Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe
Abstract
1. Introduction
2. Results
2.1. Preliminary Results
NGS Raw Data and QC Results in All Four Ilex aquifolium L. Populations
2.2. Processed Results
2.2.1. SNP Analysis
2.2.2. Chromosome-Level Distributions of SNPs Across the Four Locations
2.2.3. Identification of SNP Positions in Genes at the Four Locations at the Levels of Chloroplasts and Mitochondria
2.2.4. Quality Metrics for the Primary Assemblies
2.2.5. Modeling and Graphical Representation of Genomic Alignments
3. Discussion
3.1. SNP Population Structure
3.2. The Distributions of SNPs at the Chromosomal Level
3.3. Identification of SNP Positions on Genes at the Four Locations at the Level of the Chloroplast and Mitochondrion
3.3.1. Chloroplastidial SNPs
3.3.2. Mitochondrial SNPs
3.4. Quality Metrics of Genome Assemblies
3.5. Genomic Alignments
3.6. Phenotypic Traits in Relation to Genomic Variability
4. Materials and Methods
4.1. Plant Harvesting
4.2. DNA Extraction and Sequencing
4.3. WGS Analysis
- -
- SNPs of RO, HU, SR, and BG, relative to the Ilex asprella (Hook. & Arn.) Champ. ex Benth genome;
- -
- SNPs of the four samples, relative to the Ilex aquifolium L. chloroplast sequence;
- -
- From the previous scenario, only those SNPs that overlapped the 86 annotated genes.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrero Hue, N.; Caudullo, G.; de Rigo, D. Ilex aquifolium in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e011fbc+. [Google Scholar]
- Yao, X.; Song, Y.; Yang, J.-B.; Tan, Y.-H.; Corlett, R.T. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae). J. Syst. Evol. 2021, 59, 73–82. [Google Scholar] [CrossRef]
- HU, S.-Y. The genus Ilex in China. J. Arnold Arbor. Harv. Univ. 1949, 30, 233–344, 348–387. [Google Scholar] [CrossRef]
- HU, S.-Y. The genus Ilex in China. J. Arnold Arbor. Harv. Univ. 1950, 31, 39–80, 214–240, 241–263. [Google Scholar] [CrossRef]
- Savolainen, V.; Chase, M.W.; Hoot, S.B.; Morton, C.M.; Soltis, D.E.; Bayer, C.; Fay, M.F.; De Bruijn, A.Y.; Sullivan, S.; Qiu, Y.-L. Phylogenetics of Flowering Plants Based on Combined Analysis of Plastid atpB and rbcL Gene Sequences. Syst. Biol. 2000, 49, 306–362. [Google Scholar] [CrossRef]
- Negrin, A.; Long, C.; Motley, T.J.; Kennelly, E.J. LC-MS metabolomics and chemotaxonomy of caffeine-containing holly (Ilex) species and related taxa in the Aquifoliaceae. J. Agric. Food Chem. 2019, 67, 5687–5699. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, F.; Corlett, R.T. Utilization of the Hollies (Ilex L. spp.): A Review. Forests 2022, 13, 94. [Google Scholar] [CrossRef]
- Yi, F.; Zhao, X.; Peng, Y.; Xiao, P. Genus Ilex L.: Phytochemistry, ethnopharmacology, and pharmacology. Chin. Herb. Med. 2016, 8, 209–230. [Google Scholar]
- Noureddine, T.; El Husseini, Z.; Nehme, A.; Massih, R.A. Antibacterial activity of Ilex paraguariensis (Yerba Mate) against Gram-positive and Gram-negative bacteria. J. Infect. Dev. Ctries. 2018, 12, 712–719. [Google Scholar] [CrossRef]
- Peterken, G.F.; Lloyd, P.S. Ilex aquifolium L. J. Ecol. 1967, 55, 841–858. [Google Scholar] [CrossRef]
- David, L.S.; Elliott, D.C.; David, M.C.; Santiago, L. Pictures of an Invasion: English Holly (Ilex aquifolium) in a Semi-Natural Pacific Northwest Forest. Northwest Sci. 2014, 88, 75–93. [Google Scholar]
- Available online: https://www.gbif.org/species/5414222 (accessed on 15 January 2023).
- Nimis, P.L.; Bolognini, G. Quantitative phytogeography of the Italian Beech Forests. Vegetatio 1993, 109, 125–143. [Google Scholar] [CrossRef]
- Available online: https://www.iucnredlist.org/species/202963/2758279 (accessed on 15 January 2023).
- Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:83051-1 (accessed on 10 January 2023).
- Bedö, A.; Horváth, S. Erdészeti Lapok, az Országos Erdészeti Egyesület, Közlönye, Erdó és földbirtokosok, erdészeti ügyekkel foglalkozor és erdötisztek számára. Harminczkettedik Évfolya; Az Országgyélési Ertesitö kö es könyvnyomdája részv: Budapest, Hungary, 1893; pp. I–XII. [Google Scholar]
- Simonkai, L. Aradvármegye és Arad Szabad királyi város, Természetrajzi Leirása, Monographiája; Kiadja a Monographia-Bizottság: Arad, Romania, 1893. [Google Scholar]
- Muica, E.C.; Popova-Cucu, A. The composition and conservation of Romania’s plant cover. GeoJournal 1993, 29, 9–18. [Google Scholar] [CrossRef]
- UNEP-WCMC and IUCN. Protected Planet: Dosul Laurului in Romania. The World Database on. Protected Areas WDPA: 14574/The Global Database on Protected Areas Management Effectiveness. GD-PAME, UNEP-WCMC/IUCN, Cambridge, UK. 1999. Available online: www.protectedplanet.net (accessed on 3 June 2018).
- Fan, Y.; Sun, L.E.; Hao, D.-C.; Peng, Y.; Han, F.-M.; Xiao, P.-G. Complex phylogenetic placement of Ilex species (Aquifoliaceae): A case study of molecular phylogeny. Pak. J. Bot. 2017, 49, 215–225. [Google Scholar]
- Yao, X.; Tan, Y.H.; Liu, Y.Y.; Song, Y.; Yang, J.B.; Corlett, R.T. Chloroplast genome structure in Ilex (Aquifoliaceae). Sci. Res. 2016, 6, 28559. [Google Scholar] [CrossRef]
- Kong, B.L.H.; Park, H.S.; Lau, T.W.D.; Zhixiu, L.; Tae-Jin, Y.; Pang-Chui, S. Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes. Sci. Rep. 2021, 11, 5153. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, H.; Zhou, Y.; Li, N.; Chong, X.; Li, Y.; Lu, X.; Wang, C. The complete chloroplast genome sequence and phylogenetic analysis of Ilex ’Beryl’, a hybrid of Ilex cornuta × Ilex latifolia (Aquifoliaceae). Mitochondrial DNA B Resour. 2021, 6, 227–228. [Google Scholar] [CrossRef]
- Fan, Z.; Yanwei, Z.; Hong, C.; Naiwei, L.; Chuanyong, W.; Xiaoqing, L.; Yunlong, L. The complete chloroplast genome of Ilex ‘Tall Boy’, Ilex aquifolium × Ilex latifolia (Aquifoliaceae). Mitochondrial DNA Part B 2021, 6, 229–230. [Google Scholar]
- Carlos, M.H.; Pilar, B. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot. J. Linn. Soc. 2013, 171, 441–452. [Google Scholar]
- Jee-Soo, P.; Min-Young, K.; Eun-Jo, S.; JongHee, O.; Kyoung-In, S.; Kyung, S.K.; Sung-Chur, S.; Sang-Min, C.; Younghoon, P.; Gung Pyo, L.; et al. Genome-wide core sets of SNP markers and Fluidigm assays for rapid and effective genotypic identification of Korean cultivars of lettuce (Lactuca sativa L.). Hortic. Res. 2022, 9, uhac119. [Google Scholar] [CrossRef]
- Ben-Ari, G.; Zenvirth, D.; Sherman, A.; Simchen, G.; Lavi, U.; Hillel, J. Application of SNPs for assessing biodiversity and phylogeny among yeast strains. Heredity 2005, 95, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Anjan, H.; Rakesh, K.; Chandan, S.; Sauren, D. Genome-wide SNP discovery from Darjeeling tea cultivars—Their functional impacts and application toward population structure and trait associations. Genomics 2021, 113 Pt 1, 66–78. [Google Scholar]
- Guajardo, V.; Solís, S.; Almada, R.; Saski, C.; Gasic, K.; Moreno, M.Á. Genome-wide SNP identification in Prunus rootstocks germplasm collections using Genotyping-by-Sequencing: Phylogenetic analysis, distribution of SNPs and prediction of their effect on gene function. Sci. Rep. 2020, 10, 1467. [Google Scholar] [CrossRef]
- Younessi-Hamzekhanlu, M.; Gailing, O. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection. Int. J. Mol. Sci. 2022, 23, 12315. [Google Scholar] [CrossRef] [PubMed]
- Driguez, P.; Bougouffa, S.; Carty, K.; Alexander, P.; Kamel, J.; Muppala, R.; Richard, S.; Ming, S.C.; Yoshinori, F.; Luca, E. LeafGo: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology. Genome Biol. 2021, 22, 256. [Google Scholar] [CrossRef]
- Yu, T.; Hu, Y.; Zhang, Y.; Zhao, R.; Yan, X.; Dayananda, B.; Wang, J.; Jiao, Y.; Li, J.; Yi, X. Whole-Genome Sequencing of Acer catalpifolium Reveals Evolutionary History of Endangered Species. Genome Biol. Evol. 2021, 13, evab271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, W.; Gao, C.W.; Dan, Z.; Li-zhi, G. Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var. assamica. Sci. Data 2019, 6, 209. [Google Scholar] [CrossRef]
- Liu, G.-Q.; Lian, L.; Wang, W. The Molecular Phylogeny of Land Plants: Progress and Future Prospects. Diversity 2022, 14, 782. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, Y.; Ma, S.; Yang, J.-T.; Wang, Z.-X. Whole-Genome Sequencing: An Effective Strategy for Insertion Information Analysis of Foreign Genes in Transgenic Plants. Front. Plant Sci. 2020, 11, 573871. [Google Scholar] [CrossRef]
- Jones, S.; Baizan-Edge, A.; MacFarlane, S.; Torrance, L. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice. Front. Plant Sci. 2017, 8, 1770. [Google Scholar] [CrossRef]
- Xin, Y.; Zhiqiang, L.; Yu, S.; Xiaodi, H.; Richard, T.C. A chromosome-scale genome assembly for the holly (Ilex polyneura) provides insights into genomic adaptations to elevation in Southwest China. Hortic. Res. 2022, 9, uhab049. [Google Scholar]
- Kong, B.L.; Nong, W.; Wong, K.H.; Law, S.T.; So, W.L.; Chan, J.J.; Zhang, J.; Lau, T.D.; Hui, J.H.; Shaw, P.C. Chromosomal level genome of Ilex asprella and insight into antiviral triterpenoid pathway. Genomics 2022, 114, 110366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, J.; Huang, J.; Li, F.; Zhang, Q.; Zhang, M. Genome Survey Sequencing and Genetic Background Characterization of Ilex chinensis Sims (Aquifoliaceae) Based on Next-Generation Sequencing. Plants 2022, 11, 3322. [Google Scholar] [CrossRef]
- Paiva, D.; Cascales, J.; Rosetti, M.; Scherer, R.; Gauchat, M.E.; Gottlieb, A. Unraveling the genetic complexity of a cultivated breeding population of “yerba mate” (Ilex paraguariensis St. Hil.). An. Acad. Bras. Ciências 2020, 92, e20190113. [Google Scholar] [CrossRef] [PubMed]
- Sork, V.L. Gene flow and natural selection shape spatial patterns of genes in tree populations: Implications for evolutionary processes and applications. Evol. Appl. 2015, 9, 291–310. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.J.J.; Smulders, M.J.M.; Van Groenendael, J.M.; Vosman, B. Genetic Diversity and the Survival of Populations. Plant Biol. 2000, 2, 379–395. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Zhang, Y. Comparative Study of Genetic Structure and Genetic Diversity between Wild and Cultivated Populations of Taxus cuspidata, Northeast China. Phyton-Int. J. Exp. Bot. 2024, 93, 355–369. [Google Scholar] [CrossRef]
- Lin, X.; Kaul, S.; Rounsley, S.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.; Mason, T.; Bowman, C.L.; Barnstead, M.; et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999, 402, 761–768. [Google Scholar] [CrossRef]
- Tabata, S.; Kaneko, T.; Nakamura, Y.; Kotani, H.; Kato, T.; Asamizu, E.; Miyajima, N.; Sasamoto, S.; Kimura, T.; Hosouchi, T.; et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 2000, 408, 823–826. [Google Scholar]
- Adachi, S.; Tsuru, Y.; Nito, N.; Murata, K.; Yamamoto, T.; Ebitani, T.; Ookawa, T.; Hirasawa, T. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J. Exp. Bot. 2011, 62, 1927–1938. [Google Scholar] [CrossRef]
- Jadhao, K.R.; Kale, S.S.; Chavan, N.S.; Janjal, P.H. Genome-wide analysis of the SPL transcription factor family and its response to water stress in sunflower (Helianthus annuus). Cell Stress Chaperones 2023, 28, 943–958. [Google Scholar] [CrossRef]
- Androsiuk, P.; Paukszto, Ł.; Jastrzębski, J.P.; Milarska, S.E.; Okorski, A.; Pszczółkowska, A. Molecular Diversity and Phylogeny Reconstruction of Genus Colobanthus (Caryophyllaceae) Based on Mitochondrial Gene Sequences. Genes 2022, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lu, Y.; Song, W.; He, X.; Liu, Z.; Zheng, C.; Wang, S.; Shi, C.; Liu, J. Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla). PLoS ONE 2022, 17, e0263545. [Google Scholar] [CrossRef]
- Kang, N.; Hu, H. Adaptive evidence of mitochondrial genes in Pteromalidae and Eulophidae (Hymenoptera: Chalcidoidea). PLoS ONE 2023, 18, e0294687. [Google Scholar] [CrossRef]
- RPAN. Available online: https://cgm.sjtu.edu.cn/3kricedb (accessed on 13 September 2023).
- Sunflower Genome Database, Species: Helianthus Annuus (Sunflower). Available online: https://www.sunflowergenome.org (accessed on 13 September 2023).
- Mihali, C.V.; Petrescu, C.M.; Ciolacu-Ladasiu, C.F.; Mathe, E.; Popescu, C.; Bota, V.; Mizeranschi, A.E.; Ilie, D.E.; Neamț, R.I.; Turcus, V. Assessing Phenotypic Variability in Some Eastern European Insular Populations of the Climatic Relict Ilex aquifolium L. Plants 2022, 11, 2022. [Google Scholar] [CrossRef]
- Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 20 March 2023).
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Available online: https://genome-idx.s3.amazonaws.com/kraken/k2_pluspf_20230314.tar.gz (accessed on 20 March 2023).
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA genome assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Lerat, E.; Fablet, M.; Modolo, L.; Lopez-Maestre, H.; Vieira, C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 2017, 45, e17. [Google Scholar] [CrossRef] [PubMed]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 2017, 35, 316–319. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/gene?LinkName=nuccore_gene&from_uid=2327861972 (accessed on 24 April 2023).
- Available online: https://www.ncbi.nlm.nih.gov/gene?LinkName=nuccore_gene&from_uid=1770691604 (accessed on 28 April 2023).
- Available online: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1708-7 (accessed on 7 September 2023).
- Hickey, G.; Monlong, J.; Ebler, J.; Novak, A.M.; Eizenga, J.M.; Gao, Y.; Marschall, T.; Li, H.; Paten, B. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 2024, 42, 663–673. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Raney, B.; Paten, B.; Pham, S. Ragout—A reference-assisted assembly tool for bacterial genomes. Bioinformatics 2014, 30, i302–i309. [Google Scholar] [CrossRef]
- Hubisz, M.J.; Pollard, K.S.; Siepel, A. PHAST and RPHAST: Phylogenetic analysis with space/time models. Brief. Bioinform. 2011, 12, 41–51. [Google Scholar] [CrossRef]
Sample | Vars | SNPs | Indels | Ts/Tv |
---|---|---|---|---|
BG | 14,752,330 | 14,752,330 | 0 | 1.72 |
HU | 15,003,889 | 15,003,889 | 0 | 1.72 |
RO | 14,824,025 | 14,824,025 | 0 | 1.72 |
SR | 14,471,206 | 14,471,206 | 0 | 1.72 |
Chr | Start | End | Gene | RO | HU | SR | BG |
---|---|---|---|---|---|---|---|
NC_068798.1 | 450 | 1512 | psbA | 3 | 4 | 6 | 5 |
NC_068798.1 | 8184 | 8370 | psbK | 1 | 0 | 1 | 1 |
NC_068798.1 | 12,575 | 13,831 | atpF | 1 | 0 | 1 | 1 |
NC_068798.1 | 21,792 | 24,612 | rpoC1 | 3 | 0 | 2 | 2 |
NC_068798.1 | 24,638 | 27,851 | rpoB | 3 | 1 | 3 | 3 |
NC_068798.1 | 69,183 | 69,257 | trnP-UGG | 0 | 0 | 1 | 0 |
NC_068798.1 | 72,652 | 74,715 | clpP | 13 | 16 | 13 | 13 |
NC_068798.1 | 80,637 | 81,651 | rpoA | 0 | 0 | 1 | 0 |
NC_068798.1 | 83,439 | 83,808 | rpl14 | 12 | 9 | 19 | 19 |
NC_068798.1 | 83,935 | 85,265 | rpl16 | 20 | 6 | 28 | 27 |
NC_068798.1 | 117,349 | 118,315 | ccsA | 1 | 0 | 1 | 1 |
NC_068798.1 | 118,573 | 120,151 | ndhD | 1 | 1 | 1 | 1 |
NC_068798.1 | 122,601 | 124,838 | ndhA | 1 | 0 | 1 | 1 |
NC_068798.1 | 126,765 | 132,456 | ycf1 | 1 | 0 | 2 | 1 |
Chr | Start | End | Gene | RO | HU | SR | BG |
---|---|---|---|---|---|---|---|
NC_045078.1 | 37,841 | 39,772 | rrn18 | 1 | 3 | 1 | 1 |
NC_045078.1 | 43,064 | 43,138 | trnW-CCA | 0 | 1 | 1 | 1 |
NC_045078.1 | 56,375 | 58,624 | cox2 | 2 | 0 | 2 | 2 |
NC_045078.1 | 68,915 | 77,567 | nad4 | 3 | 3 | 3 | 3 |
NC_045078.1 | 158,633 | 159,212 | atp4 | 1 | 1 | 1 | 1 |
NC_045078.1 | 174,865 | 178,373 | rps3 | 0 | 1 | 0 | 0 |
NC_045078.1 | 216,298 | 221,012 | nad2 | 4 | 2 | 4 | 4 |
NC_045078.1 | 249,304 | 250,486 | cob | 1 | 1 | 1 | 1 |
NC_045078.1 | 252,738 | 253,002 | atp9 | 0 | 1 | 0 | 0 |
NC_045078.1 | 276,579 | 282,510 | nad7 | 1 | 2 | 1 | 1 |
NC_045078.1 | 295,025 | 295,634 | rps1 | 0 | 1 | 0 | 0 |
NC_045078.1 | 300,823 | 302,353 | atp1 | 2 | 2 | 2 | 2 |
NC_045078.1 | 438,334 | 439,971 | nad1 | 1 | 2 | 1 | 1 |
NC_045078.1 | 471,524 | 475,330 | nad1 | 2 | 2 | 2 | 2 |
NC_045078.1 | 472,644 | 474,615 | matR | 1 | 1 | 1 | 1 |
NC_045078.1 | 483,961 | 487,154 | rrn26 | 4 | 2 | 4 | 4 |
NC_045078.1 | 503,822 | 504,068 | atp9 | 1 | 1 | 1 | 1 |
QUAST Stat | Location | |||
---|---|---|---|---|
RO | HU | SR | BG | |
All contigs | 96,602 | 102,971 | 112,689 | 93,492 |
Total length (bp) | 604,400,875 | 603,264,456 | 582,153,373 | 599,835,904 |
Longest contig (bp) | 147,155 | 109,510 | 111,060 | 135,597 |
N50 | 12,964 | 12,102 | 10,112 | 13,200 |
N90 | 96,602 | 102,971 | 112,689 | 93,492 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihali, C.V.; Mizeranschi, A.E.; Ilie, D.E.; Cziszter, L.-T.; Neamț, R.I.; Anton, A.Ș.; Mathe, E.; Pecsenye, B.; Bota, V.B.; Turcuș, V. Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe. Int. J. Mol. Sci. 2024, 25, 13593. https://doi.org/10.3390/ijms252413593
Mihali CV, Mizeranschi AE, Ilie DE, Cziszter L-T, Neamț RI, Anton AȘ, Mathe E, Pecsenye B, Bota VB, Turcuș V. Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe. International Journal of Molecular Sciences. 2024; 25(24):13593. https://doi.org/10.3390/ijms252413593
Chicago/Turabian StyleMihali, Ciprian Valentin, Alexandru Eugeniu Mizeranschi, Daniela Elena Ilie, Ludovic-Toma Cziszter, Radu Ionel Neamț, Andreea Ștefania Anton, Endre Mathe, Bence Pecsenye, Viviane Beatrice Bota, and Violeta Turcuș. 2024. "Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe" International Journal of Molecular Sciences 25, no. 24: 13593. https://doi.org/10.3390/ijms252413593
APA StyleMihali, C. V., Mizeranschi, A. E., Ilie, D. E., Cziszter, L.-T., Neamț, R. I., Anton, A. Ș., Mathe, E., Pecsenye, B., Bota, V. B., & Turcuș, V. (2024). Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe. International Journal of Molecular Sciences, 25(24), 13593. https://doi.org/10.3390/ijms252413593