.; Huang, F. CircMYOF triggers progression and facilitates glycolysis via the VEGFA/PI3K/AKT axis by absorbing miR-4739 in pancreatic ductal adenocarcinoma. Cell Death Discov. 2021, 7, 362. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, K.; Cui, J.; Xiong, J.; Wu, H.; Peng, T.; Guo, Y. Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J. Exp. Clin. Cancer Res. 2021, 40, 124. [Google Scholar] [CrossRef]
- Sun, X.J.; Liu, B.Y.; Yan, S.; Jiang, T.H.; Cheng, H.Q.; Jiang, H.S.; Cao, Y.; Mao, A.W. MicroRNA-29a Promotes Pancreatic Cancer Growth by Inhibiting Tristetraprolin. Cell Physiol. Biochem. 2015, 37, 707–718. [Google Scholar] [CrossRef]
- Yang, X.L.; Ma, Y.S.; Liu, Y.S.; Jiang, X.H.; Ding, H.; Shi, Y.; Jia, C.Y.; Lu, G.X.; Zhang, D.D.; Wang, H.M.; et al. microRNA-873 inhibits self-renewal and proliferation of pancreatic cancer stem cells through pleckstrin-2-dependent PI3K/AKT pathway. Cell Signal. 2021, 84, 110025. [Google Scholar] [CrossRef]
- Cui, J.; Chen, Y.; Chou, W.C.; Sun, L.; Chen, L.; Suo, J.; Ni, Z.; Zhang, M.; Kong, X.; Hoffman, L.L.; et al. An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 2011, 39, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shu, J. Circulating microRNA trafficking and regulation: Computational principles and practice. Brief. Bioinform. 2019, 21, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Shu, J.; Cui, J. A systematic approach to RNA-associated motif discovery. BMC Genom. 2018, 19, 146. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, S.; Simpson, R.J. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 2009, 9, 4997–5000. [Google Scholar] [CrossRef] [PubMed]
- Van Nostrand, E.L.; Freese, P.; Pratt, G.A.; Wang, X.; Wei, X.; Xiao, R.; Blue, S.M.; Chen, J.Y.; Cody, N.A.L.; Dominguez, D.; et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 2020, 583, 711–719. [Google Scholar] [CrossRef]
MiRNA(s) | Expression | Sample | Population | Quantification and Analytic Methods | Ref. |
---|---|---|---|---|---|
miR-483-3p | Up | Tissue | 107 PDAC patients and 22 controls | Microarray Mann–Whitney U test/Kruskal–Wallis test/ROC AUC (0.91) | [41] |
Serum | 67 PDAC patients and 22 controls | ||||
miR-1307 | Up | Tissue | 60 PDAC patients | High-throughput screening (HTS) Student’s t-test/ANOVA | [11] |
miR-21-5p, miR-23a-3p, miR-31-5p, miR-34c-5p, miR-93-3p, miR-135b-3p, miR-155-5p, miR-196b-5p, miR-203, miR-205-5p, miR-210, miR-222-3p, miR-451, miR-622 | Up | Tissue | 165 PDAC, 59 AC, 6 DC, 21 DCBDC, and 39 CP patients, and 35 controls | RT-PCR Lasso-classifier | [42] |
miR-122-5p, miR-130b-3p, miR-216b, miR-217, miR-375 | Down | ||||
miR-215-5p, miR-122-5p, miR-192-5p | Up | Tissue | 27 PDAC and 23 CP patients, and 10 controls | sRNA sequencing Mann–Whitney test/AUC (0.720–0.988) | [67] |
miR-30b-5p, miR-320b | Down | Serum | 50 PDAC and 50 CP patients, and 25 Controls | RT-PCR ANOVA/AUC (0.720–0.988) | |
mir-744-5p, mir-409-3p, mir-128-3p | Down | Serum | 24 PC and 10 BTC patients, and 21 controls | sRNA sequencing edgeR/KNN | [68] |
miR-22-3p, miR-642b-3p, miR-885-5p | Up | Plasma | 35 PDAC patients and 15 Controls | qRT-PCR Chi-square test/Fisher exact test/Mann–Whitney/Kruskal–Wallis tests /ROC AUC (0.85–0.91) | [69] |
miR-25 | Up | Serum | 80 PC patients and 91 controls | Mann–Whitney tests/Wilcoxon test | [10] |
303 PC patients and 600 controls | qRT-PCR ROC AUC (0.915) | [70] | |||
75 PDAC patients, 75 patients with benign lesions, and 100 controls | qRT-PCR Mann–Whitney test/ROC AUC (0.88) | [71] | |||
miR-34a-5p, miR-130a-3p, miR-222–3p | Up | Plasma | Discovery: 58 PDAC patients and 30 controls Validation: 78 PDAC patients and 43 controls | Abcam Fireplex-Oncology Pane Benjamini and Hochberg/Logistic regression/ROC AUC (0.70–0.77) | [72] |
miR-1246 | Up | Blood/urine | 41 PDAC patients and 30 controls | qRT-PCR Wilcoxon’s signed-rank test, Spearman’s rank correlation coefficient | [73] |
miR-5100, miR-22-3p, miR-4486, let-7b-5p | Up | Serum | Discovery: 107 PC patients and 19 controls Validation 1: 25 PC and 81 ICC patients Validation 2: 11 PC, 8 ICC patients, and 8 controls | Microarray/qRT-PCR ROC AUC (0.98) SVM/accuracy (0.93) | [59] |
miR-155-5p, miR-7154-5p, miR-661, miR-4703-5p | Down | ||||
[mir-125a-3p, mir-5100 and mir-642b-3p] * | - | Serum | Discovery: 342 PC patients and 329 controls Validation: 81 PC patients and 70 control | Microarray datasets from GEO, normalized by SAM Logistic regression/ROC AUC (0.95) | [74] |
[miR-132-3p, miR-30c-5p, miR-24-3p, miR-23a-3p] * | Up | Tissue | Discovery: 200 PC patients and 100 controls | Microarray/RT-PCR Limma/t-test/Chi-squared test/ROC AUC (0.971) | [75] |
Serum | Training: 285 PDAC and 45 CP patients, 197 controls, and 108 patients with other pancreatic diseases Validation: 286 PDAC and 45 CP patients, 198 controls, and 109 patients with other pancreatic diseases | RT-PCR Student’s t-test/ANOVA/multiple linear regression | |||
2′-O-methylated (2′OMe) [miR-28-3p, miR-143-3p, miR-151a-3p] * | Up | Plasma | 10 PDAC patients and 10 controls | sRNA sequencing Multivariate analysis/ROC AUC (0.928) | [76] |
[miR-125a-3p, miR-4530, miR-92a-2-5p] | Up | Plasma | 77 PC patients and 65 controls | qRT-PCR Student’s t-test/ANOVA/Chi-square test ROC AUC (0.86) | [77] |
miR-1246, miR-196a | Up | Plasma exosome | 15 PDAC patients and 15 controls | qRT-PCR Student’s t-test/Wilcoxon/Mann–Whitney/ROC AUC (0.71–0.81) | [78] |
mi-191, miR-21, miR-451a | Up | Serum exosomes | 32 PC and 29 IPMN patients, and 22 controls | qRT-PCR Mann–Whitney test/ROC AUC (0.76–0.83) | [64] |
miR-21, miR-30c, miR-106b, miR-20a, miR-181a, miR-10b | Up | Serum exosome | 29 PDAC and 11 CP patients, and 6 controls | qRT-PCR ANOVA | [52] |
miR-483, miR-122 | Down | ||||
miR-18a, miR-106a | Up | Plasma EV | 20 PDAC patients and 20 controls | sRNA sequencing/RT-PCR ANOVA/Student’s t-test | [79] |
miR-664a-3p | Up | Plasma EV | 58 PDAC, 12 CP, and 12 BPT patients, and 20 controls | Student’s t-test/FDR/LASSO regression, RF, and SVM-RFE | [80] |
miR-3940-5p, miR-8069 | - | Urine exosome | 43 PDAC and12 CP patients, and 25 controls | PCR Fisher exact test/Wilcoxon rank-sum test | [81] |
[miR-1246, miR-4644] * | Up | Saliva exosome | 12 PTC patients and 13 controls | qRT-PCR ROC AUC (0.833) | [82] |
miR-20a | Up | Duodenal fluid EVs | 27 PDAC patients and 7 controls | qRT-PCR Wilcoxon signed-rank test/ROC AUC (0.88) | [57] |
miR-21, miR-155 (with pancreatic juice cytology) | Up | Pancreatic juice exosome | 27 PDAC patients and 8 CP patients | qRT-PCR Wilcoxon signed-rank test/ROC AUC (0.89–0.90) Accuracy (91%) | [60] |
miR-21-5p (with human satellite II RNA) | Up | Serum | Discovery: 30 PDAC patients and 30 controls Validation: 35 PDAC patients and 40 controls | Microarray/PCR Welch’s t-test/Fisher’s exact test/ROC AUC (0.90) | [56] |
MiRNA(s) | Expression * | Sample | Population | Quantification and Analytic Methods | Ref. |
---|---|---|---|---|---|
miR-451a | Up/Positively correlated | Plasma | Discovery: 6 PDAC patients (and 3 controls) Validation: 50 PDAC | Microarray Cox proportional hazards regression | [47] |
miR-221-3p | Up/Positively correlated | Plasma | 87 PC patients (and 48 controls) | qRT-PCR Chi-square test/Fisher’s exact probability test/ROC AUC | [29] |
miR-21 | Up/Positively correlated | Serum exosome | 32 PC patients (and 22 controls) | sRNA sequencing/qRT-PCR Kaplan–Meier with a log-rank test and Cox proportional-hazards regression model | [64] |
miR-370-3p | -/Positively correlated | Plasma | Discovery: 7 PDAC patients Validation: 113 PDAC patients | sRNA sequencing/qRT-PCR multivariate analysis | [84] |
miR-31-5p, miR-205-5p | Up/Positively correlated | Tissue | Discovery: 58 PDAC patients Validation: 179 PDAC patients (TCGA) | PCR array/RT-qPCR Student’s t-test/ROC | [85] |
miR-200b | -/Positively correlated | Cyst fluid EV | Discovery: 6 M-PCN and 7 non-M-PCN patients Validation: 24 M-PCN and 30 non-M-PCN patients | PCR Mann–Whitney U-test/Chi-square test | [86] |
miRNA-132 | Down/Negatively correlated | Tissue | Discovery: 50 PDAC patients (and 50 controls) Validation: 179 PDAC patients (TCGA) | qRT-PCR Chi-square test/Fisher exact test/Cox proportional hazards regression | [30] |
miR-7 | Down/Negatively correlated | Tissue | Discovery: 8 PDAC patients (and 3 controls) Validation: 179 PDAC patients (TCGA) | qRT-PCR microarray Student’s t-test/Chi-square test/Kaplan–Meier/Spearman’s rank correlation | [32] |
miR-26a-5p | Down/Negatively correlated | Tissue | 96 PDAC patients | qRT-PCR Student’s t-test/Chi-square test/Kaplan–Meier | [87] |
miR-424, miR-3613, miR-4772, miR-126 | -/- | Tissue | 179 PDAC patients (TCGA) 45 PDAC patients (GSE28735) | Public sequencing and microarray data Cox proportional hazards regression | [53] |
let-7g, miR-29a-5p, miR-34a-5p, miR-125a-3p, miR-146a-5p, miR-187, miR-205-5p, miR-212-3p, miR-222-5p, miR-450b-5p | -/- | Tissue | 103 PDAC patients and 54 A-AC | PCR logistic regression/Kaplan–Meier/Cox proportional hazards regression | [42] |
miR-574-5p, miR-1244, miR-145, miR-328, miR-26b, and miR-4321 | -/- | Tissue | 178 PDAC patients (TCGA) | Public sequencing data Pearson Correlation Analysis/Cox proportional hazards regression | [54] |
miR-20a-3p (with circ-0005105/COL11A1) | Down/- | Tissue | 170 PC patients | sRNA sequencing DESeq2/ANOVA | [88] |
miR-6820-3p (with circ_0007367) | Down/- | Tissue | 128 PDAC patients | qRT-PCR Kaplan–Meier method and log-rank test/Pearson correlation coefficient | [89] |
Category | Reported Biomarkers | Analytical Methods |
---|---|---|
Dataset and analysis | Tissue (TCGA-PAAD, GSE24279, GSE119974) and serum (GSE59856, GSE85589, GSE109319) Differential expression (DE) analysis by two different methods | Serum GSE59856 dataset for diagnostic marker identification PCA used for sample distribution visualization, Limma for DE analysis, and different machine learning methods for signature identification |
Key observations | Divergent DE miRNAs across different datasets Few common DE miRNAs between tissue and serum groups | Best signatures vary with different methods, exhibiting varying levels of classification power |
Underlying Challenges | Discrepancies introduced by methodology, patient cohort, and cancer heterogeneity | Feature selection complexity and dataset limitations Balancing discriminatory power and generalizability Biological interpretation of miRNA biomarkers |
Recommendation | Standardization of quantification and analytical methodologies Exploration of clinical metadata Investigation of composite biomarkers Integration of functional analysis | Employment of robust feature selection Acquisition of large and well-curated datasets Design of models accommodating small datasets and variability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madadjim, R.; An, T.; Cui, J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 3914. https://doi.org/10.3390/ijms25073914
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. International Journal of Molecular Sciences. 2024; 25(7):3914. https://doi.org/10.3390/ijms25073914
Chicago/Turabian StyleMadadjim, Roland, Thuy An, and Juan Cui. 2024. "MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications" International Journal of Molecular Sciences 25, no. 7: 3914. https://doi.org/10.3390/ijms25073914