Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure
Abstract
1. Introduction
2. Results
2.1. Cohort Information
2.2. Correlation by Exposure Substance
2.3. Classification of Exposure Groups
2.4. DEG Analysis
2.5. DMR Analysis
2.6. Integrated and Functional Analysis
3. Discussion
4. Materials and Methods
4.1. Human-Derived Samples
4.2. Assessment of Exposure Independence by Substance
4.3. The Classification of Exposure Groups
4.4. RNA-Seq (RNA Preparation, Library Construction, Sequencing)
4.5. DEG Analysis
4.6. MeDIP-Seq (DNA Preparation, Library Construction, Sequencing)
4.7. DMR Analysis
4.8. Integrated and Functional Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asghar, N.; Hussain, A.; Nguyen, D.A.; Ali, S.; Hussain, I.; Junejo, A.; Ali, A. Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J. Nanobiotechnol. 2024, 22, 26. [Google Scholar] [CrossRef]
- Sharma, T.; Singh, A.; Kumar, N.; Chauhan, G.; Singh, D.P.; Singh, A.; Rana, B.B. Emerging Pollutants in the Environment and Ecological Risks. In Management and Mitigation of Emerging Pollutants; Springer: Cham, Switzerland, 2023; pp. 1–20. [Google Scholar]
- Shareefdeen, Z. Biotechnology for Odor and Air Pollution Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kroll, J.H.; Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593–3624. [Google Scholar] [CrossRef]
- Kansal, A. Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. J. Hazard. Mater. 2009, 166, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, P.; Ciccioli, P.; Goldstein, A.; Hamilton, J.F.; Hoffmann, T.; Lewis, A.C.; Mannozzi, M.; O’Doherty, S.; Reimann, S.; Roberts, J. Volatile Organic Compounds in the Atmosphere; Wiley Online Library: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sadanaga, Y.; Shibata, S.; Hamana, M.; Takenaka, N.; Bandow, H. Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos. Environ. 2008, 42, 4708–4723. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Lee, I.; Park, H.; Kim, M.J.; Kim, S.; Choi, S.; Park, J.; Cho, Y.H.; Hong, S.; Yoo, J.; Cheon, G.J.; et al. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Int. J. Hyg. Environ. Health 2022, 240, 113886. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Zhou, W.; Ming, X.; Yang, Y.; Hu, Y.; He, Z.; Chen, H.; Li, Y.; Zhou, X.; Yin, P. Association Between Maternal Exposure to Ambient Air Pollution and the Risk of Preterm Birth: A Birth Cohort Study in Chongqing, China, 2015–2020. Int. J. Environ. Res. Public Health 2022, 19, 2211. [Google Scholar] [CrossRef]
- Mekonnen, Z.K.; Oehlert, J.W.; Eskenazi, B.; Shaw, G.M.; Balmes, J.R.; Padula, A.M. The relationship between air pollutants and maternal socioeconomic factors on preterm birth in California urban counties. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 503–513. [Google Scholar] [CrossRef]
- Berke, R.; Singh, A.; Guralnick, M. Atopic dermatitis: An overview. Am. Fam. Physician 2012, 86, 35–42. [Google Scholar] [PubMed]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic Dermatitis: Pathophysiology; Springer: Cham, Switzerland, 2017; pp. 21–37. [Google Scholar]
- Afshari, M.; Kolackova, M.; Rosecka, M.; Čelakovská, J.; Krejsek, J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front. Immunol. 2024, 15, 1361005. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, R.; Schymanski, E.L.; Barabási, A.-L.; Miller, G.W. The exposome and health: Where chemistry meets biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef]
- Vrijheid, M. The exposome: A new paradigm to study the impact of environment on health. Thorax 2014, 69, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.; Andrianou, X.D.; Makris, K.C. A scoping review on the characteristics of human exposome studies. Curr. Pollut. Rep. 2019, 5, 378–393. [Google Scholar] [CrossRef]
- Renz, H.; Conrad, M.; Brand, S.; Teich, R.; Garn, H.; Pfefferle, P.I. Allergic diseases, gene-environment interactions. Allergy 2011, 66, 10–12. [Google Scholar] [CrossRef]
- Jenerowicz, D.; Silny, W.; Danczak-Pazdrowska, A.; Polanska, A.; Osmola-Mankowska, A.; Olek-Hrab, K. Environmental factors and allergic diseases. Ann. Agric. Environ. Med. 2012, 19, 475–481. [Google Scholar]
- Lawson, V.; Lewis-Jones, M.S.; Finlay, A.Y.; Reid, P.; Owens, R.G. The family impact of childhood atopic dermatitis: The Dermatitis Family Impact Questionnaire. Br. J. Dermatol. 1998, 138, 107–113. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Lim, D.; Lee, Y.-K.; Kim, J.H. Effects of indoor air pollutants on atopic dermatitis. Int. J. Environ. Res. Public Health 2016, 13, 1220. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.-T.; Chen, Y.-S.; Lee, M.-F.; Chen, T.-T.; Lai, C.-C.; Lin, C.-C.; Chen, Y.-H. Exposure to Volatile Organic Compounds May Contribute to Atopic Dermatitis in Adults. Biomedicines 2024, 12, 1419. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.K.; Kim, J.H.; Park, D.; Lee, E.; Lee, S.W.; Jee, H.M.; Shin, Y.H.; Han, M.Y. Personal exposure to total VOC is associated with symptoms of atopic dermatitis in schoolchildren. J. Korean Med. Sci. 2022, 37, e63. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.; Khodadadi, H.; Malik, A.; Davidson, B.; da Silva Lopes Salles, É.; Bhatia, J.; Hale, V.L.; Baban, B. Innate immunity of neonates and infants. Front. Immunol. 2018, 9, 1759. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. [Google Scholar] [CrossRef]
- de Planell-Saguer, M.; Lovinsky-Desir, S.; Miller, R.L. Epigenetic regulation: The interface between prenatal and early-life exposure and asthma susceptibility. Environ. Mol. Mutagen. 2014, 55, 231–243. [Google Scholar] [CrossRef]
- Wang, I.J.; Chen, S.L.; Lu, T.P.; Chuang, E.; Chen, P.C. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin. Exp. Allergy 2013, 43, 535–543. [Google Scholar] [CrossRef]
- Johnston, R.A.; Aracena, K.A.; Barreiro, L.B.; Lea, A.J.; Tung, J. DNA methylation-environment interactions in the human genome. eLife 2024, 12, RP89371. [Google Scholar] [CrossRef]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef]
- Villicaña, S.; Castillo-Fernandez, J.; Hannon, E.; Christiansen, C.; Tsai, P.-C.; Maddock, J.; Kuh, D.; Suderman, M.; Power, C.; Relton, C.; et al. Genetic impacts on DNA methylation help elucidate regulatory genomic processes. Genome Biol. 2023, 24, 176. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [PubMed]
- Soler, D.C.; Young, A.E.; Griffith, A.D.; Fu, P.F.; Cooper, K.D.; McCormick, T.S.; Popkin, D.L. Overexpression of AQP3 and AQP10 in the skin exacerbates psoriasiform acanthosis. Exp. Dermatol. 2017, 26, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.-H.; Chung, W.-H.; Wu, P.-C.; Chen, C.-B. JAK–STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front. Immunol. 2022, 13, 1068260. [Google Scholar] [CrossRef]
- Nakayama, T.; Fujisawa, R.; Yamada, H.; Horikawa, T.; Kawasaki, H.; Hieshima, K.; Izawa, D.; Fujiie, S.; Tezuka, T.; Yoshie, O. Inducible expression of a CC chemokine liver-and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3α/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int. Immunol. 2001, 13, 95–103. [Google Scholar] [CrossRef]
- Gutowska-Owsiak, D.; Salimi, M.; Selvakumar, T.; Wang, X.; Taylor, S.; Ogg, G.S. Histamine exerts multiple effects on expression of genes associated with epidermal barrier function. J. Investig. Allergol. Clin. Immunol. 2014, 24, 231–239. [Google Scholar]
- Wang, F.; Wang, Y.; Wang, L.; Wang, T.; Bai, Y. TIGIT expression levels on CD4+ T cells are correlated with disease severity in patients with psoriasis. Clin. Exp. Dermatol. 2018, 43, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Rochman, M.; Kartashov, A.; Caldwell, J.; Collins, M.; Stucke, E.; Kc, K.; Sherrill, J.; Herren, J.; Barski, A.; Rothenberg, M.E. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation. Mucosal Immunol. 2015, 8, 785–798. [Google Scholar] [CrossRef]
- Graff, P.; Woerz, D.; Wilzopolski, J.; Voss, A.; Sarrazin, J.; Blimkie, T.M.; Weiner, J.; Kershaw, O.; Panwar, P.; Hackett, T.; et al. Extracellular matrix remodeling in atopic dermatitis harnesses the onset of an asthmatic phenotype and is a potential contributor to the atopic march. J. Investig. Dermatol. 2024, 144, 1010–1021.e23. [Google Scholar] [CrossRef]
- Blom, L.H.; Martel, B.C.; Larsen, L.F.; Hansen, C.V.; Christensen, M.P.; Juel-Berg, N.; Litman, T.; Poulsen, L.K. The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses. Allergy 2017, 72, 1081–1090. [Google Scholar] [CrossRef]
- Malajian, D.; Guttman-Yassky, E. New pathogenic and therapeutic paradigms in atopic dermatitis. Cytokine 2015, 73, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.J.; Hwang, S.Y. Multi-omics approaches for understanding environmental exposure and human health. Mol. Cell. Toxicol. 2019, 15, 1–7. [Google Scholar] [CrossRef]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef]
Cohort Information n = 124 | Number or Mean ± SD |
---|---|
Infant | |
Unknown | 3 (2.4%) |
Boys | 73 (58.9%) |
Girls | 48 (38.7%) |
Maternal | |
Smoking | |
No | 114 (91.9%) |
Yes | 10 (8.1%) |
Childbirth | |
1 | 65 (52.4%) |
2 | 42 (33.9%) |
3 | 12 (9.7%) |
4 | 4 (3.2%) |
5 | 1 (0.8%) |
Age | 33.9 ± 3 |
Toluene | Xylene 2-MHA | Xylene 3,4-MHA | Benzene | ||
---|---|---|---|---|---|
Toluene | Pearson | 1 | |||
p-value | |||||
Xylene 2-MHA | Pearson | 0.165 | 1 | ||
p-value | 0.066 | ||||
Xylene 3,4-MHA | Pearson | 0.189 | 0.947 | 1 | |
p-value | 0.036 | 0 | |||
Benzene | Pearson | 0.008 | 0.258 | 0.194 | 1 |
p-value | 0.928 | 0.004 | 0.031 |
VOCs | High | Low |
---|---|---|
Maternal | ||
Toluene (n) | 27 | 90 |
Toluene (μg/g cr.) | 31.0 ± 92.3 | 2.8 ± 1.4 |
Age | 33.8 ± 3.1 | 33.9 ± 3.4 |
Xylene (n) 2-MHA | 31 | 86 |
Xylene (μg/g cr.) | 98.6 ± 90.6 | 24.9 ± 11.3 |
Age | 34.4 ± 3.8 | 33.6 ± 3.2 |
Xylene (n) 3,4-MHA | 31 | 86 |
Xylene (μg/g cr.) | 416.9 ± 394.2 | 129.8 ± 40.6 |
Age | 34.3 ± 3.9 | 33.7 ± 3.1 |
Benzene (n) | 28 | 89 |
Benzene (μg/g cr.) | 1.2 ± 1.4 | 0.8 ± 0.7 |
Age | 34.2 ± 3.9 | 33.7 ± 3.2 |
Infant | ||
Toluene (n) | 19 | 74 |
Xylene (n) 2-MHA | 24 | 69 |
Xylene (n) (3,4-MHA) | 23 | 70 |
Benzene (n) | 20 | 73 |
VOCs | Total DEG | Up Regulated | Down Regulated |
---|---|---|---|
Maternal | |||
Toluene | 489 | 326 | 163 |
Xylene (2-MHA) | 531 | 354 | 177 |
Xylene (3,4-MHA) | 483 | 388 | 95 |
Benzene | 473 | 229 | 244 |
Infant | |||
Toluene | 441 | 163 | 278 |
Xylene (2-MHA) | 567 | 166 | 401 |
Xylene (3,4-MHA) | 621 | 148 | 473 |
Benzene | 504 | 313 | 191 |
VOCs | Hyper Methylated | Hypo Methylated |
---|---|---|
Maternal | ||
Toluene | 14,391 | 8512 |
Xylene (2-MHA) | 4178 | 10,803 |
Xylene (3,4-MHA) | 15,772 | 10,479 |
Benzene | 2480 | 15,059 |
Infant | ||
Toluene | 1864 | 18,948 |
Xylene (2-MHA) | 2819 | 16,385 |
Xylene (3,4-MHA) | 2923 | 16,591 |
Benzene | 17,784 | 2279 |
VOCs | Upregulation and Hypomethylated | Downregulation and Hypermethylated |
---|---|---|
Maternal | ||
Toluene | 81 | 74 |
Xylene (2-MHA) | 110 | 25 |
Xylene (3,4-MHA) | 139 | 38 |
Benzene | 66 | 25 |
Infant | ||
Toluene | 86 | 17 |
Xylene (2-MHA) | 71 | 44 |
Xylene (3,4-MHA) | 52 | 48 |
Benzene | 34 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Yu, S.Y.; Choo, J.H.; Kim, J.K.; Kim, J.; Ahn, K.; Hwang, S.Y. Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure. Int. J. Mol. Sci. 2024, 25, 12827. https://doi.org/10.3390/ijms252312827
Kim SH, Yu SY, Choo JH, Kim JK, Kim J, Ahn K, Hwang SY. Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure. International Journal of Molecular Sciences. 2024; 25(23):12827. https://doi.org/10.3390/ijms252312827
Chicago/Turabian StyleKim, Seung Hwan, So Yeon Yu, Jeong Hyeop Choo, Jin Kyeong Kim, Jihyun Kim, Kangmo Ahn, and Seung Yong Hwang. 2024. "Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure" International Journal of Molecular Sciences 25, no. 23: 12827. https://doi.org/10.3390/ijms252312827
APA StyleKim, S. H., Yu, S. Y., Choo, J. H., Kim, J. K., Kim, J., Ahn, K., & Hwang, S. Y. (2024). Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure. International Journal of Molecular Sciences, 25(23), 12827. https://doi.org/10.3390/ijms252312827