RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Populations
2.2. Target Editing Index (TEI)
2.3. RNA Editing Biomarkers Combination Analysis
2.3.1. Biomarkers-Only Model
2.3.2. Integrated RF Model
2.4. Results Conclusion
3. Discussion
4. Materials and Methods
4.1. Subjects and Clinical Assessment
4.2. RNA Extraction and Qualification
4.3. Targeted Next Generation Sequencing
4.4. Bioinformatics Analysis
4.5. Biostatistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scangos, K.W.; State, M.W.; Miller, A.H.; Baker, J.T.; Williams, L.M. New and emerging approaches to treat psychiatric disorders. Nat. Med. 2023, 29, 317–333. [Google Scholar] [CrossRef]
- Pacchiarotti, I.; Tiihonen, J.; Kotzalidis, G.D.; Verdolini, N.; Murru, A.; Goikolea, J.M.; Valenti, M.; Aedo, A.; Vieta, E. Long-acting injectable antipsychotics (LAIs) for maintenance treatment of bipolar and schizoaffective disorders: A systematic review. Eur. Neuropsychopharmacol. 2019, 29, 457–470. [Google Scholar] [CrossRef]
- McDonald, K.C.; Bulloch, A.G.; Duffy, A.; Bresee, L.; Williams, J.V.; Lavorato, D.H.; Patten, S.B. Prevalence of Bipolar I and II Disorder in Canada. Can. J. Psychiatry 2015, 60, 151–156. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Agustini, B.; Kohler-Forsberg, O.; Cusin, C.; Katz, D.; Sylvia, L.G.; Peters, A.; Berk, M. Diagnosis and Treatment of Bipolar Disorder: A Review. JAMA 2023, 330, 1370–1380. [Google Scholar] [CrossRef]
- Merikangas, K.R.; Jin, R.; He, J.P.; Kessler, R.C.; Lee, S.; Sampson, N.A.; Viana, M.C.; Andrade, L.H.; Hu, C.; Karam, E.G.; et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 2011, 68, 241–251. [Google Scholar] [CrossRef]
- Judd, L.L.; Akiskal, H.S.; Schettler, P.J.; Endicott, J.; Maser, J.; Solomon, D.A.; Leon, A.C.; Rice, J.A.; Keller, M.B. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch. Gen. Psychiatry 2002, 59, 530–537. [Google Scholar] [CrossRef]
- Dagani, J.; Signorini, G.; Nielssen, O.; Bani, M.; Pastore, A.; Girolamo, G.; Large, M. Meta-analysis of the Interval between the Onset and Management of Bipolar Disorder. Can. J. Psychiatry 2017, 62, 247–258. [Google Scholar] [CrossRef]
- Fritz, K.; Russell, A.M.T.; Allwang, C.; Kuiper, S.; Lampe, L.; Malhi, G.S. Is a delay in the diagnosis of bipolar disorder inevitable? Bipolar Disord. 2017, 19, 396–400. [Google Scholar] [CrossRef]
- Scott, J.; Graham, A.; Yung, A.; Morgan, C.; Bellivier, F.; Etain, B. A systematic review and meta-analysis of delayed help-seeking, delayed diagnosis and duration of untreated illness in bipolar disorders. Acta Psychiatr. Scand. 2022, 146, 389–405. [Google Scholar] [CrossRef]
- Beyer, J.L. The Use of Antidepressants in Bipolar Depression. Handb. Exp. Pharmacol. 2019, 250, 415–442. [Google Scholar] [CrossRef]
- Bauer, M.; Andreassen, O.A.; Geddes, J.R.; Vedel Kessing, L.; Lewitzka, U.; Schulze, T.G.; Vieta, E. Areas of uncertainties and unmet needs in bipolar disorders: Clinical and research perspectives. Lancet Psychiatry 2018, 5, 930–939. [Google Scholar] [CrossRef]
- Stang, P.E.; Frank, C.; Kalsekar, A.; Yood, M.U.; Wells, K.; Burch, S. The clinical history and costs associated with delayed diagnosis of bipolar disorder. Medscape Gen. Med. 2006, 8, 18. [Google Scholar]
- Scott, J.; Leboyer, M. Consequences of delayed diagnosis of bipolar disorders. Encephale 2011, 37 (Suppl. 3), S173–S175. [Google Scholar] [CrossRef]
- Nolan, C.J.; Roepke, T.A.; Perreault, M.L. Beyond the Binary: Gender Inclusivity in Schizophrenia Research. Biol. Psychiatry 2023, 94, 543–549. [Google Scholar] [CrossRef]
- Tandon, R.; Nasrallah, H.; Akbarian, S.; Carpenter, W.T., Jr.; DeLisi, L.E.; Gaebel, W.; Green, M.F.; Gur, R.E.; Heckers, S.; Kane, J.M.; et al. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr. Res. 2024, 264, 1–28. [Google Scholar] [CrossRef]
- Malhi, G.S.; Green, M.; Fagiolini, A.; Peselow, E.D.; Kumari, V. Schizoaffective disorder: Diagnostic issues and future recommendations. Bipolar Disord. 2008, 10, 215–230. [Google Scholar] [CrossRef]
- Salvetat, N.; Checa-Robles, F.J.; Patel, V.; Cayzac, C.; Dubuc, B.; Chimienti, F.; Abraham, J.D.; Dupre, P.; Vetter, D.; Mereuze, S.; et al. A game changer for bipolar disorder diagnosis using RNA editing-based biomarkers. Transl. Psychiatry 2022, 12, 182. [Google Scholar] [CrossRef]
- Citrome, L.; Goldberg, J.F. The many faces of bipolar disorder. How to tell them apart. Postgrad. Med. 2005, 117, 15–23. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Firth, J.; Vieta, E. Bipolar Disorder. N. Engl. J. Med. 2020, 383, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, F.; Abreu, H.; Sinella, R.; Nembrini, S.; Centonze, S.; Landra, V.; Brasso, C.; Cappellano, G.; Rocca, P.; Chiocchetti, A. Omics approaches open new horizons in major depressive disorder: From biomarkers to precision medicine. Front. Psychiatry 2024, 15, 1422939. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.B. Metabolomics Biomarkers for Precision Psychiatry. Adv. Exp. Med. Biol. 2019, 1161, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Mengelkoch, S.; Gassen, J.; Lev-Ari, S.; Alley, J.C.; Schussler-Fiorenza Rose, S.M.; Snyder, M.P.; Slavich, G.M. Multi-omics in stress and health research: Study designs that will drive the field forward. Stress 2024, 27, 2321610. [Google Scholar] [CrossRef] [PubMed]
- Walkley, C.R.; Li, J.B. Rewriting the transcriptome: Adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017, 18, 205. [Google Scholar] [CrossRef] [PubMed]
- Heraud-Farlow, J.E.; Walkley, C.R. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol. 2020, 10, 200085. [Google Scholar] [CrossRef] [PubMed]
- Mannion, N.; Arieti, F.; Gallo, A.; Keegan, L.P.; O’Connell, M.A. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015, 5, 2338–2362. [Google Scholar] [CrossRef]
- Bazak, L.; Haviv, A.; Barak, M.; Jacob-Hirsch, J.; Deng, P.; Zhang, R.; Isaacs, F.J.; Rechavi, G.; Li, J.B.; Eisenberg, E.; et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014, 24, 365–376. [Google Scholar] [CrossRef]
- Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 2016, 17, 83–96. [Google Scholar] [CrossRef]
- Eisenberg, E.; Levanon, E.Y. A-to-I RNA editing—Immune protector and transcriptome diversifier. Nat. Rev. Genet. 2018, 19, 473–490. [Google Scholar] [CrossRef]
- Solomon, O.; Oren, S.; Safran, M.; Deshet-Unger, N.; Akiva, P.; Jacob-Hirsch, J.; Cesarkas, K.; Kabesa, R.; Amariglio, N.; Unger, R.; et al. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA 2013, 19, 591–604. [Google Scholar] [CrossRef]
- Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.G.; Nishikura, K. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008, 36, 5270–5280. [Google Scholar] [CrossRef]
- Wulff, B.E.; Nishikura, K. Modulation of microRNA expression and function by ADARs. Curr. Top. Microbiol. Immunol. 2012, 353, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Slotkin, W.; Nishikura, K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 2013, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.; Kawahara, Y.; Tamburro, K.M.; Nishikura, K. A-to-I RNA editing and human disease. RNA Biol. 2006, 3, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Okada, S.; Sakurai, M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol. 2021, 18, 999–1013. [Google Scholar] [CrossRef]
- Silberberg, G.; Lundin, D.; Navon, R.; Ohman, M. Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders. Hum. Mol. Genet. 2012, 21, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Di Narzo, A.F.; Kozlenkov, A.; Roussos, P.; Hao, K.; Hurd, Y.; Lewis, D.A.; Sibille, E.; Siever, L.J.; Koonin, E.; Dracheva, S. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Hum. Mol. Genet. 2014, 23, 4801–4813. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, D.; van der Laan, S.; Underwood, M.D.; Salvetat, N.; Cavarec, L.; Vincent, L.; Molina, F.; Mann, J.J.; Arango, V.; Pujol, J.F. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression. Transl. Psychiatry 2016, 6, e878. [Google Scholar] [CrossRef]
- Salvetat, N.; Checa-Robles, F.J.; Delacretaz, A.; Cayzac, C.; Dubuc, B.; Vetter, D.; Dainat, J.; Lang, J.P.; Gamma, F.; Weissmann, D. AI algorithm combined with RNA editing-based blood biomarkers to discriminate bipolar from major depressive disorders in an external validation multicentric cohort. J. Affect. Disord. 2024, 356, 385–393. [Google Scholar] [CrossRef]
- Hayashi, M.A.F.; Salvetat, N.; Cayzac, C.; Checa-Robles, F.J.; Dubuc, B.; Mereuze, S.; Nani, J.V.; Molina, F.; Brietzke, E.; Weissmann, D. Euthymic and depressed bipolar patients are characterized by different RNA editing patterns in blood. Psychiatry Res. 2023, 328, 115422. [Google Scholar] [CrossRef]
- Caret Package—RDocumentation. Available online: https://rdocumentation.org/packages/caret/versions/6.0-94 (accessed on 5 July 2023).
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Su, J.Q.; Liu, J.S. Linear Combinations of Multiple Diagnostic Markers. J. Am. Stat. Assoc. 1993, 88, 1350–1355. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M.C. Classification and Regression by randomForest. R. News 2002, 2, 18–22. Available online: https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf (accessed on 4 March 2024).
- Benabarre, A.; Vieta, E.; Colom, F.; Martinez-Aran, A.; Reinares, M.; Gasto, C. Bipolar disorder, schizoaffective disorder and schizophrenia: Epidemiologic, clinical and prognostic differences. Eur. Psychiatry 2001, 16, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Dodd, S.; Callaly, P.; Berk, L.; Fitzgerald, P.; de Castella, A.R.; Filia, S.; Filia, K.; Tahtalian, S.; Biffin, F.; et al. History of illness prior to a diagnosis of bipolar disorder or schizoaffective disorder. J. Affect. Disord. 2007, 103, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Primers 2015, 1, 15067. [Google Scholar] [CrossRef]
- Skorobogatov, K.; De Picker, L.; Wu, C.L.; Foiselle, M.; Richard, J.R.; Boukouaci, W.; Bouassida, J.; Laukens, K.; Meysman, P.; le Corvoisier, P.; et al. Immune-based Machine learning Prediction of Diagnosis and Illness State in Schizophrenia and Bipolar Disorder. Brain Behav. Immun. 2024, 122, 422–432. [Google Scholar] [CrossRef]
- Varathan, A.; Senthooran, S.; Jeyananthan, P. Role of different omics data in the diagnosis of schizophrenia disorder: A machine learning study. Schizophr. Res. 2024, 271, 38–46. [Google Scholar] [CrossRef]
- Fryar-Williams, S.; Tucker, G.; Strobel, J.; Huang, Y.; Clements, P. Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment. Int. J. Mol. Sci. 2023, 24, 15845. [Google Scholar] [CrossRef]
- Chen, J.; Amdanee, N.; Zuo, X.; Wang, Y.; Gong, M.; Yang, Y.; Li, H.; Zhang, X.; Zhang, C. Biomarkers of bipolar disorder based on metabolomics: A systematic review. J. Affect. Disord. 2024, 350, 492–503. [Google Scholar] [CrossRef]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef]
- Goldberg, J.F.; Truman, C.J. Antidepressant-induced mania: An overview of current controversies. Bipolar Disord. 2003, 5, 407–420. [Google Scholar] [CrossRef] [PubMed]
- van der Laan, S.; Salvetat, N.; Weissmann, D.; Molina, F. Emerging RNA editing biomarkers will foster drug development. Drug Discov. Today 2017, 22, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Wayman, G.A.; Lee, Y.S.; Tokumitsu, H.; Silva, A.J.; Soderling, T.R. Calmodulin-kinases: Modulators of neuronal development and plasticity. Neuron 2008, 59, 914–931. [Google Scholar] [CrossRef] [PubMed]
- Takemoto-Kimura, S.; Suzuki, K.; Horigane, S.I.; Kamijo, S.; Inoue, M.; Sakamoto, M.; Fujii, H.; Bito, H. Calmodulin kinases: Essential regulators in health and disease. J. Neurochem. 2017, 141, 808–818. [Google Scholar] [CrossRef]
- Lin, E.; Kuo, P.H.; Liu, Y.L.; Yu, Y.W.; Yang, A.C.; Tsai, S.J. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front. Psychiatry 2018, 9, 290. [Google Scholar] [CrossRef]
- Gadelha, A.; Coleman, J.; Breen, G.; Mazzoti, D.R.; Yonamine, C.M.; Pellegrino, R.; Ota, V.K.; Belangero, S.I.; Glessner, J.; Sleiman, P.; et al. Genome-wide investigation of schizophrenia associated plasma Ndel1 enzyme activity. Schizophr. Res. 2016, 172, 60–67. [Google Scholar] [CrossRef]
- Karni-Schmidt, O.; Lokshin, M.; Prives, C. The Roles of MDM2 and MDMX in Cancer. Annu. Rev. Pathol. 2016, 11, 617–644. [Google Scholar] [CrossRef]
- Scrable, H.; Burns-Cusato, M.; Medrano, S. Anxiety and the aging brain: Stressed out over p53? Biochim. Biophys. Acta 2009, 1790, 1587–1591. [Google Scholar] [CrossRef]
- Colledge, M.; Snyder, E.M.; Crozier, R.A.; Soderling, J.A.; Jin, Y.; Langeberg, L.K.; Lu, H.; Bear, M.F.; Scott, J.D. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 2003, 40, 595–607. [Google Scholar] [CrossRef]
- Andrews, J.L.; Goodfellow, F.J.; Matosin, N.; Snelling, M.K.; Newell, K.A.; Huang, X.F.; Fernandez-Enright, F. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies. J. Psychiatr. Res. 2017, 90, 31–39. [Google Scholar] [CrossRef]
- Tan, P.H.; Ji, J.; Hsing, C.H.; Tan, R.; Ji, R.R. Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int. J. Mol. Sci. 2022, 23, 14394. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Golji, J.; Brodeur, L.K.; Chung, F.S.; Chen, J.T.; deBeaumont, R.S.; Bullock, C.P.; Jones, M.D.; Kerr, G.; Li, L.; et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 2019, 25, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Alagbe, O.; Wang, X.; Woolwine, B.; Thornbury, M.; Raison, C.L.; Miller, A.H. Promoter polymorphisms of the interferon-alpha receptor gene and development of Interferon-induced depressive symptoms in patients with chronic hepatitis C: Preliminary findings. Neuropsychobiology 2005, 52, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Rifai, M.A.; Sabouni, M.A. Utilizing genomic polymorphisms to personalize hepatitis C therapies. Curr. Opin. Organ Transplant. 2012, 17, 198–203. [Google Scholar] [CrossRef]
- Ingley, E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun. Signal 2012, 10, 21. [Google Scholar] [CrossRef]
- O’Neill, M.J.; Bleakman, D.; Zimmerman, D.M.; Nisenbaum, E.S. AMPA receptor potentiators for the treatment of CNS disorders. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 181–194. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, X.; Xu, B.; Zhao, Z.; Yang, J.; Long, J.; Su, L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci. Lett. 2021, 745, 135596. [Google Scholar] [CrossRef]
- Costas, J.; Gratacos, M.; Escaramis, G.; Martin-Santos, R.; de Diego, Y.; Baca-Garcia, E.; Canellas, F.; Estivill, X.; Guillamat, R.; Guitart, M.; et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J. Psychiatr. Res. 2010, 44, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Colgan, L.A.; Hu, M.; Misler, J.A.; Parra-Bueno, P.; Moran, C.M.; Leitges, M.; Yasuda, R. PKCalpha integrates spatiotemporally distinct Ca(2+) and autocrine BDNF signaling to facilitate synaptic plasticity. Nat. Neurosci. 2018, 21, 1027–1037. [Google Scholar] [CrossRef]
- Forsyth, J.K.; Lewis, D.A. Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends Cogn. Sci. 2017, 21, 760–778. [Google Scholar] [CrossRef]
- Pandey, G.N.; Rizavi, H.S.; Ren, X. Protein and mRNA expression of protein kinase C (PKC) in the postmortem brain of bipolar and schizophrenic subjects. J. Psychiatr. Res. 2020, 130, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Sheikh, S.; Khan, M.A.; Chaturvedi, A.; Patel, P.; Patel, R.; Buch, B.C.; Anand, R.S.; Shah, T.C.; Vora, V.N.; et al. Endoxifen: A new, protein kinase C inhibitor to treat acute and mixed mania associated with bipolar I disorder. Bipolar Disord. 2021, 23, 595–603. [Google Scholar] [CrossRef]
- Giorgi, M.; Pellegrini, M.; Massimi, M. Role of Phosphodiesterases in Biology and Pathology 2.0. Int. J. Mol. Sci. 2024, 25, 5339. [Google Scholar] [CrossRef]
- Bollen, E.; Prickaerts, J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life 2012, 64, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Epstein, P.M.; Basole, C.; Brocke, S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front. Cell Dev. Biol. 2021, 9, 636778. [Google Scholar] [CrossRef]
- Chimienti, F.; Cavarec, L.; Vincent, L.; Salvetat, N.; Arango, V.; Underwood, M.D.; Mann, J.J.; Pujol, J.F.; Weissmann, D. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl. Psychiatry 2019, 9, 91. [Google Scholar] [CrossRef]
- Guo, J.Y.; Ragland, J.D.; Carter, C.S. Memory and cognition in schizophrenia. Mol. Psychiatry 2019, 24, 633–642. [Google Scholar] [CrossRef]
- Zhan, A.; Xu, X.; Chen, L.; Wang, X.; Yanfeng, X.; Dan, W.; Zhan, Y.; Shi, Q. Decreased expression of Gab2 in patients with temporal lobe epilepsy and pilocarpine-induced rat model. Synapse 2014, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Malagrino, F.; Puglisi, E.; Pagano, L.; Travaglini-Allocatelli, C.; Toto, A. GRB2: A dynamic adaptor protein orchestrating cellular signaling in health and disease. Biochem. Biophys. Rep. 2024, 39, 101803. [Google Scholar] [CrossRef]
- Chen, X.X.; Guo, R.R.; Cao, X.P.; Tan, L.; Tan, L.; Alzheimer’s Disease Neuroimaging Initiative. The impact of GAB2 genetic variations on cerebrospinal fluid markers in Alzheimer’s disease. Ann. Transl. Med. 2018, 6, 171. [Google Scholar] [CrossRef]
- Balu, D.T.; Coyle, J.T. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev. 2011, 35, 848–870. [Google Scholar] [CrossRef]
- Gao, K.; Lin, Z.; Wen, S.; Jiang, Y. Potassium channels and epilepsy. Acta Neurol. Scand. 2022, 146, 699–707. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Quinn, R.J.; Pountney, D.L.; Richardson, D.R.; Mellick, G.D.; Ma, L. Potassium Channels in Parkinson’s Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol. Rev. 2023, 75, 758–788. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Shen, L.; Fu, Z.B.; Li, H.; Pan, Y.L.; Yu, R.Z. Exploring the common diagnostic gene KCNJ15 and shared pathway of ankylosing spondylitis and ulcerative colitis through integrated bioinformatics. Front. Physiol. 2023, 14, 1146538. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2010. Available online: https://www.r-project.org/ (accessed on 10 November 2024).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Meyer, P.E. Information-Theoretic Variable Selection and Network Inference from Microarray Data. Ph.D. Thesis, Universite Libre de Bruxelles, Brussels, Belgium, 2008. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Paluszynska, A.; Biecek, P.; Jiang, Y. randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance. R Package Version 0.10.1. 2022. Available online: https://CRAN.R-project.org/package=randomForestExplainer (accessed on 10 November 2024).
- McCracken, D.D. The Monte Carlo Method. Sci. Am. 1955, 192, 90–96. [Google Scholar] [CrossRef]
- Kramar, A.; Faraggi, D.; Fortuné, A.; Reiser, B. mROC: A computer program for combining tumour markers in predicting disease states. Comput. Methods Programs Biomed. 2001, 66, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2022; Available online: https://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 10 November 2024)ISBN 0-387-95457-0.
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
Total Sample | Controls | SZ | SA | BD | |
---|---|---|---|---|---|
Number, n | 169 | 85 | 31 | 14 | 39 |
Age | |||||
Age (min–max) | 18–64 | 18–63 | 22–62 | 35–63 | 18–64 |
Age (mean ± SD) | 42.2 ± 10.5 | 40.3 ± 11.2 | 42.8 ± 9.8 | 45.6 ± 6.7 | 44.7 ± 9.7 |
p value (vs. Ctrl) | 0.24 | 0.02 | 0.03 | ||
p value (vs. SZ) | 0.27 | 0.42 | |||
p value (vs. SA) | 0.71 | ||||
Sex | |||||
Male (n (%)) | 91 (53.8) | 47 (55.3) | 23 (74.2) | 10 (71.4) | 11 (28.2) |
Female (n (%)) | 78 (46.1) | 38 (44.7) | 8 (25.8) | 4 (28.6) | 28 (71.8) |
p value (vs. Ctrl) | <0.0001 | 0.001 | <0.0001 | ||
p value (vs. SZ) | 0.52 | <0.0001 | |||
p value (vs. SA) | <0.0001 | ||||
Psychotropic Treatments | |||||
Anxiolytics (n (%)) | 7(4.1) | 0 | 5 (16.1) | 2 (14.3) | 0 (0.0) |
Hypnotics/Sedatives (n (%)) | 1 (0.59) | 0 | 1 (3.2) | 0 (0.0) | 0 (0.0) |
Antidepressants (n (%)) | 31 (18.3) | 0 | 18 (58.0) | 8 (57.1) | 5 (12.8) |
Antipsychotics (n (%)) | 71(42.0) | 0 | 29 (93.6) | 14 (100.0) | 28 (71.8) |
Antiepileptics (n (%)) | 43 (25.4) | 0 | 12 (38.7) | 5 (35.7) | 26 (66.7) |
p value (vs. SZ) | 0.39 | <0.0001 | |||
p value (vs. SA) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Checa-Robles, F.J.; Salvetat, N.; Cayzac, C.; Menhem, M.; Favier, M.; Vetter, D.; Ouna, I.; Nani, J.V.; Hayashi, M.A.F.; Brietzke, E.; et al. RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders. Int. J. Mol. Sci. 2024, 25, 12981. https://doi.org/10.3390/ijms252312981
Checa-Robles FJ, Salvetat N, Cayzac C, Menhem M, Favier M, Vetter D, Ouna I, Nani JV, Hayashi MAF, Brietzke E, et al. RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders. International Journal of Molecular Sciences. 2024; 25(23):12981. https://doi.org/10.3390/ijms252312981
Chicago/Turabian StyleCheca-Robles, Francisco J., Nicolas Salvetat, Christopher Cayzac, Mary Menhem, Mathieu Favier, Diana Vetter, Ilhème Ouna, João V. Nani, Mirian A. F. Hayashi, Elisa Brietzke, and et al. 2024. "RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders" International Journal of Molecular Sciences 25, no. 23: 12981. https://doi.org/10.3390/ijms252312981
APA StyleCheca-Robles, F. J., Salvetat, N., Cayzac, C., Menhem, M., Favier, M., Vetter, D., Ouna, I., Nani, J. V., Hayashi, M. A. F., Brietzke, E., & Weissmann, D. (2024). RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders. International Journal of Molecular Sciences, 25(23), 12981. https://doi.org/10.3390/ijms252312981