Advances in Molecular Research of Tropical Fruit
Funding
Conflicts of Interest
References
- Wang, R.; Li, X.; Sun, M.; Xue, C.; Korban, S.S.; Wu, J. Genomic insights into domestication and genetic improvement of fruit crops. Plant Physiol. 2023, 192, 2604–2627. [Google Scholar] [CrossRef] [PubMed]
- Savadi, S.; Mangalassery, S.; Sandesh, M. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021, 113, 3718–3734. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Ali Sabir, I.; Hu, X.; Chen, J.; Qin, Y. Advancements in reference gene selection for fruit trees: A comprehensive review. Int. J. Mol. Sci. 2024, 25, 1142. [Google Scholar] [CrossRef] [PubMed]
- Sabir, I.A.; Liu, X.; Jiu, S.; Whiting, M.; Zhang, C. Plant growth regulators modify fruit set, fruit quality, and return bloom in sweet cherry. HortScience 2021, 56, 922–931. [Google Scholar] [CrossRef]
- Mrabet, R. Sustainable agriculture for food and nutritional security. In Sustainable Agriculture and the Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–90. [Google Scholar]
- Kuldeep, M.D.K.; Bhooriya, M.S.; Kumar, M.M. Modern Fruit Science. 2023. Available online: https://www.researchgate.net/profile/Mausmi-Rastogi/publication/377022758_Tropical_and_subtropical_fruit_production/links/6592abf82468df72d3efe0a4/Tropical-and-subtropical-fruit-production.pdf (accessed on 15 October 2024).
- Bacelar, E.; Pinto, T.; Anjos, R.; Morais, M.C.; Oliveira, I.; Vilela, A.; Cosme, F. Impacts of climate change and mitigation strategies for some abiotic and biotic constraints influencing fruit growth and quality. Plants 2024, 13, 1942. [Google Scholar] [CrossRef]
- Mathiazhagan, M.; Chidambara, B.; Hunashikatti, L.R.; Ravishankar, K.V. Genomic approaches for improvement of tropical fruits: Fruit quality, shelf life and nutrient content. Genes 2021, 12, 1881. [Google Scholar] [CrossRef]
- Sabir, I.A.; Manzoor, M.A.; Shah, I.H.; Abbas, F.; Liu, X.; Fiaz, S.; Shah, A.N.; Jiu, S.; Wang, J.; Abdullah, M. Evolutionary and integrative analysis of gibberellin-dioxygenase gene family and their expression profile in three Rosaceae genomes (F. vesca, P. mume, and P. avium) under phytohormone stress. Front. Plant Sci. 2022, 13, 942969. [Google Scholar] [CrossRef]
- Sabir, I.A.; Manzoor, M.A.; Shah, I.H.; Liu, X.; Zahid, M.S.; Jiu, S.; Wang, J.; Abdullah, M.; Zhang, C. MYB transcription factor family in sweet cherry (Prunus avium L.): Genome-wide investigation, evolution, structure, characterization and expression patterns. BMC Plant Biol. 2022, 22, 2. [Google Scholar] [CrossRef]
- Blancke, R. Tropical Fruits and Other Edible Plants of the World: An Illustrated Guide; Cornell University Press: Ithaca, NY, USA, 2016. [Google Scholar]
- Hewett, E.W. High-value horticulture in developing countries: Barriers and opportunities. CABI Rev. 2012, 1–16. [Google Scholar] [CrossRef]
- Kader, A.A.; Yahia, E. Postharvest biology of tropical and subtropical fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 79–111. [Google Scholar]
- Bustin, S. INVITED REVIEW Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Manzoor, M.A.; Sabir, I.A.; Shah, I.H.; Wang, H.; Yu, Z.; Rasool, F.; Mazhar, M.Z.; Younas, S.; Abdullah, M.; Cai, Y. Comprehensive comparative analysis of the GATA transcription factors in four Rosaceae species and phytohormonal response in Chinese pear (Pyrus bretschneideri) fruit. Int. J. Mol. Sci. 2021, 22, 12492. [Google Scholar] [CrossRef] [PubMed]
- Sabir, I.A.; Manzoor, M.A.; Shah, I.H.; Ahmad, Z.; Liu, X.; Alam, P.; Wang, Y.; Sun, W.; Wang, J.; Liu, R. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). Plant Physiol. Biochem. 2024, 206, 108222. [Google Scholar] [CrossRef] [PubMed]
- Ban, E.; Song, E.J. Considerations and suggestions for the reliable analysis of miRNA in plasma using qRT-PCR. Genes 2022, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tan, Z.; Hu, B.; Yang, Z.; Xu, B.; Zhuang, L.; Huang, B. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses. Physiol. Plant. 2015, 155, 138–148. [Google Scholar] [CrossRef]
- Chen, J.; Sabir, I.A.; Qin, Y. From challenges to opportunities: Unveiling the secrets of pitaya through omics studies. Sci. Hortic. 2023, 321, 112357. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Chen, W.; Chen, J.; Lu, W.; Chen, L.; Fu, D. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 2012, 7, e44405. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, J.; Liu, Z.; Wang, H.; Tu, H.; Zhou, J.; Luo, X.; Chen, Q.; He, W.; et al. Integrated transcriptome and metabolome analyses provide insights into the coloring mechanism of dark-red and yellow fruits in Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. Int. J. Mol. Sci. 2023, 24, 3471. [Google Scholar] [CrossRef]
- Wang, W.Q.; Moss, S.M.; Zeng, L.; Espley, R.V.; Wang, T.; Lin-Wang, K.; Fu, B.L.; Schwinn, K.E.; Allan, A.C.; Yin, X.R. The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytol. 2022, 235, 630–645. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Li, X.; Lin, J.; Wang, Z.; Yang, Q.; Chang, Y. Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Acta Physiol. Plant. 2015, 37, 40. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, J.; Su, W.; Wu, H.; Shah, K.; Xing, L.; Ma, J.; Zhang, D.; Zhao, C. Selection and validation of reliable reference genes for gene expression studies in different genotypes and TRV-infected fruits of peach (Prunus persica L. Batsch) during Ripening. Genes 2022, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Deng, H.; Xiong, B.; Li, S.; Yang, L.; Yang, Y.; Huang, S.; Tan, L.; Sun, G.; Wang, Z. Rootstock effects on anthocyanin accumulation and associated biosynthetic gene expression and enzyme activity during fruit development and ripening of blood oranges. Agriculture 2022, 12, 342. [Google Scholar] [CrossRef]
- Lin, S.; Xu, S.; Huang, L.; Qiu, F.; Zheng, Y.; Liu, Q.; Ling, J.; Ma, S.; Wu, B.; Wu, J. Selection and validation of reference genes for normalization of RT-qPCR analysis in developing and abiotic-stressed tissues of loquat (Eriobotrya japonica). Phyton-Int. J. Exp. Bot. 2023, 92, 1185–1201. [Google Scholar] [CrossRef]
- Peng, Y.; Lin-Wang, K.; Cooney, J.M.; Wang, T.; Espley, R.V.; Allan, A.C. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Hortic. Res. 2019, 6, 3. [Google Scholar] [CrossRef]
- Shah, K.; Chen, J.; Chen, J.; Qin, Y. Pitaya nutrition, biology, and biotechnology: A review. Int. J. Mol. Sci. 2023, 24, 13986. [Google Scholar] [CrossRef]
- Yasmin, A.; Sumi, M.J.; Akter, K.; Rabbi, R.H.M.; Almoallim, H.S.; Ansari, M.J.; Hossain, A.; Imran, S. Comparative analysis of nutrient composition and antioxidant activity in three dragon fruit cultivars. PeerJ 2024, 12, e17719. [Google Scholar] [CrossRef]
- Joshi, M.; Prabhakar, B. Phytoconstituents and pharmaco-therapeutic benefits of pitaya: A wonder fruit. J. Food Biochem. 2020, 44, e13260. [Google Scholar] [CrossRef]
- Luo, H.; Cai, Y.; Peng, Z.; Liu, T.; Yang, S. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem. Cent. J. 2014, 8, 1–7. [Google Scholar] [CrossRef]
- Oliveira, M.; Tel-Zur, N. Cactus pear and pitaya: Fruit production and orchard management. In Proceedings of the X International Congress on Cactus Pear and Cochineal: Cactus-the New Green Revolution in Drylands, João Pessoa, Brazil, 26–29 September 2022; Acta Horticulturae 1343. pp. 343–354. [Google Scholar]
- Kesawat, M.S.; Das Kumar, B. Molecular markers: It’s application in crop improvement. J. Crop Sci. Biotechnol. 2009, 12, 169–181. [Google Scholar] [CrossRef]
- Chuang, M.; Ni, H.; Yang, H.; Shu, S.; Lai, S.; Jiang, Y. First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis. 2012, 96, 906. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Liu, S.; Xiao, X.; Sun, W.; Lu, X.; Gao, Y.; He, J.; Zhu, Z.; Wu, Q.; Zhang, X. Integrative analysis of metabolome and transcriptome provides insights into the mechanism of flower induction in pineapple (Ananas comosus (L.) Merr.) by Ethephon. Int. J. Mol. Sci. 2023, 24, 17133. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.Q.; Ha, L.T.M.; Lien, D.T.; Nga, N.T.T.; Lam, V.P. Optimal shoot mass for propagation to increase the yield and quality of pineapple. Sustainability 2024, 16, 5729. [Google Scholar] [CrossRef]
- Bartholomew, D. History and perspectives on the role of ethylene in pineapple flowering. In Proceedings of the XII International Symposium on Plant Bioregulators in Fruit Production, Orlando, FL, USA, 28 July–1 August 2013; Acta Horticulturae 1042. pp. 269–284. [Google Scholar]
- Khan, Q.; Qin, Y.; Guo, D.J.; Chen, J.Y.; Zeng, X.P.; Mahmood, A.; Yang, L.T.; Liang, Q.; Song, X.P.; Xing, Y.X. Sucrose metabolism analysis in a high sucrose sugarcane mutant clone at a mature stage in contrast to low sucrose parental clone through the transcriptomic approach. Chem. Biol. Technol. Agric. 2023, 10, 39. [Google Scholar] [CrossRef]
- Cao, L.; Wang, G.; Ye, X.; Li, F.; Wang, S.; Li, H.; Wang, P.; Wang, J. Physiological, metabolic, and transcriptomic analyses reveal mechanisms of proliferation and somatic embryogenesis of Litchi (Litchi chinensis Sonn.) embryogenic callus promoted by D-Arginine treatment. Int. J. Mol. Sci. 2024, 25, 3965. [Google Scholar] [CrossRef]
- Kevin, B.; Claudio, S. The role of polyamines during in vivo and in vitro developmen. In Vitro Cell. Dev. Biol. Plant 2008, 44, 384–395. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Liu, Y.; Li, H.; Wang, S.; Li, F. Influence of Exogenous Putrescine on Somatic Embryogenesis and Regeneration in Litchi (Litchi chinensis Sonn.). 2022. Available online: https://colab.ws/articles/10.21203%2Frs.3.rs-2027269%2Fv1 (accessed on 15 October 2024).
- Bajguz, A.; Piotrowska, A. Conjugates of auxin and cytokinin. Phytochemistry 2009, 70, 957–969. [Google Scholar] [CrossRef]
- Yu, Y.; Liufu, Y.; Ren, Y.; Zhang, J.; Li, M.; Tian, S.; Wang, J.; Liao, S.; Gong, G.; Zhang, H. Comprehensive profiling of alternative splicing and alternative polyadenylation during fruit ripening in watermelon (Citrullus lanatus). Int. J. Mol. Sci. 2023, 24, 15333. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Tian, S.; Zhang, J.; Ren, Y.; Sun, H.; Gong, G.; Zhang, H.; Xu, Y. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. PLoS ONE 2017, 12, e0179944. [Google Scholar] [CrossRef]
- Levi, A.; Davis, A.; Hernandez, A.; Wechter, P.; Thimmapuram, J.; Trebitsh, T.; Tadmor, Y.; Katzir, N.; Portnoy, V.; King, S. Genes expressed during the development and ripening of watermelon fruit. Plant Cell Rep. 2006, 25, 1233–1245. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Leskovar, D.I.; Colla, G.; Rouphael, Y. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Sci. Hortic. 2018, 234, 393–408. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Yang, W.; Li, J.; Tang, W.; Gong, R. Transcriptomic and metabolomic analysis of quality changes during sweet cherry fruit development and mining of related genes. Int. J. Mol. Sci. 2022, 23, 7402. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, H.; Suo, X.; Liu, M.; Jing, D.; Zhang, Y.; Dang, J.; Wu, D.; He, Q.; Xia, Y. EjFAD8 enhances the low-temperature tolerance of loquat by desaturation of sulfoquinovosyl diacylglycerol (SQDG). Int. J. Mol. Sci. 2023, 24, 6946. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Nagano, Y.; Matsuguma, K.; Ishimoto, K.; Hiehata, N.; Nagano, A.J.; Tezuka, A.; Yamamoto, T. Construction of a high-density linkage map for bronze loquat using RAD-Seq. Sci. Hortic. 2019, 251, 59–64. [Google Scholar] [CrossRef]
- Adiletta, G.; Pasquariello, M.S.; Zampella, L.; Mastrobuoni, F.; Scortichini, M.; Petriccione, M. Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy 2018, 8, 54. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wei, X.; Datta, T.; Wei, F.; Xie, Z. Polyploidization: A biological force that enhances stress resistance. Int. J. Mol. Sci. 2024, 25, 1957. [Google Scholar] [CrossRef]
- Bhattacharya, A. Lipid metabolism in plants under low-temperature stress: A review. In Physiological Processes in Plants Under Low Temperature Stress; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–516. [Google Scholar]
- Los, D.A.; Mironov, K.S.; Allakhverdiev, S.I. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 2013, 116, 489–509. [Google Scholar] [CrossRef]
- Song, K.; Zhang, X.; Liu, J.; Yao, Q.; Li, Y.; Hou, X.; Liu, S.; Qiu, X.; Yang, Y.; Chen, L. Integration of metabolomics and transcriptomics to explore dynamic alterations in fruit color and quality in ‘comte de paris’ pineapples during ripening processes. Int. J. Mol. Sci. 2023, 24, 16384. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 2020, 137, 109675. [Google Scholar]
- Hewajulige, I.G.N.; Premaseela, H.D.S.R. Fruit ripening: Importance of artificial fruit ripening in commercial agriculture and safe use of the technology for consumer health. Sri Lanka J. Food Agric. 2020, 6, 57–66. [Google Scholar] [CrossRef]
- Cruz-Hernández, A.; Paredes-Lopez, O. Fruit quality: New insights for biotechnology. Crit. Rev. Food Sci. Nutr. 2012, 52, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Hailu, M.; Workneh, T.S.; Belew, D. Review on postharvest technology of banana fruit. Afr. J. Biotechnol. 2013, 12, 635–647. [Google Scholar] [CrossRef]
- Kargar, M. Physicochemical and nutritional properties of selected banana (Musa spp.) cultivated in Southeastern US. Bioprocess Eng. 2019, 3, 12–21. [Google Scholar]
- Gowen, S. Bananas and Plantains; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit ripening phenomena–an overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Payasi, A.; Sanwal, G. Biochemistry of fruit ripening. Indian J. Agric. Biochem. 2005, 18, 51–60. [Google Scholar]
- Osorio, S.; Fernie, A.R. Fruit ripening: Primary metabolism. In Fruit Ripening: Physiology, Signalling and Genomics; CABI: Wallingford, UK, 2014; pp. 15–27. [Google Scholar]
- Alina, M.R.; Mureșan, C.C.; Pop, A.; Marțiș, G.S.; Mureșan, A.E.; Postolache, A.N.; Stoica, F.; Crivei, I.C.; Veleșcu, I.D.; Rațu, R.N. An Overview of Ripening Processes. In New Discoveries in the Ripening Processes; IntechOpen: London, UK, 2023. [Google Scholar]
- Sun, P.; Zhu, Z.; Jin, Z.; Xie, J.; Miao, H.; Liu, J. Molecular characteristics and functional identification of a key alpha-amylase-encoding gene AMY11 in Musa acuminata. Int. J. Mol. Sci. 2024, 25, 7832. [Google Scholar] [CrossRef]
- Bilska, K.; Wojciechowska, N.; Alipour, S.; Kalemba, E.M. Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants 2019, 8, 645. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Ascorbic acid as antioxidant. Vitam. Horm. 2023, 121, 247–270. [Google Scholar]
- Kaur, R.; Nayyar, H. Ascorbic acid: A potent defender against environmental stresses. In Oxidative Damage to Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 235–287. [Google Scholar]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Buet, A.; Gergoff Grozeff, G.; Galatro, A.; Simontacchi, M. Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer: Cham, Switzerland, 2017; pp. 177–200. [Google Scholar]
- Song, X.S.; Hu, W.H.; Mao, W.H.; Ogweno, J.O.; Zhou, Y.H.; Yu, J.Q. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol. Biochem. 2005, 43, 1082–1088. [Google Scholar] [CrossRef]
- Jia, D.; Gao, H.; He, Y.; Liao, G.; Lin, L.; Huang, C.; Xu, X. Kiwifruit monodehydroascorbate reductase 3 gene negatively regulates the accumulation of ascorbic acid in fruit of transgenic tomato plants. Int. J. Mol. Sci. 2023, 24, 17182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.Y.; Zhao, X.; Zhang, C.; Liu, D.K.; Lan, S.; Yin, W.; Liu, Z.J. Molecular insights into self-incompatibility systems: From evolution to breeding. Plant Commun. 2024, 5, 100719. [Google Scholar] [CrossRef]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Cruz-García, F.; McClure, B.; Romero, C. Self-(in) compatibility systems: Target traits for crop-production, plant breeding, and biotechnology. Front. Plant Sci. 2020, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Kaothien-Nakayama, P.; Isogai, A.; Takayama, S. Self-incompatibility systems in flowering plants. In Plant Developmental Biology-Biotechnological Perspectives; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 459–485. [Google Scholar]
- Tel-Zur, N. Vine cacti (Hylocereus species): An emerging fruit crop. Italus Hortus 2017, 24, 19–24. [Google Scholar] [CrossRef]
- Davis, S.C.; Simpson, J.; Gil-Vega, K.d.C.; Niechayev, N.A.; Tongerlo, E.V.; Castano, N.H.; Dever, L.V.; Búrquez, A. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J. Exp. Bot. 2019, 70, 6521–6537. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Ding, Y.; Li, T.; Jiang, S.; Kang, S.; Wei, S.; Xie, J.; Huang, J.; Hu, W. The pitaya flower tissue’s gene differential expression analysis between self-incompatible and self-compatible varieties for the identification of genes involved in self-incompatibility regulation. Int. J. Mol. Sci. 2023, 24, 11406. [Google Scholar] [CrossRef]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y. Advances in Molecular Research of Tropical Fruit. Int. J. Mol. Sci. 2024, 25, 13582. https://doi.org/10.3390/ijms252413582
Qin Y. Advances in Molecular Research of Tropical Fruit. International Journal of Molecular Sciences. 2024; 25(24):13582. https://doi.org/10.3390/ijms252413582
Chicago/Turabian StyleQin, Yonghua. 2024. "Advances in Molecular Research of Tropical Fruit" International Journal of Molecular Sciences 25, no. 24: 13582. https://doi.org/10.3390/ijms252413582
APA StyleQin, Y. (2024). Advances in Molecular Research of Tropical Fruit. International Journal of Molecular Sciences, 25(24), 13582. https://doi.org/10.3390/ijms252413582