Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation
Abstract
1. Introduction
2. Materials and Methods
2.1. Focused Questions
2.2. Eligibility Criteria
3. Strategies Based on Modifications of Preservative Solutions with Antioxidants
3.1. Enzymatic Antioxidant
3.2. Non-Enzymatic Antioxidants
3.2.1. Low-Molecular-Weight Antioxidant
3.2.2. Mitochondria-Targeted Antioxidants
3.2.3. Polyphenols
3.2.4. Bioactive Metabolites from Marine Algae
3.2.5. Vitamins and Vitamin-like Substances
3.2.6. Drugs
4. Perfusion Methods Considerations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilzer, M.; Gerbes, A.L. Preservation injury of the liver: Mechanisms and novel therapeutic strategies. J. Hepatol. 2000, 32, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia–reperfusion injury in liver transplantation—From bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver Ischemia and Reperfusion Injury: New Insights into Mechanisms of Innate-Adaptive Immune-Mediated Tissue Inflammation. Arab. Archaeol. Epigr. 2011, 11, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.-L.; Cai, Y.; Chen, Y.-H.; Wang, Y.; Jiang, X.-X.; Ye, L.-P.; Li, S.-W. Novel Targets and Therapeutic Strategies to Protect Against Hepatic Ischemia Reperfusion Injury. Front. Med. 2022, 8, 757336. [Google Scholar] [CrossRef]
- Marzi, I.; Rucker, M.; Walcher, F.; Takei, Y. Endothelin-1 is involved in hepatic sinusoidal vasoconstriction after ischemia and reperfusion. Transpl. Int. 1994, 7 (Suppl. 1), S503–S506. [Google Scholar] [CrossRef] [PubMed]
- Theruvath, T.P.; Snoddy, M.C.; Zhong, Z.; Lemasters, J.J. Mitochondrial permeability transition in liver ischemia and reperfusion: Role of c-Jun N-terminal kinase 2. Transplantation 2008, 85, 1500–1504. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, T.; Zhang, C.; Xu, J.; Xue, Z.; Busuttil, R.W.; Xu, N.; Xia, Q.; Kupiec-Weglinski, J.W.; Ji, H. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J. Hepatol. 2019, 71, 719–730. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Zhang, F.; Li, L. Melatonin and its protective role in attenuating warm or cold hepatic ischaemia/reperfusion injury. Cell. Prolif. 2021, 54, e13021. [Google Scholar] [CrossRef]
- Del Turco, S.; Cappello, V.; Tapeinos, C.; Moscardini, A.; Sabatino, L.; Battaglini, M.; Melandro, F.; Torri, F.; Martinelli, C.; Babboni, S.; et al. Cerium oxide nanoparticles administration during machine perfusion of discarded human livers: A pilot study. Liver Transpl. 2022, 28, 1173–1185. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Tips for optimizing organ preservation solutions. Acta Biochim. Pol. 2018, 65, 9–15. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Dolińska, B. Pharmacological benefits and risk of using hormones in organ perfusion and preservation solutions in the aspect of minimizing hepatic ischemia-reperfusion injury during storage. BioMed Res. Int. 2019, 2019, 6467134. [Google Scholar] [CrossRef] [PubMed]
- Ostróżka-Cieślik, A.; Dolińska, B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020, 25, 2185. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A. The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int. J. Mol. Sci. 2022, 23, 3141. [Google Scholar] [CrossRef]
- Mangus, A.E.; Kubal, C.A.; Ekser, B.; Mihaylov, P.; Lutz, A.J.; Fridell, J.A.; Mangus, R.S. Deceased Donor Flush Volume Similar for Histidine-Tryptophan-Ketoglutarate and University of Wisconsin at a Single US Organ Procurement Organization: Adult and Pediatric Data. Transplant. Proc. 2023, 55, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Lauschke, H.; Kötting, M.; Akbar, S.; Minor, T. Use of Taurine as Antioxidant in Resuscitating Livers from Non-Heart-Beating Donors by Gaseous Oxygen Persufflation. J. Investig. Surg. 2003, 16, 7–11. [Google Scholar] [CrossRef]
- Minor, T.; Yamaguchi, T.; Isselhard, W. Effects of Taurine on Liver Preservation in UW Solution with Consecutive Ischemic Rewarming in the Isolated Perfused Rat Liver. Transpl. Int. 1995, 8, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; Company-Marin, I.; Folch-Puy, E.; Roselló-Catafau, J.; Panisello-Rosello, A.; Carbonell, T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants 2022, 11, 158. [Google Scholar] [CrossRef]
- Quintana, A.; Rodriguez, J.; Scandizzi, A.; Guibert, E. Effect of S- nitrosoglutathione (GSNO) added to the University of Wisconsin solution (UW): I) Morphological alteration during cold preservation/reperfusion of rat liver. Int. J. Surg. Investig. 2001, 2, 401–411. [Google Scholar]
- Quintana, A.B.; Lenzi, H.L.; Almada, L.L.; Scandizzi, A.L.; Furno, G.; Rodriguez, J.V.; Guibert, E.E. Effect of S-nitrosoglutathione (GSNO) added to the University of Wisconsin solution (UW): II) Functional response to cold preservation/reperfusion of rat liver. Ann. Hepatol. 2002, 1, 183–191. [Google Scholar] [CrossRef]
- Quintana, A.B.; Rodriguez, J.V.; Lenzi, H.L.; Guibert, E.E. Effect of S-nitrosoglutathione (GSNO) added to the University of Wisconsin Solution (UW): Mast cell degranulation during normothermic reperfusion. Ann. Hepatol. 2004, 3, 113. [Google Scholar] [CrossRef]
- Minor, T.; Kötting, M. Gaseous oxygen for hypothermic preservation of predamaged liver grafts: Fuel to cellular homeostasis or radical tissue alteration? Cryobiology 2000, 40, 182–186. [Google Scholar] [CrossRef]
- Srinivasan, P.K.; Yagi, S.; Nagai, K.; Afify, M.; Hata, K.; Uemoto, S.; Tolba, R.H. Impact of oxygen free radicals in rat partial liver transplantation. J. Surg. Res. 2014, 191, 469–475. [Google Scholar] [CrossRef]
- Scherer de Fraga, R.; Camacho, V.R.; Souza, G.F.; Cerski, C.T.; de Oliveira, J.R.; de Oliveira, M.G.; Alvares-da-Silva, M.R. S-nitroso-n-acetylcysteine: A promising drug for early ischemia/reperfusion injury in rat liver. Transpl. Proc. 2010, 42, 4491–4495. [Google Scholar] [CrossRef] [PubMed]
- Kerkweg, U.; Li, T.; de Groot, H.; Rauen, U. Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: The central role of chelatable iron. Hepatology 2002, 35, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Lee, S.H.; Korneszczuk, K.; Culberson, C.R.; Southard, J.H.; Berthiaume, F.; Zhang, J.X.; Clemens, M.G.; Lee, C.Y. Improved preservation of warm ischemic livers by hypothermic machine perfusion with supplemented University of Wisconsin solution. J. Investig. Surg. 2008, 21, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, P.K.; Rankin, M.A.; Southard, J.H. Cold storage sensitizes hepatocytes to oxidative stress injury. Transpl. Int. 1997, 10, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wohlschlaeger, J.; de Groot, H.; Rauen, U. Evaluation of a modified HTK solution containing the new iron chelator LK 614 in an isolated rat liver perfusion model. J. Investig. Surg. Off. J. Acad. Surg. Res. 2009, 22, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, J.; Hirner, A.; Rauen, U.; Minor, T. Use of a new modified HTK solution for machine preservation of marginal liver grafts. J. Surg. Res. 2010, 160, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Cherkashina, D.V.; Sosimchik, I.A.; Semenchenko, O.A.; Volina, V.V.; Petrenko, A.Y. Mitochondria-targeted plastoquinone derivative SkQ(1) decreases ischemia-reperfusion injury during liver hypothermic storage for transplantation. Biochemistry 2011, 76, 1022–1029. [Google Scholar]
- Wieland, E.; Schütz, E.; Armstrong, V.W.; Küthe, F.; Heller, C.; Oellerich, M. Idebenone protects hepatic microsomes against oxygen radical-mediated damage in organ preservation solutions. Transplantation 1995, 60, 444–450. [Google Scholar] [CrossRef]
- Kondo, Y.; Ishitsuka, Y.; Kadowaki, D.; Fukumoto, Y.; Miyamoto, Y.; Irikura, M.; Hirata, S.; Sato, K.; Maruyama, T.; Hamasaki, N.; et al. Phosphoenolpyruvate, a glycolytic intermediate, as a cytoprotectant and antioxidant in ex-vivo cold-preserved mouse liver: A potential application for organ preservation. J. Pharm. Pharmacol. 2013, 65, 390–401. [Google Scholar] [CrossRef]
- Johnston, T.D.; Reddy, K.S.; Wu, G.; Chien, C.; Nagabhusan, M.; Ranjan, D. Organ preservation by curcumin+Euro-Collins is equivalent to univ. of Wisconsin solution in both in-vivo and ex-vivo models. Transplantation 1999, 67, S652. [Google Scholar] [CrossRef]
- Chen, C.; Johnston, T.D.; Wu, G.; Ranjan, D. Curcumin has potent liver preservation properties in an isolated perfusion model. Transplantation 2006, 82, 931–937. [Google Scholar] [CrossRef]
- McNally, S.J.; Harrison, E.M.; Ross, J.A.; Garden, O.J.; Wigmore, S.J. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 2006, 81, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Kato, F.; Gochi, M.; Kawagoe, T.; Yotsuya, S.; Matsuno, N. The protective effects of quercetin and sucrose on cold preservation injury in vitro and in vivo. Organ Biol. 2020, 27, 207–215. [Google Scholar]
- Ligeret, H.; Brault, A.; Vallerand, D.; Haddad, Y.; Haddad, P.S. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 2008, 115, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.H.; Wang, J.C.; Lui, W.Y.; Wu, C.W.; Hong, C.Y. Effect of magnolol on in vitro mitochondrial lipid peroxidation and isolated cold-preserved warm-reperfused rat livers. J. Surg. Res. 1999, 82, 11–16. [Google Scholar] [CrossRef]
- Gdara, N.B.; Belgacem, A.; Khemiri, I.; Mannai, S.; Bitri, L. Protective Effects of Phycocyanin on Ischemia/Reperfusion Liver Injuries. Biomed. Pharmacother. 2018, 102, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Slim, C.; Zaouali, M.A.; Nassrallah, H.; Ammar, H.H.; Majdoub, H.; Bouraoui, A.; Abdennebi, H.B. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int. J. Biol. Macromol. 2020, 155, 498–507. [Google Scholar] [CrossRef]
- Bae, C.; Pichardo, E.M.; Huang, H.; Henry, S.D.; Guarrera, J.V. The benefits of hypothermic machine perfusion are enhanced with Vasosol and α-tocopherol in rodent donation after cardiac death livers. Transplant. Proc. 2014, 46, 1560–1566. [Google Scholar] [CrossRef]
- Tolba, R.H.; Pütz, U.; Decker, D.; Dombrowski, F.; Lauschke, H. L-carnitine ameliorates abnormal vulnerability of steatotic rat livers to cold ischemic preservation. Transplantation 2003, 76, 1681–1686. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Gunal, O.; Sahin, I.; Aslaner, A.; Yildirim, U.; Yavuz, O. Does l-carnitine have any effect on cold preservation injury of non-fatty liver in the University of Wisconsin solution? Hepatol. Res. 2007, 37, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Rosello-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodes, J.; et al. Addition of carvedilol to university wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transplant. 2010, 16, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Casillas-Ramirez, A.; Xaus, C.; Serafin, A.; Rosello-Catafau, J.; Peralta, C. Trimetazidine: Is it a promising drug for use in steatotic grafts? World J. Gastroenterol. 2006, 12, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Massip-Salcedo, M.; Fernandez-Monteiro, I.; Xaus, C.; Bartrons, R.; Boillot, O.; Rosello-Catafau, J.; Peralta, C. Addition of adenosine monophosphate-activated protein kinase activators to university of wisconsin solution: A way of protecting rat steatotic livers. Liver Transplant. 2007, 13, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Ben Mosbah, I.; Boncompagni, E.; Ben Abdennebi, H.; Mitjavila, M.T.; Bartrons, R.; Freitas, I.; Rimola, A.; Rosello-Catafau, J. Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: Role of nitric oxide. World J. Gastroenterol. 2010, 16, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Boncompagni, E.; Reiter, R.J.; Bejaoui, M.; Freitas, I.; Pantazi, E.; Folch-Puy, E.; Abdennebi, H.B.; Garcia-Gil, F.A.; Rosello-Catafau, J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: A role for melatonin and trimetazidine cocktail. J. Pineal Res. 2013, 55, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Panisello, A.; Lopez, A.; Castro, C.; Folch, E.; Carbonell, T.; Rolo, A.; Palmeira, C.M.; Garcia-Gil, A.; Adam, R.; et al. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int. J. Mol. Sci. 2017, 18, 591. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Panisello, A.; Lopez, A.; Folch, E.; Castro-Benitez, C.; Adam, R.; Rosello-Catafau, J. Cross-talk between sirtuin 1 and high-mobility box 1 in steatotic liver graft preservation. Transplant. Proc. 2017, 49, 765–769. [Google Scholar] [CrossRef]
- Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Folch-Puy, E.; Ben Abdennebi, H.; Varela, A.T.; Rolo, A.P.; Palmeira, C.M.; Rosello-Catafau, J. Sirtuin 1 in rat orthotopic liver transplantation: An igl-1 preservation solution approach. World J. Gastroenterol. 2015, 21, 1765–1774. [Google Scholar] [CrossRef]
- Kozaki, K.; Egawa, H.; Bermudez, L.; Keefe, E.B.; So, S.K.; Esquivel, C.O. Effects of pentoxifylline pretreatment on Kupffer cells in rat liver transplantation. Hepatology 1995, 21, 1079–1082. [Google Scholar] [CrossRef]
- Arnault, I.; Bao, Y.M.; Sebagh, M.; Anjo, A.; Dimicoli, J.L.; Lemoine, A.; Delvart, V.; Adam, R. Beneficial effect of pentoxifylline on microvesicular steatotic livers submitted to a prolonged cold ischemia. Transplantation 2003, 76, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Asong-Fontem, N.; Panisello-Rosello, A.; Lopez, A.; Imai, K.; Zal, F.; Delpy, E.; Rosello-Catafau, J.; Adam, R. A Novel Oxygen Carrier (M101) Attenuates Ischemia-Reperfusion Injuries during Static Cold Storage in Steatotic Livers. Int. J. Mol. Sci. 2021, 22, 8542. [Google Scholar] [CrossRef] [PubMed]
- Hide, D.; Ortega-Ribera, M.; Fernández-Iglesias, A.; Fondevila, C.; Salvadó, M.J.; Arola, L.; García-Pagán, J.C.; Mancini, A.; Bosch, J.; Gracia-Sancho, J. A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury. Clin. Sci. 2014, 127, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, M.; Nikeghbalian, S.; Ghaffaripour, S.; Bahreini, A.; Shafiee, M.; Rashidi, M.; Rajabnejad, Y. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant. Exp. Clin. Transplant. 2017, 15, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Aghdaie, H.M.; Azarpira, N.; Esfandiari, E.; Kaviani, M.; Golbabapour, S.; Shamsaeefar, A.; Kazemi, K.; Dehghani, M.; Bahador, A.; Salahi, H.; et al. The Effects of Cold Preservation Solutions Supplemented with UDCA and α-Lipoic Acid on the Viability and Function of Isolated Human Hepatocytes. Int. J. Organ Transplant. Med. 2019, 10, 108–113. [Google Scholar]
- Otani, M.; Ishii, D.; Iwata, H.; Satake, Y.; Okada, Y.; Toriumi, A.; Imamura, M.; Nishikawa, Y.; Matsuno, N. Preservation Efficacy of a Quercetin and Sucrose Solution for Warm Ischemically Damaged Porcine Liver Grafts. Transplant. Proc. 2023, 55, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Qing, D.K.; Dong, J.H.; Han, B.L.; Chen, X.R. Cold preservation of pig liver grafts with warm ischemia and pentoxifylline-UW solution. Arch. Med. Res. 2006, 37, 449–455. [Google Scholar] [CrossRef]
- Alix, P.; Val-Laillet, D.; Turlin, B.; Mosbah, I.B.; Burel, A.; Bobillier, E.; Bendavid, C.; Delpy, E.; Zal, F.; Corlu, A. Adding the Oxygen Carrier M101 to a Cold-Storage Solution could be an Alternative to HOPE for Liver Graft Preservation. JHEP Rep. 2020, 2, 100119. [Google Scholar] [CrossRef]
- Li, C.; Zhou, H.M. The role of manganese superoxide dismutase in inflammation defense. Enzym. Res. 2011, 2011, 387176. [Google Scholar] [CrossRef]
- Liu, M.; Sun, X.; Chen, B.; Dai, R.; Xi, Z.; Xu, H. Insights into manganese superoxide dismutase and human diseases. Int. J. Mol. Sci. 2022, 23, 15893. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, M.; Rodriguez-Vilarrupla, A.; Gracia-Sancho, J.; Rosado, E.; Mancini, A.; Bosch, J.; Garcia-Pagán, J.C. Recombinant Human Manganese Superoxide Dismutase Reduces Liver Fibrosis and Portal Pressure in CCl4-Cirrhotic Rats. J. Hepatol. 2013, 58, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, M. Cytoprotection by the osmolytes betaine and taurine in ischemia- reoxygenation injury in the perfused rat liver. Hepatology 1997, 26, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Redmond, H.P.; Wang, J.H.; Bouchier-Hayes, D. Taurine attenuates nitric oxide- and reactive oxygen intermediate-dependent hepatocyte injury. Arch. Surg. 1996, 131, 1280–1287. [Google Scholar] [CrossRef]
- Huxtable, R. Physiological action of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef]
- Niki, E. Antioxidant Activity: Are We Measuring It Correctly? Nutrition 2002, 18, 524–525. [Google Scholar] [CrossRef]
- Meister, A. Selective modification of glutathione metabolism. Science 1983, 220, 472–477. [Google Scholar] [CrossRef]
- Zasadowski, A.; Wysocki, A.; Barski, D.; Spodniewska, A. Some aspects of reactive oxygen species [ROS] and antioxidative system agents action. Short review. Acta Toxicol. 2004, 12, 5–19. [Google Scholar]
- Zois, C.D.; Baltayiannis, G.H.; Karayiannis, P.; Tsianos, E.V. Systematic review: Hepatic fibrosis-regression with therapy. Aliment. Pharmacol. Ther. 2008, 28, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, K.; Xia, Y.; Dai, W.; Wang, F.; Shen, M.; Cheng, P.; Wang, J.; Lu, J.; Zhang, Y.; et al. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway. PLoS ONE 2014, 9, e108855. [Google Scholar] [CrossRef]
- Tepel, M.; van der Giet, M.; Schwarzfeld, C.; Laufer, U.; Liermann, D.; Zidek, W. Prevention of Radiographic-Contrast-Agent–Induced Reductions in Renal Function by Acetylcysteine. N. Engl. J. Med. 2000, 343, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Ellis, A.E.; McPeake, J.; Heaton, N.; Wendon, J.A.; Williams, R. N-acetylcysteine improves indocyanine green extraction and oxygen transport during hepatic dysfunction. Crit. Care Med. 1997, 25, 236–242. [Google Scholar] [CrossRef]
- Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009, 20, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev. 2011, 2011, 809696. [Google Scholar] [CrossRef]
- Weniger, M.; Reinelt, L.; Neumann, J.; Holdt, L.; Ilmer, M.; Renz, B.; Hartwig, W.; Werner, J.; Bazhin, A.V.; D’Haese, J.G. The Analgesic Effect of the Mitochondria-Targeted Antioxidant SkQ1 in Pancreatic Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 4650489. [Google Scholar] [CrossRef] [PubMed]
- Jaber, S.M.; Ge, S.X.; Milstein, J.L.; VanRyzin, J.W.; Waddell, J.; Polster, B.M. Idebenone Has Distinct Effects on Mitochondrial Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J. Neurosci. 2020, 40, 4609–4619. [Google Scholar] [CrossRef]
- Saiki, S.; Yamaguchi, K.; Chijiiwa, K.; Shimizu, S.; Hamasaki, N.; Tanaka, M. Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats. J. Surg. Res. 1997, 73, 59–65. [Google Scholar] [CrossRef]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef]
- Solmonson, A.; DeBerardinis, R.J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 2018, 293, 7522–7530. [Google Scholar] [CrossRef]
- Khalifa, E.A.; Nabil Ahmed, A.; Hashem, K.S.; Allah, A.G. Therapeutic effects of the combination of alpha-lipoic acid (ala) and coenzyme q10 (coq10) on cisplatin-induced nephrotoxicity. Int. J. Inflam. 2020, 2020, 5369797. [Google Scholar] [CrossRef]
- Kotb, M.A. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode. Int. J. Mol. Sci. 2012, 13, 8882–8914. [Google Scholar] [CrossRef]
- Horváth, T.; Jász, D.K.; Baráth, B.; Poles, M.Z.; Boros, M.; Hartmann, P. Mitochondrial Consequences of Organ Preservation Techniques during Liver Transplantation. Int. J. Mol. Sci. 2021, 22, 2816. [Google Scholar] [CrossRef]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Bavarsad, K.; Riahi, M.M.; Saadat, S.; Barreto, G.; Atkin, S.L.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the liver. Pharmacol. Res. 2019, 141, 53–62. [Google Scholar] [CrossRef]
- Zabihi, N.A.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr. Pharm. Des. 2017, 23, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of Non-alcoholic Fatty Liver Disease with Curcumin: A Randomized Placebo-controlled Trial. Phytother. Res. 2016, 30, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Fuller, B.; Dijk, S.; Butler, P.; Hoang, V.; Davidson, B. Pro-inflammatory agents accumulate during donor liver cold preservation: A study on increased adhesion molecule expression and abrogation by curcumin in cultured endothelial cells. Cryobiology 2003, 46, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Ito, H.; Kamei, K.; Iwamoto, I. Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 1998, 3, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Scapagnini, G.; Foresti, R.; Calabrese, V.; Giuffrida Stella, A.M.; Green, C.J.; Motterlini, R. Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 2002, 61, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Surai, P.F. Silymarin as a vitagene modulator: Effects on mitochondria integrity in stress conditions. In Molecular Nutrition and Mitochondria; Academic Press: New York, NY, USA, 2023; pp. 535–559. [Google Scholar]
- Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef]
- Zheng, W.; Feng, Z.; Lou, Y.; Chen, C.; Zhang, C.; Tao, Z.; Li, H.; Cheng, L.; Ying, X. Silibinin protects against osteoarthritis through inhibiting the inflammatory response and cartilage matrix degradation in vitro and in vivo. Oncotarget 2017, 8, 99649–99665. [Google Scholar] [CrossRef]
- Szałabska-Rąpała, K.; Borymska, W.; Kaczmarczyk-Sedlak, I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review. Int. J. Mol. Sci. 2021, 22, 10050. [Google Scholar] [CrossRef]
- Lo, Y.C.; Teng, C.M.; Chen, C.F.; Chen, C.C.; Hong, C.Y. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem. Pharmacol. 1994, 47, 549–553. [Google Scholar] [CrossRef]
- Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, D.; Barros, A.I.R.N.A. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals 2023, 16, 592. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, M.; Cao, Q.; Ji, A.; Liang, H.; Song, S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar. Drugs 2019, 17, 183. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-Y.; Yang, W.-C.; Lin, C.-F.; Wang, C.-M.; Liu, H.-Y.; Lin, C.-S.; Lin, J.-W.; Lin, W.-L.; Lin, T.-C.; Fan, P.-S.; et al. The Ameliorative Effects of Fucoidan in Thioacetaide-Induced Liver Injury in Mice. Molecules 2021, 26, 1937. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Ye, Q.F. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia–reperfusion injury. Can. J. Physiol. Pharmacol. 2015, 93, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, Anti-Inflammatory, and Metabolic Properties of Tocopherols and Tocotrienols: Clinical Implications for Vitamin E Supplementation in Diabetic Kidney Disease. Int. J. Mol. Sci. 2019, 20, 5101. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetugu, A.; Takai, K.; Shimizu, M. Usefulness of Carnitine Supplementation for the Complications of Liver Cirrhosis. Nutrients 2020, 12, 1915. [Google Scholar] [CrossRef]
- Virmani, M.A.; Cirulli, M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int. J. Mol. Sci. 2022, 23, 2717. [Google Scholar] [CrossRef]
- Di Lenarda, A.; Sabbadini, G.; Moretti, M.; Sinagra, G. Long-term oral carvedilol in chronic heart failure. Expert Opin. Pharmacother. 2004, 5, 1359–1372. [Google Scholar] [CrossRef]
- Oliveira, P.J.; Gonçalves, L.; Monteiro, P.; Providencia, L.A.; Moreno, A.J. Are the antioxidant properties of carvedilol important for the protection of cardiac mitochondria? Curr. Vasc. Pharmacol. 2005, 3, 147–158. [Google Scholar] [CrossRef]
- Górska, D. Carvedilol—More than β-blocker. Farm Pol. 2009, 65, 780–787. [Google Scholar]
- Borowicz-Reutt, K.; Banach, M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. Int. J. Mol. Sci. 2022, 23, 11328. [Google Scholar] [CrossRef] [PubMed]
- Donate-Correa, J.; Tagua, V.G.; Ferri, C.; Martín-Núñez, E.; Hernández-Carballo, C.; Ureña-Torres, P.; Ruiz-Ortega, M.; Ortiz, A.; Mora-Fernández, C.; Navarro-González, J.F. Pentoxifylline for Renal Protection in Diabetic Kidney Disease. A Model of Old Drugs for New Horizons. J. Clin. Med. 2019, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Delpy, E.; Zal, F.; Leize-Zal, E.; Huck, O. Therapeutic Potential of Hemoglobin Derived from the Marine Worm Arenicola marina (M101): A Literature Review of a Breakthrough Innovation. Mar. Drugs 2021, 19, 376. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, Y.; Badet, L.; Essig, M.; Thierry, A.; Büchler, M.; Drouin, S.; Deruelle, C.; Morelon, E.; Pesteil, F.; Delpech, P.; et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: A safety and proof-of-principle study. Am. J. Transplant. 2020, 20, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, H.; Zhang, J.; Li, Y.; Zhao, Q. Comprehensive Approach to Assessment of Liver Viability During Normothermic Machine Perfusion. J. Clin. Transl. Hepatol. 2023, 11, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Cheng, N.; Zhang, W.; Jin, Q.; Guo, W.Z.; Ge, G.B.; Zhang, S.J.; Line, P.D.; Wang, Y. Air-ventilated normothermic machine perfusion alleviates hepatic injury from DCD rat through CYP1A2. Heliyon 2023, 9, e19150. [Google Scholar] [CrossRef]
- Chullo, G.; Panisello-Rosello, A.; Marquez, N.; Colmenero, J.; Brunet, M.; Pera, M.; Rosello-Catafau, J.; Bataller, R.; García-Valdecasas, J.C.; Fundora, Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int. J. Mol. Sci. 2024, 25, 1117. [Google Scholar] [CrossRef]
- Malkawi, D.; Savsani, K.; Alfonso, A.; Lee, S.D.; James, N.; Sarkar, D.; Imai, D.; Khan, A.; Sharma, A.; Kumaran, V.; et al. The Role of Normothermic Machine Perfusion in Extended Criteria Donor Grafts: A New Direction in Liver Graft Assessment and Preservation. Livers 2023, 3, 709–726. [Google Scholar] [CrossRef]
- Shen, C.; Cheng, H.; Zong, T.; Zhu, H. The role of normothermic machine perfusion (NMP) in the preservation of ex-vivo liver before transplantation: A review. Front. Bioeng. Biotechnol. 2023, 11, 1072937. [Google Scholar] [CrossRef]
- Clavien, P.A.; Dutkowski, P.; Mueller, M.; Eshmuminov, D.; Bautista Borrego, L.; Weber, A.; Muellhaupt, B.; Sousa Da Silva, R.X.; Burg, B.R.; Rudolf von Rohr, P.; et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat. Biotechnol. 2022, 40, 1610–1616. [Google Scholar] [CrossRef]
- Hefler, J.; Leon-Izquierdo, D.; Marfil-Garza, B.A.; Meeberg, G.; Verhoeff, K.; Anderson, B.; Dajani, K.; Bigam, D.L.; Shapiro, A.M.J. Long-term outcomes after normothermic machine perfusion in liver transplantation-Experience at a single North American center. Am. J. Transplant. 2023, 23, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.W.; Mergental, H.; Yap, C.; Kirkham, A.; Whilku, M.; Barton, D.; Curbishley, S.; Boteon, Y.L.; Neil, D.A.; Hübscher, S.G.; et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: Study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open. 2017, 7, e017733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Del Prete, L.; Ali, K.; Grady, P.; Bilancini, M.; Etterling, J.; D'Amico, G.; Diago Uso, T.; Hashimoto, K.; Aucejo, F.; et al. Sequential hypothermic and normothermic perfusion preservation and transplantation of expanded criteria donor livers. Surgery 2023, 173, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Boteon, Y.L.; Laing, R.W.; Schlegel, A.; Wallace, L.; Smith, A.; Attard, J.; Bhogal, R.H.; Neil, D.A.H.; Hübscher, S.; Perera, M.T.P.R.; et al. Combined Hypothermic and Normothermic Machine Perfusion Improves Functional Recovery of Extended Criteria Donor Livers. Liver Transpl. 2018, 24, 1699–1715. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Karam, V.; Cailliez, V.; Grady, J.G.O.; Mirza, D.; Cherqui, D.; Klempnauer, J.; Salizzoni, M.; Pratschke, J.; Jamieson, N.; et al. 2018 Annual Report of the European Liver Transplant Registry (ELTR)-50-year evolution of liver transplantation. Transpl. Int. 2018, 31, 1293–1317. [Google Scholar] [CrossRef] [PubMed]
- Asong-Fontem, N.; Panisello-Rosello, A.; Sebagh, M.; Gonin, M.; Rosello-Catafau, J.; Adam, R. The Role of IGL-2 Preservation Solution on Rat Livers during SCS and HOPE. Int. J. Mol. Sci. 2022, 23, 12615. [Google Scholar] [CrossRef] [PubMed]
- Preston, W.A.; Pace, D.J.; Altshuler, P.J.; Yi, M.; Kittle, H.D.; Vincent, S.A.; Andreoni, K.A.; Frank, A.M.; Glorioso, J.M.; Ramirez, C.G.; et al. A propensity score matched analysis of liver transplantation outcomes in the setting of preservation solution shortage. Am. J. Transplant. online ahead of print. 2023. [Google Scholar] [CrossRef] [PubMed]
- Karakoyun, R.; Romano, A.; Nordström, J.; Ericzon, B.G.; Nowak, G. Type of Preservation Solution, UW or HTK, Has an Impact on the Incidence of Biliary Stricture following Liver Transplantation: A Retrospective Study. J Transplant. 2019, 2019, 8150736. [Google Scholar] [CrossRef]
- García-Gil, F.A.; Fuentes-Broto, L.; Albendea, C.D.; Serrano, M.T.; Roselló-Catafau, J.; Lampreave, F.; López-Pingarrón, L.; Escartín, J.; Soria, J.; Garcia, J.J.; et al. Evaluation of Institut Georges Lopez-1 preservation solution in pig pancreas transplantation: A pilot study. Transplantation 2014, 97, 901–907. [Google Scholar] [CrossRef]
- Szilágyi, Á.L.; Mátrai, P.; Hegyi, P.; Tuboly, E.; Pécz, D.; Garami, A.; Solymár, M.; Pétervári, E.; Balaskó, M.; Veres, G.; et al. Compared efficacy of preservation solutions on the outcome of liver transplantation: Meta-analysis. World J. Gastroenterol. 2018, 24, 1812–1824. [Google Scholar] [CrossRef]
- Zarnitz, L.; Doorschodt, B.M.; Ernst, L.; Hosseinnejad, A.; Edgworth, E.; Fechter, T.; Theißen, A.; Djudjaj, S.; Boor, P.; Rossaint, R.; et al. Taurine as Antioxidant in a Novel Cell- and Oxygen Carrier-Free Perfusate for Normothermic Machine Perfusion of Porcine Kidneys. Antioxidants 2023, 12, 768. [Google Scholar] [CrossRef] [PubMed]
Author, Year of Publication | Antioxidant | Species | Preservation Solution Modification /Cold Ischemia | Outcome Measures, (Intervention, I/Control, C) | Antioxidant Dose | Effects of Antioxidant |
---|---|---|---|---|---|---|
Enzymatic antioxidant | ||||||
Lauschke et al., 2003 [15] | Taurine SOD | Isolated perfused rat liver model | UW 24 h; 4 °C; SCS with VSOP | I1: UW + SOD I2: UW + TAU C: UW | SOD: 600 U/mL; Taurine: 0.5 mg/mL | ↓ lipid peroxidation; ↓ vascular resistance; ↓ LDH, GLDH; ↑ bile production |
Minor et al., 1995 [16] | Taurine | Wistar rats | UW 24 h; 4 °C; SCS | I: UW + TAU C1: UW | 1 mM/L | improve hepatic circulation; enhance viability of the liver upon reperfusion |
Non-enzymatic antioxidants | ||||||
Low-molecular-weight antioxidant | ||||||
Bardallo et al., 2022 [17] | PEG35, Glutathione | Zücker rats | IGL 24 h; 4 °C; SCS | I1: IGL + GSH I2: IGL + PEG35 + GSH C: IGL | PEG35: 1 g/L, 5 g/L GSH: 3 mM/L, 9 mM/L | IGL + PEG35 (5 g/L) + GSH (9 mM/L): maintained ATP production; ↓ succinate accumulation; ↑ expression of the OXPHOS complexes, UCP2, PINK-1, Nrf2, and HO-1; protected against lipid and protein oxidation; increased the GSH/GSSG ratio; ↓ inflammasome NLRP3 expression; protecting mitochondrial integrity |
Quintana et al., 2001 [18] | S-Nitrosoglutathione | Isolated perfused rat liver model | UW 48 h; 4 °C; SCS | I: UW + GSNO C: UW | 100 µM | the hepatic morphology was conserved showing little vacuolation; avoiding hepatic injury post cold preservation/reperfusion |
Quintana et al., 2002 [19] | S-Nitrosoglutathione | Isolated perfused rat liver model | UW 48 h; 0 °C; SCS | I: UW + GSNO C: UW | 50 µM, 100 µM, 250 µM, 500 µM | 100 µM: prevented the ischemia/reperfusion injuries; ↓ LDH; improved bile production; partially reduced endothelial cell damage |
Quintana et al., 2004 [20] | S-Nitrosoglutathione | Isolated perfused rat liver model | UW 48 h; 0 °C; SCS | I: UW + GSNO C: UW | 500 μM 100 μM | 500 μM: interstitial edema after normothermic reperfusion; 100 μM: damages on mast cells were avoided |
Minor et al., 2000 [21] | N-Acetylcysteine, SOD | Isolated perfused rat liver model | UW 24 h; 4 °C; SCS VSOP | I1: UW + SOD I2: UW + NAC C: UW | SOD: 600 U/mL; NAC: 20 mM | prevented an increase in free radical-mediated lipid peroxidation; NAC counteracted the phosphorylation of Iκb |
Srinivasan et al., 2014 [22] | N-Acetylcysteine | Lewis rat | HTK 1 h, 3 h, 24 h, 168 h; 5 °C; SCS | I: HTK + NAC C: HTK | 20 mM | ↓ PVP; ↓ ALT; improved microcirculation; diminished histologic graft damage; ↓ lipid peroxidation; ↑ total antioxidant capacity |
Scherer de Fraga et al., 2010 [23] | S-Nitroso-N-Acetylcysteine | Wistar rats | UW 2 h, 4 h, 6 h; 4 °C; SCS | I: UW + SNAC C: UW | 200 nM | ↓ AST ↓ Liver injury |
Kerkweg et al., 2002 [24] | Deferoxamine | Hepatocytes from male Wistar rats, rat liver endothelial cells | UW 24 h; 4 °C; SCS | I: UW + DFX C: UW | 10 mM | ↓ lipid peroxidation; ↓ apoptosis |
Jain et al., 2008 [25] | N-Acetylcysteine, Trolox C, Deferoxamine | Isolated perfused rat liver model | UW 4 °C; HMP | I: UW + Gly + NAC + TRX-C + DFX C: UW | NAC: 5 mM TRX-C: 0.2 mM DFX: 0.25 mM | ↓ LDH, ALT; ↑ bile production; improved mitochondrial function; improved liver microcirculation; intact hepatocytes |
Vreugdenhil et al., 1997 [26] | Deferoxamine, Trolox C, Dithiothreitol | Hepatocytes from Sprague-Dawley rats; isolated perfused rat liver model | UW 24 h, 48 h; 4 °C; SCS | I1: UW + DFX I2: UW + TRX I3: UW + DTT C: UW | DFX: 2.5 mM, 5 mM, 10 mM TRX: 3 mM, 5 mM, 10 mM DTT: 5 mM, 10 mM, 20 mM | poor distribution of antioxidants in isolated rat liver; only DFX was effective when added to the UW: suppressed oxidative stress only in isolated hepatocytes stored in cold storage; ↓ LDH |
Wu et al., 2009 [27] | LK 614 | Isolated perfused rat liver model | HTK 24 h; 4 °C; SCS | I: HTK + LK 614 C: HTK | 20 μM | ↓ LDH during reperfusion; increased bile secretion; better preserved hepatic microcirculation |
Stegemann et al., 2010 [28] | Deferoxamine, LK 614 | Wistar rats | HTK 18 h; 4 °C; HMP | I: HTK-N + LK 614 + DFX C1: HTK C2:HTK-N | DFX: 25 μM LK 614: 2.5 μM, 7.5 μM | ↓ ALT, LDH; DFX: 25μM and LK 614: 2.5μM improved metabolic activity, reduced cleavage of caspase 9 and apoptotic index |
Mitochondria-targeted antioxidants | ||||||
Cherkashina et al., 2011 [29] | SkQ1 | Rat | Sucrose–saline 24 h; 4 °C; SCS | I: Sucrose–saline + SkQ1 C: Sucrose–saline | 1 μM | ↓ hepatic injury and oxidative stress; ↑ liver and mitochondrial function |
Wieland et al., 1995 [30] | Idebenone (QSA-10) | Rat liver microsomal model | UW, HTK 4 °C; SCS | I1: UW + QSA-10 I2: UW + Q-10 I3: HTK + QSA-10 I4: HTK + Q-10 C1: UW C2: HTK | QSA-10: 0.1 µM/L, 20 µM/L Q-10: 20 µM/L, 100 µM/L | protection against lipid peroxidation (HTK + QSA-10: 0.1 µM/L); prevented protein damage (HTK + QSA-10: 20 µM/L and UW + QSA-10: 20 µM/L); Q-10: 20 µM/ partial protection in UW; QSA-10 have the potential to increase the efficacy of organ preservation |
Kondo et al., 2013 [31] | Phosphoenolpyruvate | Mouse liver (ex vivo) | UW, PBS 24 h, 48 h, 72 h, 4 °C; SCS | I1: UW + PEP I2: PBS + PEP C1: UW C2: PBS | PEP: 1 mM, 10 mM, 100 mM (PBS) PEP: 100 mM (UW) | ↓ oxidative stress; attenuate ATP depletion; prevents increases in biochemical parameters |
Polyphenols | ||||||
Johnston et al., 1999 [32] | Curcumin | Sprague-Dawley rat livers (ex vivo) | UW, EC 24 h; 4 °C; oxygenated perfusion | I1: EC+ CUR C1: EC C2: UW | 100 μM | curcumin-enhanced EC solution was equivalent to the UW solution |
Chen et al., 2006 [33] | Curcumin | Sprague-Dawley rat livers | UW, EC, PBS 24 h, 36 h, 48 h; 4 °C; SCS | I1: UW + CUR I2: EC+ CUR I3: PBS+ CUR C1: UW C2: EC C3: PBS | 25–200 μM | curcumin at 100 μM concentration had the optimal preservation characteristics; ↑ portal flow rates and bile production; ↓ ALT, AST, LDH; improves the quality of organs |
McNally et al., 2006 [34] | Curcumin | Human hepatocytes | UW 16 h, 24 h, 48 h, 72 h; 4 °C; SCS | I: UW + CUR C: UW | 10 μM | induces HO-1; maximum protection cells between 16 and 24 h of CS |
Kato et al., 2020 [35] | Quercetin | Rat (isolated hepatocytes and whole liver) | UW 24 h; 4 °C; SCS | I: UW + QE C: UW | QE: 0.33; 33.1 µM/L Suc: 0.1 M/L | optimal dose of QE: 33,1 µM/L ↓ ALT mild vascular degradation; improvement of histological changes |
Ligeret et al., 2008 [36] | Silibinin | Isolated perfused rat liver model | UW 24 h; 4 °C; SCS | I: UW + SB C: UW | 100 μM | ↑ ATP, RCR ↓ oxidative stress |
Chiu et al., 1999 [37] | Magnolol | Rat | UW, Ringer’s lactate 24 h, 48 h; 96 h, 4 °C; SCS | I1: UW + MAG I2: Ringer’s lactate + MAG C1: UW C2: Ringer’s lactate | 10–6 M/L | ↓ lipid peroxidation |
Bioactive metabolites from marine algae | ||||||
Gdara et al., 2018 [38] | Phycocyanin | Rat | KH 12 h, 24 h; 4 °C; SCS | I: KH + Pc C:KH | 0.1; 0.2 mg ml−1 g−1 of liver | optimal dose of Pc: 0.1 mg ml−1 g−1; ↓ ALT, AST, ALP; ↓ MDA; ↓ GST, GPx |
Slim et al., 2020 [39] | Fucoidan | Isolated perfused rat liver model | IGL-1 24 h, 4 °C; SCS | I1: IGL-1 + FUC C1: IGL-1 C2: Ringer’s lactate | 10 mg/L, 50 mg/L, 100 mg/L, 250 mg/L | optimal dose of FUC: 100 mg/L; ↓ ALT, AST; ↑ phosphorylation of AMPK, AKT protein kinase, and GSK-3β; reduction in apoptosis (caspase 3); reduction of mitochondrial damage; reduction oxidative stress; reduction of ER stress markers; ↓ ERK1/2 and p38 MAPKs phosphorylation |
Vitamins and vitamin-like substances | ||||||
Bae et al., 2014 [40] | α-Tocopherol | Wistar rats after cardiac death | Vasosol 4 °C; HMP | I: Vasosol + α-TCP C1: Vasosol C2: KPS-1 | 5.4 × 10−2 mM | ↓ ALT; ↓ inflammatory cytokines (IL-6, TNF-α, MCP-1); ↓ caspase 3/7 expression in the circulation |
Tolba et al., 2003 [41] | L-carnitine | Isolated perfused rat liver model | HTK 24 h, 4 °C; SCS | I: HTK + L-CAR C: HTK | 5 mM | ↓ ALT, GLDH; improved the hepatic energy metabolism; preserved integrity of the mitochondria and the endoplasmic reticulum |
Coskun et al., 2007 [42] | L-carnitine | Wistar Albino rat | UW 2 h, 24 h, 36 h, 48 h; 4 °C; SCS | I: UW + L-CAR C: UW | 5 mM/L | ↓ ALT, ACP; ↓ MDA |
Drugs | ||||||
Ben et al., 2010 [43] | Carvedilol | Isolated Zücker rat liver (steatotic and non-steatotic) | UW 24 h; 4 °C; SCS | I: UW + CVD C: UW | 10−5 M/L | reduced hepatic injury, and improved hepatic functionality in both liver types |
Ben et al., 2006 [44] | Trimetazidine | Zücker rats (steatotic and non-steatotic) | UW 24 h; 4 °C; SCS | I: UW + TMZ C: UW | 10−6 M/L | protects against mitochondrial damage; preserves more ATP; decreases oxidative stress higher bile production |
Ben et al., 2007 [45] | Trimetazidine, aminoimidazole-4-carboxamide ribonucleoside | Zücker rats (steatotic and non-steatotic) | UW 24 h; 4 °C; SCS | I1: UW + TMZ I2: UW + AICAR C: UW | TMZ: 10−8 M/L 10−6 M/L, 10−4 M/L AICAR: 10 μM/L, 20 μM/L, 40 μM/L, 80 μM/L TMZ + AICAR: 10−6 M/L + 20 μM/L; 10−6 M/L + 40 μM/L; | ↓ AST (TMZ) TMZ improved bile production; increase in cNOS via increasing AMPK; TMZ and AICAR protected, with a similar degree of effectiveness, against cold I/R injury in steatotic and non-steatotic livers; not necessary to combine AICAR and TMZ |
Zaouali et al., 2010 [46] | Trimetazidine | Zücker rats | IGL-1 24 h; 4 °C; SCS | I: IGL-1 + TMZ C: IGL-1 | 10−6 M/L | ↓ AST, ALT; higher bile production; increased NO production; HIF-1α accumulation; increased HO-1 expression |
Zaouali et al., 2013 [47] | Trimetazidine melatonin | Zücker rats (steatotic) | UW, IGL-1 24 h, 4 °C; SCS | I2: IGL-1 + TMZ +MEL C1: IGL-1 C2: UW | TMZ: 10−3 µM MEL: 100 µM | ↑ liver autophagy; ↓ GRP78, pPERK, and CHOP after reperfusion; improved steatotic liver preservation through AMPK activation; synergism of action MEL and TMZ |
Zaouali et al., 2017 [48] | Trimetazidine | Sprague-Dawley rats | UW, IGL-1 8 h, 4 °C; SCS | I1: IGL-1 + TMZ C: IGL-1 C: UW | 10−6 M/L | ↓ ALT, GLDH, MDA; protects the mitochondria; inhibited of GSK3β and VDAC phosphorylation; reduced apoptosis; decreased ER stress |
Zaouali et al., 2017 [49] | Trimetazidine | Homozygous obese and lean Zücker rats | IGL-1 24 h, 4 °C; SCS | I: IGL-1 + TMZ C: IGL-1 | 10−5 M/L | ↓ ALT, AST (especially in steatotic livers); ↑ SIRT1 protein levels; ↓ HMGB1 protein level; ↓ TNF-α release; increasing the tolerance of steatotic liver graft against cold IRI |
Pantazi et al., 2015 [50] | Trimetazidine | Rat orthotopic liver transplantation | IGL-1 8 h, 4 °C; SCS | I: IGL-1 + TMZ C: IGL-1 | 10−6 M/L | ↓ ALT, GLDH; Reduction of oxidative stress; reduction of mitochondrial damage; enhanced SIRT1 protein expression |
Kozaki et al., 1995 [51] | Pentoxifylline | Isolated perfused rat liver model | UW 4 h, 24 h; 0–4 °C; SCS | I: UW + PTX C: UW | 25 mg PTX/kg body weight | the Kupffer cells produced significantly less O2− and TNF-α |
Arnault et al., 2003 [52] | Pentoxifylline | Isolated perfused Wistar rat liver model | UW 18 h, 24 h; 4 °C; SCS | I: UW + PTX C: UW | 30 mM (during cold storage) 3 mM (at reperfusion); | improve microcirculation in the liver; decrease in vascular resistance at reperfusion of 18 h and 24 h; decreased number of foci of peliosis after an 18 h preservation; ↓ LDH, AST, ALT after 24 h cold ischemia time |
Asong-Fontem et al., 2021 [53] | M101 | Zücker rats | IGL-1 24 h, 4 °C, SCS 2 h, 37 °C, NR | I: IGL-1 + M101 C: IGL-1 | 1 g/L | ↓ AST, ALT, Lactate, GLDH; ↓ MDA; higher production of NO2-NO3; less inflammation (HMGB1) |
Author, Year of Publication | Antioxidant | Species | Preservation Solution Modification /Cold Ischemia | Outcome Measures, (Intervention, I/Control, C) | Antioxidant Dose | Effects of Antioxidant |
---|---|---|---|---|---|---|
Enzymatic antioxidant | ||||||
Hide et al., 2014 [54] | rMnSOD | human liver samples, LSEC, liver grafts from healthy and steatotic rats | Celsior 16 h, 4 °C; SCS | I: Celsior + rMnSOD C: no SCS | rMnSOD: 0,15 µM | ↓ oxidative stress; ↑ NO; |
Non-enzymatic antioxidants | ||||||
Low-molecular-weight antioxidant | ||||||
Aliakbarian et al., 2017 [55] | N-Acetylcysteine | Human | UW 4 °C; SCS | I: UW + NAC C: UW | 2 g | addition of NAC does not decrease the rate of ischemia–reperfusion injury |
Mitochondria-targeted antioxidants | ||||||
Aghdaie et al., 2019 [56] | α-Lipoic acid (ALA) ursodeoxycholic acid (UDCA) | Isolated human hepatocytes derived from livers of deceased donors | UW 24 h; 4 °C; SCS | I1: UW + α-Lipoic acid I2: UW + ursodeoxycholic acid C: UW | ALA: 5 mM/L UDCA: 5 mM/L | does not increase the number of viable hepatocytes |
Polyphenols | ||||||
Otani et al., 2023 [57] | Quercetin | Isolated pig livers | UW 6 h, 4 °C; SCS | I: UW+ QE C:UW | QE: 33.1 µM/L Suc: 0.1 M/L | ↓ ALT, AST, LDH; improvement of histological changes; prevent tissue edema |
Drugs | ||||||
Qing et al., 2006 [58] | Pentoxifylline | Simple porcine orthotopic liver transplantation | UW 12 h, 16 h, 20 h; 4 °C; SCS | I: UW + PTX C: UW | 1 g/L | ↓ TNF-α, MDA; ↓ ALT, AST; ↑ ATP; 100% 1-week survival; improved microcirculation |
Alix et al., 2020 [59] | M101 | Pig allogeneic liver orthotopic transplantation | UW 9 h, 4 °C; SCS | I: UW + M101 C: UW | 1 g/L | improved liver graft oxygenation during SCS; livers cold stored with UWSCS + M101 did not reach the oxygenation level achieved with machine perfusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A. Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. Int. J. Mol. Sci. 2024, 25, 1850. https://doi.org/10.3390/ijms25031850
Ostróżka-Cieślik A. Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. International Journal of Molecular Sciences. 2024; 25(3):1850. https://doi.org/10.3390/ijms25031850
Chicago/Turabian StyleOstróżka-Cieślik, Aneta. 2024. "Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation" International Journal of Molecular Sciences 25, no. 3: 1850. https://doi.org/10.3390/ijms25031850
APA StyleOstróżka-Cieślik, A. (2024). Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. International Journal of Molecular Sciences, 25(3), 1850. https://doi.org/10.3390/ijms25031850