Macrostomum lignano Complements the Portfolio of Simple Animal Models Used for Marine Toxicological Studies
Abstract
1. Introduction
Category | Common Types | Characteristics | Advantages | Limitations | Applications | Specific Research | References |
---|---|---|---|---|---|---|---|
Vertebrata | Danio rerio | Transparent embryos; short life cycle; mature genetic and molecular biology tools. | Abundant genetic and molecular tools; high ecological representativeness; multifunctionality. | High cost; long experimental cycle. | Evaluating the effects of chemical substances on development and growth, including neurotoxicity, cardiotoxicity, endocrine disruption, etc. | Testing the effects of pesticides, heavy metals, and endocrine disruptors on embryonic development, etc. | [7,8,9,10] |
Cyprinus carpio | Widely distributed; large organisms; relatively mature genetic tools. | Ecological representativeness; physiological and biochemical similarity to humans. | High maintenance cost; long experimental cycle. | Widely used to evaluate the impact of water pollution. | Monitoring the toxic effects of heavy metals, pesticides, and other chemical substances. | [11,12] | |
Mollusca | Mytilus edulis; Pecten maximus | Diverse and representative ecological roles; sensitive to environmental changes. | Ecological representativeness; biological monitoring. | Limited genetic tools; relatively complex experimental design and operation. | Evaluate the impacts of heavy metals, organic pollutants, and pharmaceuticals on aquatic ecosystems. | Measuring the bioaccumulation rates and physiological responses of mollusks can assess the long-term impacts of pollutants. | [13,14,15] |
Platyhelminthes | Macrostomum lignano | Small and transparent; short life cycle; strong regenerative capacity; well-established genetic manipulation techniques; easy to culture. | Easy high-resolution imaging; rapid experimental turnaround; regenerative research. | Weak ecological representativeness; fewer tools and resources. | Evaluate the impacts of heavy metals, organic pollutants, and pharmaceuticals on aquatic ecosystems. | Toxicity testing, regenerative capacity studies, and assessing behavioral impacts (such as movement, feeding, etc.), including evaluation of neurotoxicity, reproductive toxicity etc. | [26,30] |
Algae | Chlamydomonas reinhardtii; Synechocystis sp.; Navicula pelliculosa | Widely distributed; rapid growth; photosynthesis. | Ecological representativeness; rapid experimental turnaround. | Complexity; limited genetic tools. | Evaluate the impact of chemical substances on primary productivity, including photosynthesis, cell growth, and reproductive capacity. | Measuring the growth rate, chlorophyll content, and photosynthetic efficiency of algae can assess the short-term and long-term impacts of pollutants on algae. | [16,32,33,34] |
2. Biological Traits and Laboratory Cultivation of M. lignano
3. The Habitat of Macrostomum lignano—Unique for Marine Models
4. Experimental Tractability
Growth and Reproductive Capacity
5. Volume Measurements
6. Physical Activities
7. Respiration Rate Measurements
8. Total Feces Output
9. Live-Imaging Techniques
10. Assessing Tissue Healing and Regeneration
11. RNA Interference and In Situ Hybridization
12. Genome, Transcriptome, and Genome Browser Analysis
Title/URL | Notes | Reference |
---|---|---|
NCBI Genome Resources https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_002269645.1/ (accessed on 20 November 2024) | version Mlig_3_7_DV1 | [29] |
Flatworms and Acoels Genome Browser http://gb.macgenome.org (accessed on 20 November 2024) | version Mlig_4_5; Mlig_3_7 | [40] |
Macrostomum lignano genome resources website http://www.macgenome.org (accessed on 20 November 2024) | version Mlig_3_7; Mlig_RNA_3_7_DV1_v3; Mlig_RNA_3_7_DV1_v1 | [40] |
WormBase ParaSite https://parasite.wormbase.org/Macrostomum_lignano_prjna284736/Info/Index/ (accessed on 20 November 2024) | version Mlig_3_7_DV1 | [27] |
13. The Versatility and Challenges of Macrostomum lignano in Toxicology Research
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, Y. Early generation of nitric oxide contributes to copper tolerance through reducing oxidative stress and cell death in hulless barley roots. J. Plant Res. 2016, 129, 963–978. [Google Scholar] [CrossRef] [PubMed]
- Letchinger, M. Pollution and water quality, neighbourhood water quality assessment. Proj. Oceanogr. 2000. [Google Scholar]
- Pink, D.H. Investing in tomorrow’s liquid gold. World J. Anal. Chem. 2006, 2, 42–46. [Google Scholar]
- West, L. World water day: A billion people worldwide lack safe drinking water. About. Com. 2006, 26, 3–26. [Google Scholar]
- Shah, S.; Kumar, A. Bioavailability, Bioconcentration, and Biomagnification of Pollutants. In Environmental Toxicology and Ecosystem; CRC Press: Boca Raton, FL, USA, 2022; pp. 179–214. [Google Scholar]
- Khan, F.R.; Alhewairini, S. Zebrafish (Danio rerio) as a model organism. Curr. Trends Cancer Manag. 2018, 27, 3–18. [Google Scholar]
- Dai, Y.J.; Jia, Y.F.; Chen, N.; Bian, W.P.; Li, Q.K.; Ma, Y.B.; Chen, Y.L.; Pei, D.S. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 2014, 33, 11–17. [Google Scholar] [CrossRef]
- Feitsma, H.; Cuppen, E. Zebrafish as a cancer model. Mol. Cancer Res. 2008, 6, 685–694. [Google Scholar] [CrossRef]
- Małkowska, A.; Makarowa, K.; Zawada, K.; Grzelak, M.; Zmysłowska, A. Effect of curcumin on the embryotoxic effect of ethanol in a zebrafish model. Toxicol. Vitr. 2024, 101, 105951. [Google Scholar] [CrossRef]
- Tang, J.; Liu, A.; Chen, K.; Shi, Y.; Qiu, X. Exposure to amitriptyline disturbs behaviors in adult zebrafish and their offspring via altering neurotransmitter levels. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 288, 110079. [Google Scholar] [CrossRef]
- Ji, P.; Liu, G.; Xu, J.; Wang, X.; Li, J.; Zhao, Z.; Zhang, X.; Zhang, Y.; Xu, P.; Sun, X. Characterization of common carp transcriptome: Sequencing, de novo assembly, annotation and comparative genomics. PLoS ONE 2012, 7, e35152. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Li, X.; Sha, W.; Xue, Z.; Zhou, Z.; Ma, Y.; Zhu, S.; Guo, Z.; Zhao, B. Toxicological evaluation of TBBPA by common carp (Cyprinus carpio) about the in vivo/vitro disturbance of the AHR pathway. Sci. Total Environ. 2023, 904, 166622. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.P. National distribution of chemical concentrations in mussels and oysters in the USA. Mar. Environ. Res. 2002, 53, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.D. The mussel watch concept. Environ. Monit. Assess. 1986, 7, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Matthiessen, P.; Gibbs, P.E. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environ. Toxicol. Chem. An. Int. J. 1998, 17, 37–43. [Google Scholar]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Parlak, V. Model Organisms Used in Aquatic Toxicology. In Aquatic Toxicology in Freshwater: The Multiple Biomarker Approach; Springer: Berlin/Heidelberg, Germany, 2024; pp. 29–44. [Google Scholar]
- Ladurner, P.; Schärer, L.; Salvenmoser, W.; Rieger, R.M. A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp.(Rhabditophora, Macrostomorpha). J. Zool. Syst. Evol. Res. 2005, 43, 114–126. [Google Scholar] [CrossRef]
- Schärer, L.; Ladurner, P. Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 935–941. [Google Scholar] [CrossRef]
- Egger, B.; Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R. The regeneration capacity of the flatworm Macrostomum lignano—On repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes. Evol. 2006, 216, 565–577. [Google Scholar] [CrossRef]
- Ladurner, P.; Egger, B.; De Mulder, K.; Pfister, D.; Kuales, G.; Salvenmoser, W.; Schärer, L. The stem cell system of the basal flatworm Macrostomum lignano. In Stem Cells: Hydra Man; Springer: Berlin/Heidelberg, Germany, 2008; pp. 75–94. [Google Scholar]
- Mouton, S.; Willems, M.; Braeckman, B.P.; Egger, B.; Ladurner, P.; Schärer, L.; Borgonie, G. The free-living flatworm Macrostomum lignano: A new model organism for ageing research. Exp. Gerontol. 2009, 44, 243–249. [Google Scholar] [CrossRef]
- Willems, M.; Egger, B.; Wolff, C.; Mouton, S.; Houthoofd, W.; Fonderie, P.; Couvreur, M.; Artois, T.; Borgonie, G. Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: Developmental and phylogenetic implications. Dev. Genes Evol. 2009, 219, 409–417. [Google Scholar] [CrossRef]
- Lengerer, B.; Pjeta, R.; Wunderer, J.; Rodrigues, M.; Arbore, R.; Schärer, L.; Berezikov, E.; Hess, M.W.; Pfaller, K.; Egger, B. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Front. Zool. 2014, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Marie-Orleach, L.; Janicke, T.; Vizoso, D.B.; David, P.; Schärer, L. Quantifying episodes of sexual selection: Insights from a transparent worm with fluorescent sperm. Evolution 2016, 70, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, J.; Sieber, M.; von Frieling, J.; Bruchhaus, I.; Baines, J.F.; Bickmeyer, U.; Roeder, T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun. Biol. 2023, 6, 289. [Google Scholar] [CrossRef] [PubMed]
- Wasik, K.; Gurtowski, J.; Zhou, X.; Ramos, O.M.; Delás, M.J.; Battistoni, G.; El Demerdash, O.; Falciatori, I.; Vizoso, D.B.; Smith, A.D. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc. Natl. Acad. Sci. USA 2015, 112, 12462–12467. [Google Scholar] [CrossRef] [PubMed]
- Grudniewska, M.; Mouton, S.; Simanov, D.; Beltman, F.; Grelling, M.; De Mulder, K.; Arindrarto, W.; Weissert, P.M.; van der Elst, S.; Berezikov, E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife 2016, 5, e20607. [Google Scholar] [CrossRef]
- Wudarski, J.; Simanov, D.; Ustyantsev, K.; De Mulder, K.; Grelling, M.; Grudniewska, M.; Beltman, F.; Glazenburg, L.; Demircan, T.; Wunderer, J. Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nat. Commun. 2017, 8, 2120. [Google Scholar] [CrossRef]
- Rivera-Ingraham, G.A.; Nommick, A.; Blondeau-Bidet, E.; Ladurner, P.; Lignot, J.-H. Salinity stress from the perspective of the energy-redox axis: Lessons from a marine intertidal flatworm. Redox Biol. 2016, 10, 53–64. [Google Scholar] [CrossRef]
- Ma, Y.; Rivera-Ingraham, G.; Nommick, A.; Bickmeyer, U.; Roeder, T. Copper and cadmium administration induce toxicity and oxidative stress in the marine flatworm Macrostomum lignano. Aquat. Toxicol. 2020, 221, 105428. [Google Scholar] [CrossRef]
- Esperanza, M.; Cid, Á.; Herrero, C.; Rioboo, C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. Aquat. Toxicol. 2015, 165, 210–221. [Google Scholar] [CrossRef]
- Du, J.; Qiu, B.; Gomes, M.P.; Juneau, P.; Dai, G. Influence of light intensity on cadmium uptake and toxicity in the cyanobacteria Synechocystis sp. PCC6803. Aquat. Toxicol. 2019, 211, 163–172. [Google Scholar] [CrossRef]
- Nagai, T.; De Schamphelaere, K.A. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. Environ. Toxicol. Chem. 2016, 35, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Zanet, P. Characterization of Two Novel Cysteine Proteases in the Free-Living Organism «Macrostomum ligano». Master’s Thesis, McGill University, Montreal, QC, Canada, 2013. [Google Scholar]
- Wudarski, J.; Ustyantsev, K.; Glazenburg, L.; Berezikov, E. Influence of temperature on development, reproduction and regeneration in the flatworm model organism, Macrostomum lignano. Zool. Lett. 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Mouton, S.; Grudniewska, M.; Glazenburg, L.; Guryev, V.; Berezikov, E. Resilience to aging in the regeneration-capable flatworm Macrostomum lignano. Aging Cell 2018, 17, e12739. [Google Scholar] [CrossRef] [PubMed]
- Rieger, R.; Gehlen, M.; Haszprunar, G.; Holmlund, M.; Legniti, A.; Salvenmoser, W.; Tyler, S. Laboratory cultures of marine Macrostomida (Turbellaria). Fortschr. Zool. 1988, 36, 523. [Google Scholar]
- Morris, J.; Nallur, R.; Ladurner, P.; Egger, B.; Rieger, R.; Hartenstein, V. The embryonic development of the flatworm Macrostomum sp. Dev. Genes. Evol. 2004, 214, 220–239. [Google Scholar]
- Mouton, S.; Wudarski, J.; Grudniewska, M.; Berezikov, E. The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential. Int. J. Dev. Biol. 2018, 62, 551. [Google Scholar] [CrossRef]
- Wudarski, J.; Egger, B.; Ramm, S.A.; Schärer, L.; Ladurner, P.; Zadesenets, K.S.; Rubtsov, N.B.; Mouton, S.; Berezikov, E. The free-living flatworm Macrostomum lignano. EvoDevo 2020, 11, 5. [Google Scholar] [CrossRef]
- Mouton, S.; Mougel, A.; Ustyantsev, K.; Dissous, C.; Melnyk, O.; Berezikov, E.; Vicogne, J. Optimized protocols for RNA interference in Macrostomum lignano. G3 Genes Genomes Genet. 2024, 14, jkae037. [Google Scholar] [CrossRef]
- Schärer, L.; Joss, G.; Sandner, P. Mating behaviour of the marine turbellarian Macrostomum sp.: These worms suck. Mar. Biol. 2004, 145, 373–380. [Google Scholar] [CrossRef]
- Rivera-Ingraham, G.; Bickmeyer, U.; Abele, D. The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations. J. Exp. Biol. 2013, 216, 2741–2751. [Google Scholar]
- Tang, P.-S. On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension. Q. Rev. Biol. 1933, 8, 260–274. [Google Scholar] [CrossRef]
- Duggleby, R.G. Regression analysis of nonlinear Arrhenius plots: An empirical model and a computer program. Comput. Biol. Med. 1984, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; De Mulder, K.; Philipp, I.; Kuales, G.; Hrouda, M.; Eichberger, P.; Borgonie, G.; Hartenstein, V.; Ladurner, P. The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front. Zool. 2007, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Wudarski, J.; Ustyantsev, K.; Reinoite, F.; Berezikov, E. Random integration transgenesis in a free-living regenerative flatworm Macrostomum lignano. In Whole-Body Regeneration: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 493–508. [Google Scholar]
- Ustyantsev, K.; Wudarski, J.; Sukhikh, I.; Reinoite, F.; Mouton, S.; Berezikov, E. Proof of principle for piggyBac-mediated transgenesis in the flatworm Macrostomum lignano. Genetics 2021, 218, iyab076. [Google Scholar] [CrossRef]
- Bickmeyer, U.; Meinen, I.; Meyer, S.; Kröner, S.; Brenner, M. Fluorescence measurements of the marine flatworm Macrostomum lignano during exposure to TNT and its derivatives 2-ADNT and 4-ADNT. Mar. Environ. Res. 2020, 161, 105041. [Google Scholar] [CrossRef]
- Polak-Juszczak, L. Trace metals in flounder, Platichthys flesus (Linnaeus, 1758), and sediments from the Baltic Sea and the Portuguese Atlantic coast. Environ. Sci. Pollut. Res. 2013, 20, 7424–7432. [Google Scholar] [CrossRef]
- Wyse, E.; Azemard, S.; De Mora, S. World-Wide Intercomparison Exercise for the Determination of Trace Elements and Methylmercury in Marine Sediment IAEA-433; International Atomic Energy Agency, Marine Environment Laboratory: Monaco, 2004. [Google Scholar]
- Lotufo, G.R.; Blackburn, W.M.; Gibson, A.B. Toxicity of trinitrotoluene to sheepshead minnows in water exposures. Ecotoxicol. Environ. Saf. 2010, 73, 718–726. [Google Scholar] [CrossRef]
- Ladurner, P.; Rieger, R.; Baguñà, J. Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: A bromodeoxyuridine analysis. Dev. Biol. 2000, 226, 231–241. [Google Scholar] [CrossRef]
- Nimeth, K.; Ladurner, P.; Gschwentner, R.; Salvenmoser, W.; Rieger, R. Cell renewal and apoptosis in Macrostomum sp. [Lignano]. Cell Biol. Int. 2002, 26, 801–815. [Google Scholar] [CrossRef]
- Nimeth, K.T.; Mahlknecht, M.; Mezzanato, A.; Peter, R.; Rieger, R.; Ladurner, P. Stem cell dynamics during growth, feeding, and starvation in the basal flatworm Macrostomum sp.(Platyhelminthes). Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2004, 230, 91–99. [Google Scholar] [CrossRef]
- Bode, A.; Salvenmoser, W.; Nimeth, K.; Mahlknecht, M.; Adamski, Z.; Rieger, R.; Peter, R.; Ladurner, P. Immunogold-labeled S-phase neoblasts, total neoblast number, their distribution, and evidence for arrested neoblasts in Macrostomum lignano (Platyhelminthes, Rhabditophora). Cell Tissue Res. 2006, 325, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Willems, M.; Stevens, A.-S.; Adriaens, E.; Plusquin, M.; Smeets, K.; Van Goethem, F.; Vanparys, P.; Janssen, C.; Remon, J.-P. An adult stem cell proliferation assay in the flatworm model Macrostomum lignano to predict the carcinogenicity of compounds. Appl. Vitr. Toxicol. 2015, 1, 213–219. [Google Scholar] [CrossRef]
- Wiberg, R.A.W.; Brand, J.N.; Viktorin, G.; Mitchell, J.O.; Beisel, C.; Schärer, L. Genome assemblies of the simultaneously hermaphroditic flatworms Macrostomum cliftonense and Macrostomum hystrix. G3 Genes Genomes Genet. 2023, 13, jkad149. [Google Scholar] [CrossRef]
- Coe, T.; Hamilton, P.; Griffiths, A.; Hodgson, D.; Wahab, M.; Tyler, C. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology 2009, 18, 144–150. [Google Scholar] [CrossRef]
- Markow, T.A. Reproductive behavior of Drosophila melanogaster and D. nigrospiracula in the field and in the laboratory. J. Comp. Psychol. 1988, 102, 169. [Google Scholar] [CrossRef]
- Clancy, B.; Finlay, B.L.; Darlington, R.B.; Anand, K. Extrapolating brain development from experimental species to humans. Neurotoxicology 2007, 28, 931–937. [Google Scholar] [CrossRef]
- Persoone, G.; Baudo, R.; Cotman, M.; Blaise, C.; Thompson, K.C.; Moreira-Santos, M.; Vollat, B.; Törökne, A.; Han, T. Review on the acute Daphnia magna toxicity test–Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst. 2009, 393, 01. [Google Scholar] [CrossRef]
- Murbach, T.S.; Glávits, R.; Endres, J.R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I.P. A toxicological evaluation of Chlamydomonas reinhardtii, a green algae. Int. J. Toxicol. 2018, 37, 53–62. [Google Scholar] [CrossRef]
- Schuetzle, D.; Lewtas, J. Bioassay-directed chemical analysis in environmental research. Anal. Chem. 1986, 58, 1060A–1075A. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Gerhardt, A. Bioindicator species and their use in biomonitoring. Environ. Monit. 2002, 1, 77–123. [Google Scholar]
- Lower, W.; Kendall, R. Sentinel species and sentinel bioassay. In Biomarkers of Environmental Contamination; CRC Press: Boca Raton, FL, USA, 2018; pp. 309–331. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Roeder, T. Macrostomum lignano Complements the Portfolio of Simple Animal Models Used for Marine Toxicological Studies. Int. J. Mol. Sci. 2024, 25, 13092. https://doi.org/10.3390/ijms252313092
Ma Y, Roeder T. Macrostomum lignano Complements the Portfolio of Simple Animal Models Used for Marine Toxicological Studies. International Journal of Molecular Sciences. 2024; 25(23):13092. https://doi.org/10.3390/ijms252313092
Chicago/Turabian StyleMa, Yuanyuan, and Thomas Roeder. 2024. "Macrostomum lignano Complements the Portfolio of Simple Animal Models Used for Marine Toxicological Studies" International Journal of Molecular Sciences 25, no. 23: 13092. https://doi.org/10.3390/ijms252313092
APA StyleMa, Y., & Roeder, T. (2024). Macrostomum lignano Complements the Portfolio of Simple Animal Models Used for Marine Toxicological Studies. International Journal of Molecular Sciences, 25(23), 13092. https://doi.org/10.3390/ijms252313092