Compartmentalization of the Inflammatory Response in the Pericardial Cavity in Patients Undergoing Cardiac Surgery
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, R.H.; Wang, M.K.; Meyre, P.B.; Birchenough, L.; Park, L.; Vuong, K.; Devereaux, P.J.; Blum, S.; Lindahl, B.; Stone, G.; et al. Associations of inflammatory biomarkers with the risk of morbidity and mortality after cardiac surgery: A systematic review and meta-analysis. Can. J. Cardiol. 2023, 39, 1686–1694. [Google Scholar] [CrossRef] [PubMed]
- Squiccimarro, E.; Labriola, C.; Malvindi, P.G.; Margari, V.; Guida, P.; Visicchio, G.; Kounakis, G.; Favale, A.; Dambruoso, P.; Mastrototaro, G.; et al. Prevalence and Clinical Impact of Systemic Inflammatory Reaction After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Day, J.; Taylor, K. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005, 3, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Warren, O.J.; Smith, A.J.; Alexiou, C.; Rogers, P.L.; Jawad, N.; Vincent, C.; Darzi, A.W.; Athanasiou, T. The inflammatory response to cardiopulmonary bypass: Part 1—Mechanisms of pathogenesis. J. Cardiothorac. Vasc. Anesth. 2009, 23, 223–231. [Google Scholar] [CrossRef]
- Squiccimarro, E.; Stasi, A.; Lorusso, R.; Paparella, D. Narrative review of the systemic inflammatory reaction to cardiac surgery and cardiopulmonary bypass. Artif. Organs 2022, 46, 568–577. [Google Scholar] [CrossRef]
- Franke, A.; Lante, W.; Fackeldey, V.; Becker, H.P.; Thode, C.; Kuhlmann, W.D.; Markewitz, A. Proinflammatory and antiinflammatory cytokines after cardiac operation: Different cellular sources at different times. Ann. Thorac. Surg. 2002, 74, 363–370. [Google Scholar] [CrossRef]
- Yildirim, F.; Amanvermez Senarslan, D.; Yersel, S.; Bayram, B.; Taneli, F.; Tetik, O. Sytemic inflammatory response during cardiopulmonary bypass: Axial flow versus radial flow oxygenators. Int. J. Artif. Organs. 2022, 45, 278–283. [Google Scholar] [CrossRef]
- Senay, S.; Toraman, F.; Gunaydin, S.; Kilercik, M.; Karabulut, H.; Alhan, C. The impact of allogenic red cell transfusion and coated bypass circuit on the inflammatory response during cardiopulmonary bypass: A randomized study. Interact. Cardiovasc. Thorac. Surg. 2008, 8, 93–99. [Google Scholar] [CrossRef]
- Mahle, W.T.; Matthews, E.; Kanter, K.R.; Kogon, B.E.; Hamrick, S.E.; Strickland, M.J. Inflammatory Response After Neonatal Cardiac Surgery and Its Relationship to Clinical Outcomes. Ann. Thorac. Surg. 2014, 97, 950–956. [Google Scholar] [CrossRef]
- Onorati, F.; Rubino, A.S.; Nucera, S.; Foti, D.; Sica, V.; Santini, F.; Gulletta, E.; Renzulli, A. Off-pump coronary artery bypass surgery versus standard linear or pulsatile cardiopulmonary bypass: Entothelial activation and inflammatory response. Eur. J. Cardio-Thorac. Surg. 2010, 37, 897–904. [Google Scholar] [CrossRef]
- de Mendonça-Filho, H.T.F.; Pereira, K.C.; Fontes, M.; Vieira, D.A.d.S.A.; Mendonça, M.L.A.F.d.; Campos, L.A.d.A.; Castro-Faria-Neto, H.C. Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: A prospective observational study. Crit. Care 2006, 10, R46. [Google Scholar] [CrossRef] [PubMed]
- Mirhafez, S.R.; Khadem, S.H.; Sahebkar, A.; Movahedi, A.; Rahsepar, A.A.; Mirzaie, A.; Jamialahmadi, T.; Ferns, G.A.; Ghayour-Mobarhan, M. Comparative effects of on-pump versus off-pump coronary artery bypass grafting surgery on serum cytokine and chemokine levels. IUBMB Life 2021, 73, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Moledina, D.G.; Mansour, S.G.; Jia, Y.; Obeid, W.; Thiessen-Philbrook, H.; Koyner, J.L.; McArthur, E.; Garg, A.X.; Wilson, F.P.; Shlipak, M.G.; et al. Association of TCell-Derived inflammatory cytokines with acute kidney injury and mortality after cardiac surgery. Kindney Int. Rep. 2019, 4, 1689–1697. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F.; Wu, Y.; Elliott, M.; Zhou, W.; Deng, Y.; Ren, D.; Zhao, H. Mechanism of IL-6-related spontaneous atrial fibrillation after coronary artery grafting surgery: IL-6 knockout mouse study and human observation. Transl. Res. 2021, 233, 16–31. [Google Scholar] [CrossRef]
- Onorati, F.; Rubino, A.S.; Cuda, A.; Foti, D.; Sica, V.; Santini, F.; Gulletta, E.; Renzulli, A. Impact of Endothelial Activation on Infective and Inflammatory Complications after Cardiac Surgery in type II Diabetes Mellitus. Int. J. Artif. Organs 2011, 34, 469–480. [Google Scholar] [CrossRef]
- El-Diasty, M.M.; Rodríguez, J.; Pérez, L.; Eiras, S.; Fernández, A.L. Accumulation of Inflammatory Mediators in the Normal Pericardial Fluid. Int. J. Mol. Sci. 2023, 25, 157. [Google Scholar] [CrossRef]
- Ege, T.; Canbaz, S.; Yuksel, V.; Duran, E. Effect of pericardial fluid pro-inflammatory cytokines on hemodynamic parameters. Cytokine 2003, 23, 47–51. [Google Scholar] [CrossRef]
- Oyama, J.; Shimokawa, H.; Morita, S.; Yasui, H.; Takeshita, A. Elevated interleukin-1-beta in pericardial fluid of patients with ischemic heart disease. Coron. Artery Dis. 2001, 12, 567–571. [Google Scholar] [CrossRef]
- Karatoilos, K.; Moosdorf, R.; Maisch, B.; Pankuweit, S. Cytokines in pericardial effusion of patients with inflammatory per-icardial disease. Mediat Inflamm. 2012, 2012, 382082. [Google Scholar]
- Hassanabad, A.F.; Schoettler, F.I.; Kent, W.D.; Adams, C.A.; Holloway, D.D.; Ali, I.S.; Novick, R.J.; Ahsan, M.R.; McClure, R.S.; Shanmugam, G.; et al. Cardiac surgery elicits pericardial inflammatory responses that are distinct compared with postcardiopulmonary bypass systemic inflammation. JTCVS Open 2023, 16, 389–400. [Google Scholar] [CrossRef]
- de Souza, A.L.; Salgado, M.M.; Romano, C.C.; Alkmin, M.d.G.A.; Sztajnbok, J.; Vidal, J.E.; Duarte, A.J.; Seguro, A.C. Cytokine activation in purulent pericarditis caused by Neisseria meningitidis serogroup C. Int. J. Cardiol. 2006, 113, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Shikama, N.; Terano, T.; Hirai, A. A case of rheumatoid pericarditis with high concentrations of interleukin-6 in pericardial fluid. Heart 2000, 83, 711–712. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, Y.-L.; Ding, C.-M.; Wu, Y.-H.; Li, H.-L.; Liu, X.-F.; Hu, Z.-D. Diagnostic accuracy of interferon-gamma in pericardial effusions for tuberculous pericarditis: A meta-analysis. J. Thorac. Dis. 2018, 10, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, R.; Liu, S.; Xiang, F.; Chen, W.; Li, L.; Qin, W.; Huang, F.; Chen, X. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure. Exp. Ther. Med. 2017, 13, 1850–1858. [Google Scholar] [CrossRef]
- Schmidt, H.; Bendtzen, K.; Mortensen, P.E. The inflammatory cytokine response after autotransfusion of shed mediastinal blood. Acta Anaesthesiol. Scand. 1998, 42, 558–564. [Google Scholar] [CrossRef]
- de Vega, N.; García-Vallejo, J. Autotransfusion after cardiac surgery. Hematological, biochemical and immunological properties of shed mediastinal blood. Rev. Esp. Anestesiol. Reanim. 2001, 48, 122–130. [Google Scholar]
- Svenmarker, S.; Engström, K.G. The inflammatory response to recycled pericardial suction blood and the influence of cell-saving. Scand. Cardiovasc. J. 2003, 37, 158–164. [Google Scholar] [CrossRef]
- Amand, T.; Pincemail, J.; Blaffart, F.; Larbuisson, R.; Limet, R.; Defraigne, J.O. Levels of inflammatory markers in the blood processed by auto-transfusion devices during cardiac surgery associated with cardiopulmonary bypass circuit. Perfusion 2002, 17, 117–123. [Google Scholar] [CrossRef]
- Hassanabad, A.F.; Schoettler, F.I.; Kent, W.D.; Adams, C.A.; Holloway, D.D.; Ali, I.S.; Novick, R.J.; Ahsan, M.R.; McClure, R.S.; Shanmugam, G.; et al. Comprehensive characterization of the postoperative pericardial inflammatory response: Potential implications for clinical outcomes. JTCVS Open 2022, 12, 118–136. [Google Scholar] [CrossRef]
- Butts, B.; Goeddel, L.A.; George, D.J.; Steele, C.; Davies, J.E.; Wei, C.-C.; Varagic, J.; George, J.F.; Ferrario, C.M.; Melby, S.J.; et al. Increased Inflammation in Pericardial Fluid Persists 48 Hours After Cardiac Surgery. Circulation 2017, 136, 2284–2286. [Google Scholar] [CrossRef]
- Menet, E.; Corbi, P.; Ancey, C.; Morel, F.; Delwail, A.; Garcia, M.; Osta, A.M.; Wijdenes, J.; Potreau, D.; Lecron, J.C. Interleukine-6 (IL-6) synthesis and gp130 expression by human pericardium. Eur. Cytokine Netw. 2002, 12, 639–646. [Google Scholar]
- Eiras, S.; Teijeira-Fernández, E.; Shamagian, L.G.; Fernandez, A.L.; Vazquez-Boquete, A.; Gonzalez-Juanatey, J.R. Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine 2008, 43, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Gilicze, O.; Simon, D.; Farkas, N.; Lantos, M.; Jancso, G.; Berki, T.; Lenard, L. Characterization of lymphocyte subpopulations and cardiovascular markers in pericardial fluid of cardiac surgery patients. Clin. Hemorheol. Microcirc. 2020, 73, 579–590. [Google Scholar] [CrossRef]
- Kramer, P.A.; Chacko, B.K.; Ravi, S.; Johnson, M.S.; Mitchell, T.; Barnes, S.; Arabshahi, A.; Dell’Italia, L.J.; George, D.J.; Steele, C.; et al. Hemoglobin associated oxidative stress in the pericardial compartment of postoperative cardiac surgery patients. Lab. Investig. 2015, 95, 132–141. [Google Scholar] [CrossRef]
- Tecchio, C.; Micheletti, A.; Cassatella, M.A. Neutrophil-Derived Cytokines: Facts Beyond Expression. Front. Immunol. 2014, 5, 508. [Google Scholar] [CrossRef]
- Banerjee, D.; Feng, J.; Sellke, F.W. Strategies to attenuate maladaptive inflammatory response associated with cardiopulmonary bypass. Front. Surg. 2024, 11, 1224068. [Google Scholar] [CrossRef]
- Abbasciano, R.G.; Tomassini, S.; Roman, M.A.; Rizzello, A.; Pathak, S.; Ramzi, J.; Lucarelli, C.; Layton, G.; Butt, A.; Lai, F.; et al. Effects of interventions targeting the systemic inclammatory response to cardiac surgery on clinical outcomes in adults. Cochrane Database Syst. Rev. 2023. [Google Scholar] [CrossRef]
- Jongman, R.M.; Zijlstra, J.G.; Kok, W.F.; van Harten, A.E.; Mariani, M.A.; Moser, J.; Struys, M.M.; Absalom, A.R.; Molema, G.; Scheeren, T.W.; et al. Off-pump CABG surgery reduces systemic imflammation compared with on pump surgery but does not change systemic endothelial responses A prospective Randomized Study. Shock 2014, 42, 121–128. [Google Scholar] [CrossRef]
- Rasmussen, B.S.; Laugesen, H.; Sollid, J.; Grønlund, J.; Rees, S.E.; Toft, E.; Gjedsted, J.; Dethlefsen, C.; Tønnesen, E. Oxygenation and release of inflammatory mediators after off-pump compared with after on-pump coronary artery bypass surgery. Acta Anaesthesiol. Scand. 2007, 51, 1202–1210. [Google Scholar] [CrossRef]
- Ascione, R.; Lloyd, C.T.; Underwood, M.J.; Lotto, A.A.; Pitsis, A.A.; Angelini, G.D. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann. Thorac. Surg. 2000, 69, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Hassanabad, A.F.; Deniset, J.F.; Fedak, P.W. Pericardial Inflammatory Mediators That Can Drive Postoperative Atrial Fibrillation in Cardiac Surgery Patients. Can. J. Cardiol. 2023, 39, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Liblik, K.; Zucker, J.; Baranchuk, A.; Fernandez, A.L.; Zhang, S.; El Diasty, M. The role of pericardial fluid biomarkers in predicting post-operative atrial fibrillation, a comprehensive review of current literature. Trends Cardiovasc. Med. 2023, 34, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Wang, B.; Yu, W.; Zhai, L.S.; Qian, B.; Zhang, F.; Liu, B.; Wang, J.; Shao, X.; Shi, Y.; et al. Right atrial wall inflammation detected by 18F-FDG PET/CT may be significantly associated with persistent atrial fibrillation: A prospective case-control study. BMC Cardiovasc. Disord. 2023, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Puchinger, J.; Ryz, S.; Nixdorf, L.; Edlinger-Stanger, M.; Lassnigg, A.; Wiedemann, D.; Hiesmayr, M.; Spittler, A.; Bernardi, M.H. Char-acteristics of interleukin-6 signaling in elective cardiac surgery. A prospective cohort study. J. Clin. Med. 2022, 11, 590. [Google Scholar] [CrossRef]
- Jalali, A.; Kitching, M.; Martin, K.; Richardson, C.; Murphy, T.B.; FitzGerald, S.P.; Watson, R.W.; Perry, A.S. Integrating in-flammatory serum biomarkers into a risk calculator for prostate cancer detection. Sci. Rep. 2021, 11, 2525. [Google Scholar] [CrossRef]
Age (years) | 74.5 ± 6.1 |
Sex female/male (n) | 15/30 |
BMI (kg/m2) | 28.7 ± 3.1 |
Arterial hypertension (%) | 42.2 |
LVEF (%) | 54 ± 7 |
Total protein (g/dL) | 6.4 ± 0.6 |
Albumin (g/dL) | 4.2 ± 0.3 |
Creatinine (mg/dL) | 1 ± 0.2 |
Hemoglobin (g/dL) | 13.5 ± 1.1 |
Aortic cross-clamp time (min) | 64.2 ± 8.5 |
CPB time (min) | 75.8 ± 15.9 |
Basal | 24 h Postop | 48 h Postop | p-Value | |
---|---|---|---|---|
IL-1α | 0.12 ± 0.21 | 0.52 ± 0.23 | 0.41 ± 0.66 | 0.497 |
IL-1β | 0.29 ± 0.15 | 0.34 ± 0.46 | 0.87 ± 0.52 | 0.613 |
IL-2 | 2.71 ± 3.14 | 1.69 ± 2.45 | 2.6 ± 2.88 | 0.781 |
IL-4 | 6.78 ± 2.55 | 6.36 ± 3.52 | 5.97 ± 2.31 | 0.394 |
IL-6 | 11.49 ± 6.08 | 201 ± 33.6 | 279 ± 65.45 | <0.001 |
IL-8 | 7.82 ± 5.69 | 38.26 ± 9.33 | 430 ± 24.5 | <0.001 |
IL-10 | 0.25 ± 0.24 | 1.77 ± 0.31 | 2.01 ± 0.72 | 0.418 |
TNF-α | 3.18 ± 1.06 | 4.11 ± 1.03 | 4.03 ± 1.22 | 0.529 |
IFN-γ | 0.83 ± 0.65 | 0.18 ± 0.31 | 1.61 ± 0.53 | 0.682 |
VEGF | 163.3 ± 129.2 | 191 ± 72.8 | 205 ± 103.6 | 0.297 |
MCP-1 | 301.6 ± 58.32 | 556 ± 80.12 | 514 ± 94.2 | <0.05 |
EGF | 81.57 ± 40.78 | 49.92 ± 28.76 | 32.11 ± 25.5 | 0.392 |
Basal | 24 h Postop | 48 h Postop | p-Value | |
---|---|---|---|---|
VCAM-1 (ng/mL) | 1245.5 ± 301.2 | 1769 ± 328 | 1502 ± 385 | 0.484 |
ICAM-1 (ng/mL) | 568.4 ± 137.7 | 862.3 ± 149 | 707.9 ± 116 | 0.371 |
E-selectin (ng/mL) | 17.44 ± 3.82 | 21.03 ± 5.9 | 18.6 ± 4.67 | 0.392 |
P-selectin (ng/mL) | 272.26 ± 51.3 | 259 ± 38.2 | 242 ± 49.6 | 0.520 |
L-selectin (ng/mL) | 1486.92 ± 208.5 | 1401 ± 197.4 | 1352.3 ± 236 | 0.649 |
Basal | 24 h Postop | 48 h Postop | p-Value | |
---|---|---|---|---|
IL-1α | 0.140 ± 0.29 | 12.36 ± 2.75 | 10.9 ± 2.87 | <0.001 |
IL-1β | 0.48 ± 0.6 | 36.89 ± 6.13 | 25.45 ± 5.76 | <0.001 |
IL-2 | 8.23 ± 11.45 | 3.93 ± 2.01 | 6.16 ± 3.77 | 0.503 |
IL-4 | 5.85 ± 4.82 | 5.02 ± 2.36 | 7.34 ± 3.91 | 0.648 |
IL-6 | 183.81 ± 94.49 | 2056.2 ± 103.4 | 1755.01 ± 124.8 | <0.001 |
IL-8 | 28.12 ± 20.92 | 3871.5 ± 245.9 | 3640 ± 194.6 | <0.001 |
IL-10 | 0.52 ± 0.41 | 40.83 ± 11.67 | 26.05 ± 9.98 | <0.001 |
TNF-α | 4.271 ± 0.28 | 8.15 ± 3.62 | 7.11 ± 5.29 | 0.251 |
IFN-γ | 5.34 ± 5.12 | 18.6 ± 5.79 | 21.02 ± 6.48 | <0.001 |
VEGF | 22.8 ± 16.36 | 902.14 ± 118.9 | 1250.6 ± 190.5 | <0.001 |
MCP-1 | 1206.98 ± 285.49 | 3394.2 ± 392.3 | 2458.04 ± 335 | <0.01 |
EGF | 2.97 ± 1.67 | 19.23 ± 22.25 | 24.84 ± 30.1 | 0.385 |
Basal | 24 h Postop | 48 h Postop | p-Value | |
---|---|---|---|---|
VCAM-1 | 218.3 ± 148.3 | 923.4 ± 225 | 815.5 ± 193.7 | <0.001 |
ICAM-1 | 301.7 ± 75.1 | 501.23 ± 96 | 584.1 ± 170.6 | 0.817 |
E-selectin | 3.8 ± 1.75 | 11.05 ± 4.12 | 12.6 ± 5.49 | 0.452 |
P-selectin | 19.35 ± 2.6 | 307.82 ± 30.9 | 256.13 ± 22.3 | <0.001 |
L-selectin | 695.1 ± 177.3 | 940.92 ± 189.3 | 1172 ± 204.3 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Diasty, M.M.; Rodríguez, J.; Pérez, L.; Souaf, S.; Eiras, S.; Fernández, A.L. Compartmentalization of the Inflammatory Response in the Pericardial Cavity in Patients Undergoing Cardiac Surgery. Int. J. Mol. Sci. 2024, 25, 13720. https://doi.org/10.3390/ijms252413720
El-Diasty MM, Rodríguez J, Pérez L, Souaf S, Eiras S, Fernández AL. Compartmentalization of the Inflammatory Response in the Pericardial Cavity in Patients Undergoing Cardiac Surgery. International Journal of Molecular Sciences. 2024; 25(24):13720. https://doi.org/10.3390/ijms252413720
Chicago/Turabian StyleEl-Diasty, Mohammad M., Javier Rodríguez, Luis Pérez, Souhayla Souaf, Sonia Eiras, and Angel L. Fernández. 2024. "Compartmentalization of the Inflammatory Response in the Pericardial Cavity in Patients Undergoing Cardiac Surgery" International Journal of Molecular Sciences 25, no. 24: 13720. https://doi.org/10.3390/ijms252413720
APA StyleEl-Diasty, M. M., Rodríguez, J., Pérez, L., Souaf, S., Eiras, S., & Fernández, A. L. (2024). Compartmentalization of the Inflammatory Response in the Pericardial Cavity in Patients Undergoing Cardiac Surgery. International Journal of Molecular Sciences, 25(24), 13720. https://doi.org/10.3390/ijms252413720