Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions
Abstract
1. Introduction
2. Results
2.1. Estimation of Genetic Parameters
2.2. Predictive Ability of the Classical Models
2.3. Predictive Ability of the Top Pathways
3. Discussion
3.1. Estimation of Heritability for Semen Traits
3.2. Integration of Biological a Priori Information for Enhancing Genomic Prediction Accuracy
3.3. Impact of KEGG Pathways on Gene Interaction Effects and Prediction Accuracy
3.4. Exploring the Role of Biological Pathways in Sperm Traits and Reproductive Efficiency
4. Materials and Methods
4.1. Animals and Phenotypes
4.2. Genotyping, Sequencing, and Imputation
4.3. Genetic Parameter Estimation
4.4. SNP-KEGG Pathway Mapping
4.5. Genomic Prediction Models
4.6. Predictive Accuracy Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Jiang, B.; Wang, X.; Liu, X.; Zhang, Q.; Chen, Y. Estimation of Genetic Parameters and Season Effects for Semen Traits in Three Pig Breeds of South China. J. Anim. Breed. Genet. 2019, 136, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG Resource for Deciphering the Genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-Wide Association Mapping Including Phenotypes from Relatives without Genotypes. Genet Res 2012, 94, 73–83. [Google Scholar] [CrossRef]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.J.; Goddard, M.E. Invited Review: Genomic Selection in Dairy Cattle: Progress and Challenges. J. Dairy Sci. 2009, 92, 433–443. [Google Scholar] [CrossRef]
- Goddard, M.E.; Hayes, B.J. Mapping Genes for Complex Traits in Domestic Animals and Their Use in Breeding Programmes. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Crossa, J.; Saint Pierre, C.; Gerard, G.; Valenzo-Jiménez, M.A.; Vitale, P.; Valladares-Cellis, P.E.; Buenrostro-Mariscal, R.; Montesinos-López, A.; Crespo-Herrera, L. Multivariate Genomic Hybrid Prediction with Kernels and Parental Information. Int. J. Mol. Sci. 2023, 24, 13799. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Gianola, D.; van Kaam, J.B.C.H.M. Reproducing Kernel Hilbert Spaces Regression Methods for Genomic Assisted Prediction of Quantitative Traits. Genetics 2008, 178, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xu, Z.; Bello, S.F.; Zhu, Q.; Kong, S.; Zheng, M.; Fang, X.; Jia, X.; Xu, H.; Zhang, X.; et al. Haplotype Analysis of Genomic Prediction by Incorporating Genomic Pathway Information Based on High-Density SNP Marker in Chinese Yellow-Feathered Chicken. Poult. Sci. 2023, 102, 102549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Reif, J.C. Modeling Epistasis in Genomic Selection. Genetics 2015, 201, 759–768. [Google Scholar] [CrossRef]
- Martini, J.W.R.; Wimmer, V.; Erbe, M.; Simianer, H. Epistasis and Covariance: How Gene Interaction Translates into Genomic Relationship. Theor. Appl. Genet. 2016, 129, 963–976. [Google Scholar] [CrossRef]
- Raffo, M.A.; Sarup, P.; Guo, X.; Liu, H.; Andersen, J.R.; Orabi, J.; Jahoor, A.; Jensen, J. Improvement of Genomic Prediction in Advanced Wheat Breeding Lines by Including Additive-by-Additive Epistasis. Theor. Appl. Genet. 2022, 135, 965–978. [Google Scholar] [CrossRef]
- Vojgani, E.; Pook, T.; Simianer, H. Phenotype Prediction Under Epistasis. In Epistasis: Methods and Protocols; Wong, K.-C., Ed.; Springer: New York, NY, USA, 2021; pp. 105–120. ISBN 978-1-07-160947-7. [Google Scholar]
- Hu, Z.; Li, Y.; Song, X.; Han, Y.; Cai, X.; Xu, S.; Li, W. Genomic Value Prediction for Quantitative Traits under the Epistatic Model. BMC Genet. 2011, 12, 15. [Google Scholar] [CrossRef]
- Sokolov, A.; Carlin, D.E.; Paull, E.O.; Baertsch, R.; Stuart, J.M. Pathway-Based Genomics Prediction Using Generalized Elastic Net. PLoS Comput. Biol. 2016, 12, e1004790. [Google Scholar] [CrossRef]
- Gao, N.; Teng, J.; Ye, S.; Lin, Q.; Gao, Y.; Wang, J.; Huang, S.; He, J.; Li, J.; Chen, Y.; et al. Capturing Biological Interactions Improves Predictive Ability of Complex Traits via Epistatic Model. PREPRINT (Version 1), Research Square. 14 April 2024. [Google Scholar] [CrossRef]
- Speed, D.; Hemani, G.; Johnson, M.R.; Balding, D.J. Improved Heritability Estimation from Genome-Wide SNPs. Am. J. Hum. Genet. 2012, 91, 1011–1021. [Google Scholar] [CrossRef]
- Marques, D.B.D.; Lopes, M.S.; Broekhuijse, M.L.W.J.; Guimarães, S.E.F.; Knol, E.F.; Bastiaansen, J.W.M.; Silva, F.F.; Lopes, P.S. Genetic Parameters for Semen Quality and Quantity Traits in Five Pig Lines. J. Anim. Sci. 2017, 95, 4251–4259. [Google Scholar] [CrossRef]
- Visscher, P.M.; Hill, W.G.; Wray, N.R. Heritability in the Genomics Era--Concepts and Misconceptions. Nat. Rev. Genet. 2008, 9, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Barton, N.H.; Keightley, P.D. Understanding Quantitative Genetic Variation. Nat. Rev. Genet. 2002, 3, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Smital, J.; Wolf, J.; Sousa, L.L.D. Estimation of Genetic Parameters of Semen Characteristics and Reproductive Traits in AI Boars. Anim. Reprod. Sci. 2005, 86, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Vattikonda, A.N.; Sip, V.; Diaz-Pier, S.; Peyser, A.; Wang, H.; Guye, M.; Bartolomei, F.; Woodman, M.M.; Jirsa, V.K. On the Influence of Prior Information Evaluated by Fully Bayesian Criteria in a Personalized Whole-Brain Model of Epilepsy Spread. PLoS Comput. Biol. 2021, 17, e1009129. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Martini, J.W.R.; Zhang, Z.; Yuan, X.; Zhang, H.; Simianer, H.; Li, J. Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes. Genetics 2017, 207, 489–501. [Google Scholar] [CrossRef]
- Gao, N.; Li, J.; He, J.; Xiao, G.; Luo, Y.; Zhang, H.; Chen, Z.; Zhang, Z. Improving Accuracy of Genomic Prediction by Genetic Architecture Based Priors in a Bayesian Model. BMC Genet. 2015, 16, 120. [Google Scholar] [CrossRef]
- Zakharov, S.; Teoh, G.H.K.; Salim, A.; Thalamuthu, A. A Method to Incorporate Prior Information into Score Test for Genetic Association Studies. BMC Bioinform. 2014, 15, 24. [Google Scholar] [CrossRef]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five Years of GWAS Discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef]
- Alves, K.; Brito, L.F.; Baes, C.F.; Sargolzaei, M.; Robinson, J.A.B.; Schenkel, F.S. Estimation of Additive and Non-Additive Genetic Effects for Fertility and Reproduction Traits in North American Holstein Cattle Using Genomic Information. J. Anim. Breed. Genet. 2020, 137, 316–330. [Google Scholar] [CrossRef]
- Nadeau, S.; Beaulieu, J.; Gezan, S.A.; Perron, M.; Bousquet, J.; Lenz, P.R.N. Increasing Genomic Prediction Accuracy for Unphenotyped Full-Sib Families by Modeling Additive and Dominance Effects with Large Datasets in White Spruce. Front. Plant Sci. 2023, 14, 1137834. [Google Scholar] [CrossRef]
- Sun, C.; VanRaden, P.M.; Cole, J.B.; O’Connell, J.R. Improvement of Prediction Ability for Genomic Selection of Dairy Cattle by Including Dominance Effects. PLoS ONE 2014, 9, e103934. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.F.C. Epistasis and Quantitative Traits: Using Model Organisms to Study Gene-Gene Interactions. Nat. Rev. Genet. 2014, 15, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Zhang, J.; Lan, Z.; Deepak, R.N.V.K.; Liu, C.; Ma, Z.; Cheng, L.; Zhao, X.; Meng, X.; Wang, W.; et al. SLC22A14 Is a Mitochondrial Riboflavin Transporter Required for Sperm Oxidative Phosphorylation and Male Fertility. Cell Rep. 2021, 35, 109025. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, R.A.; Gannon, N.P.; Garcia-Smith, R.; Licon-Munoz, Y.; Barberena, M.A.; Bisoffi, M.; Trujillo, K.A. β-Alanine Suppresses Malignant Breast Epithelial Cell Aggressiveness through Alterations in Metabolism and Cellular Acidity in Vitro. Mol. Cancer 2014, 13, 14. [Google Scholar] [CrossRef]
- Hu, S.-G.; Liang, A.-J.; Yao, G.-X.; Li, X.-Q.; Zou, M.; Liu, J.-W.; Sun, Y. The Dynamic Metabolomic Changes throughout Mouse Epididymal Lumen Fluid Potentially Contribute to Sperm Maturation. Andrology 2018, 6, 247–255. [Google Scholar] [CrossRef]
- Monavari, S.H.; Vaziri, M.S.; Khalili, M.; Shamsi-Shahrabadi, M.; Keyvani, H.; Mollaei, H.; Fazlalipour, M. Asymptomatic Seminal Infection of Herpes Simplex Virus: Impact on Male Infertility. J. Biomed. Res. 2013, 27, 56–61. [Google Scholar] [CrossRef]
- Akhigbe, R.E.; Dutta, S.; Hamed, M.A.; Ajayi, A.F.; Sengupta, P.; Ahmad, G. Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. Front. Reprod. Health 2022, 4, 782915. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Chen, Z.; Yang, R.; Liu, Q.; Pan, J.; Wang, J.; Liu, Y.; Zhou, M.; Zhang, Y.; et al. COVID-19 Inhibits Spermatogenesis in the Testes by Inducing Cellular Senescence. Front. Genet. 2022, 13, 981471. [Google Scholar] [CrossRef]
- Peña, F.J.; Ortiz-Rodríguez, J.M.; Gaitskell-Phillips, G.L.; Gil, M.C.; Ortega-Ferrusola, C.; Martín-Cano, F.E. An Integrated Overview on the Regulation of Sperm Metabolism (Glycolysis-Krebs Cycle-Oxidative Phosphorylation). Anim. Reprod. Sci. 2022, 246, 106805. [Google Scholar] [CrossRef]
- Franken, D.R.; Morales, P.J.; Habenicht, U.F. Inhibition of G Protein in Human Sperm and Its Influence on Acrosome Reaction and Zona Pellucida Binding. Fertil. Steril. 1996, 66, 1009–1011. [Google Scholar] [CrossRef]
- Gao, N.; Chen, Y.; Liu, X.; Zhao, Y.; Zhu, L.; Liu, A.; Jiang, W.; Peng, X.; Zhang, C.; Tang, Z.; et al. Weighted Single-Step GWAS Identified Candidate Genes Associated with Semen Traits in a Duroc Boar Population. BMC Genom. 2019, 20, 797. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Druet, T.; Macleod, I.M.; Hayes, B.J. Toward Genomic Prediction from Whole-Genome Sequence Data: Impact of Sequencing Design on Genotype Imputation and Accuracy of Predictions. Heredity 2014, 112, 39–47. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Garrick, D.J.; Taylor, J.F.; Fernando, R.L. Deregressing Estimated Breeding Values and Weighting Information for Genomic Regression Analyses. Genet. Sel. Evol. 2009, 41, 55. [Google Scholar] [CrossRef]
- Tenenbaum, D. KEGGREST: Client-Side REST Access to KEGG; R Package Version 1.46.0; Bioconductor: Riverside, CA, USA, 2013. [Google Scholar] [CrossRef]
- Edwards, S.M.; Sørensen, I.F.; Sarup, P.; Mackay, T.F.C.; Sørensen, P. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila Melanogaster. Genetics 2016, 203, 1871–1883. [Google Scholar] [CrossRef]
- Fang, L.; Sahana, G.; Ma, P.; Su, G.; Yu, Y.; Zhang, S.; Lund, M.S.; Sørensen, P. Use of Biological Priors Enhances Understanding of Genetic Architecture and Genomic Prediction of Complex Traits within and between Dairy Cattle Breeds. BMC Genom. 2017, 18, 604. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhou, F.; Yao, Z.; Zhan, Y.; Fan, Z.; Meng, X.; Zhang, Z.; Liu, L.; Yang, J.; et al. Increased Accuracy of Genomic Prediction Using Preselected SNPs from GWAS with Imputed Whole-Genome Sequence Data in Pigs. Animals 2023, 13, 3871. [Google Scholar] [CrossRef]
Trait | |||||
---|---|---|---|---|---|
VOL | 8.496 ± 1.017 | 22.269 ± 0.060 | 7.744 ± 0.680 | 0.221 ± 0.024 | 0.422 ± 0.009 |
DEN | 1.217 ± 0.133 | 3.422 ± 0.009 | 0.732 ± 0.084 | 0.227 ± 0.022 | 0.363 ± 0.009 |
MOT | 0.001 ± 0.000 | 0.003 ± 0.000 | 0.001 ± 0.000 | 0.164 ± 0.020 | 0.322 ± 0.008 |
ABN | 0.003 ± 0.000 | 0.003 ± 0.000 | 0.001 ± 0.000 | 0.432 ± 0.030 | 0.587 ± 0.009 |
Traits | GBLUP | RKHS | GFBLUP | biBLUP |
---|---|---|---|---|
VOL | 0.495 ± 0.002 | 0.497 ± 0.002 | 0.512 ± 0.020 | 0.564 ± 0.089 |
DEN | 0.455 ± 0.002 | 0.460 ± 0.002 | 0.467 ± 0.011 | 0.517 ± 0.061 |
MOT | 0.320 ± 0.002 | 0.336 ± 0.002 | 0.339 ± 0.013 | 0.370 ± 0.043 |
ABN | 0.403 ± 0.003 | 0.442 ± 0.002 | 0.418 ± 0.016 | 0.484 ± 0.085 |
Models | GFBLUP | biBLUP | Function |
---|---|---|---|
ssc00410 | 0.511 ± 0.021 | 0.564 ± 0.089 | beta-alanine metabolism |
ssc04068 | 0.512 ± 0.020 | 0.564 ± 0.089 | FOXO signaling pathway |
ssc00910 | 0.511 ± 0.021 | 0.563 ± 0.089 | Nitrogen metabolism |
ssc04390 | 0.511 ± 0.021 | 0.563 ± 0.089 | Hippo signaling pathway |
ssc04725 | 0.511 ± 0.021 | 0.563 ± 0.089 | CHOLINERGIC SYNAPSE |
ssc04950 | 0.511 ± 0.021 | 0.563 ± 0.089 | Maturity onset diabetes of the young |
ssc05150 | 0.511 ± 0.021 | 0.563 ± 0.089 | Staphylococcus aureus infection |
ssc05231 | 0.511 ± 0.021 | 0.563 ± 0.089 | Choline metabolism in cancer |
ssc04640 | 0.508 ± 0.014 | 0.542 ± 0.055 | Hematopoietic cell lineage |
Models | GFBLUP | biBLUP | Function |
---|---|---|---|
ssc05168 | 0.465 ± 0.011 | 0.517 ± 0.061 | Herpes simplex virus 1 infection |
ssc04974 | 0.466 ± 0.011 | 0.516 ± 0.061 | Protein digestion and absorption |
ssc00515 | 0.466 ± 0.011 | 0.516 ± 0.061 | Mannose type O-glycan biosynthesis |
ssc04136 | 0.466 ± 0.011 | 0.516 ± 0.061 | Autophagy—other |
ssc05410 | 0.465 ± 0.011 | 0.516 ± 0.061 | Hypertrophic cardiomyopathy |
ssc04814 | 0.466 ± 0.011 | 0.516 ± 0.061 | Motor proteins |
ssc03015 | 0.466 ± 0.011 | 0.516 ± 0.061 | mRNA surveillance pathway |
ssc04611 | 0.466 ± 0.011 | 0.516 ± 0.061 | PLATELET ACTIVATION |
ssc05032 | 0.467 ± 0.011 | 0.498 ± 0.041 | Morphine addiction |
ssc04714 | 0.465 ± 0.011 | 0.497 ± 0.041 | Thermogenesis |
Models | GFBLUP | biBLUP | Function |
---|---|---|---|
ssc04218 | 0.333 ± 0.013 | 0.370 ± 0.043 | Cellular senescence |
ssc04660 | 0.335 ± 0.013 | 0.365 ± 0.043 | T cell receptor signaling pathway |
ssc00410 | 0.334 ± 0.014 | 0.364 ± 0.044 | beta-alanine metabolism |
ssc00830 | 0.334 ± 0.014 | 0.364 ± 0.044 | Retinol metabolism |
ssc04330 | 0.334 ± 0.014 | 0.364 ± 0.044 | Notch signaling pathway |
ssc04672 | 0.334 ± 0.014 | 0.364 ± 0.044 | Intestinal immune network for IgA production |
ssc05032 | 0.334 ± 0.014 | 0.364 ± 0.044 | Morphine addiction |
ssc05212 | 0.334 ± 0.014 | 0.364 ± 0.044 | Pancreatic cancer |
ssc00280 | 0.334 ± 0.013 | 0.364 ± 0.043 | Valine, leucine, and isoleucine degradation |
ssc04060 | 0.333 ± 0.014 | 0.364 ± 0.043 | Cytokine–cytokine receptor interaction |
Models | GFBLUP | biBLUP | Function |
---|---|---|---|
ssc05133 | 0.414 ± 0.016 | 0.484 ± 0.085 | Pertussis |
ssc04370 | 0.418 ± 0.016 | 0.482 ± 0.085 | VEGF signaling pathway |
ssc04720 | 0.418 ± 0.016 | 0.480 ± 0.085 | Long-term potentiation |
ssc00980 | 0.416 ± 0.016 | 0.477 ± 0.085 | Metabolism of xenobiotics by cytochrome P450 |
ssc04931 | 0.416 ± 0.016 | 0.474 ± 0.085 | Insulin resistance |
ssc00510 | 0.415 ± 0.016 | 0.471 ± 0.085 | N-Glycan biosynthesis |
ssc04068 | 0.414 ± 0.017 | 0.471 ± 0.085 | FOXO signaling pathway |
ssc05217 | 0.415 ± 0.016 | 0.467 ± 0.085 | Basal cell carcinoma |
ssc04612 | 0.414 ± 0.017 | 0.465 ± 0.058 | Antigen processing and presentation |
ssc04810 | 0.415 ± 0.017 | 0.461 ± 0.058 | Regulation of actin cytoskeleton |
Trait | Count | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
VOL | 2467 | 0.02 | 1.959 | 0.163 | 0.003 | 38.428 |
DEN | 2467 | 0.01 | 19.97 | 5.063 | 2.303 | 45.485 |
MOT | 2467 | 0.5 | 1 | 0.899 | 0.058 | 6.466 |
ABN | 2467 | 0 | 0.6 | 0.0999 | 0.068 | 1.986 |
Model | Formula | Genetic Effects | Relationship Definition |
---|---|---|---|
GBLUP | : additive relationship matrix | ||
RKHS | : Gaussian kernel | ||
GFBLUP | : pathway additive relationship | ||
biBLUP | , | : pathway Gaussian kernel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, F.; Yang, Y.; Hu, Y.; Meng, Y.; Zhang, Y.; Ran, M.; He, J.; Yin, Y.; Gao, N. Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions. Int. J. Mol. Sci. 2024, 25, 13155. https://doi.org/10.3390/ijms252313155
Chen Y, Yang F, Yang Y, Hu Y, Meng Y, Zhang Y, Ran M, He J, Yin Y, Gao N. Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions. International Journal of Molecular Sciences. 2024; 25(23):13155. https://doi.org/10.3390/ijms252313155
Chicago/Turabian StyleChen, Yantong, Fang Yang, Yanda Yang, Yulong Hu, Yang Meng, Yuebo Zhang, Maoliang Ran, Jun He, Yulong Yin, and Ning Gao. 2024. "Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions" International Journal of Molecular Sciences 25, no. 23: 13155. https://doi.org/10.3390/ijms252313155
APA StyleChen, Y., Yang, F., Yang, Y., Hu, Y., Meng, Y., Zhang, Y., Ran, M., He, J., Yin, Y., & Gao, N. (2024). Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions. International Journal of Molecular Sciences, 25(23), 13155. https://doi.org/10.3390/ijms252313155