Modeling Clustered DNA Damage by Ionizing Radiation Using Multinomial Damage Probabilities and Energy Imparted Spectra
Abstract
1. Introduction
2. Multinomial Probability Model
2.1. Higher-Order Terms
2.2. Summations of Probabilities for Simple and Complex Damage Probabilities
3. Results
Predictions for Radiation-Induced DSBs
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodhead, D.T. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 1994, 65, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Goodhead, D.T.; Nikjoo, H. Track structure analysis of ultrasoft X-rays compared to high- and low-LET radiations. Int. J. Radiat. Biol. 1989, 55, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.F. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988, 35, 95–125. [Google Scholar] [PubMed]
- Nickoloff, J.A.; Sharma, N.; Taylor, L. Clustered DNA double-strand breaks: Biological effects and relevance to cancer radiotherapy. Genes 2020, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Gulston, M.; de Lara, C.; Jenner, T.; Davis, E.; O’Neill, P. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res. 2004, 32, 1602–1609. [Google Scholar] [CrossRef]
- Cunnife, S.; Walker, A.; Stabler, R.; O’Neill, P.; Lomax, M.E. Increased mutability and decreased repairability of a three-lesion clustered DNA-damage site comprised of an AP site and bi-stranded 8-oxoG lesions. Int. J. Radiat. Biol. 2014, 90, 468–479. [Google Scholar] [CrossRef]
- Mladenova, V.; Mladenov, E.; Chaudhary, S.; Stuschke, M.; Iliakis, G. The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Front. Cell Dev. Biol. 2022, 10, 1016951. [Google Scholar] [CrossRef]
- Dobbs, T.A.; Palmer, P.; Maniou, Z.; Lomax, M.E.; O’Neill, P. Interplay of two major repair pathways in the processing of complex double-strand DNA breaks. DNA Repair 2008, 7, 1372–1383. [Google Scholar] [CrossRef]
- Charlton, D.E.; Nikjoo, H.; Humm, J.J. Calculation of initial yields of single- and double strand breaks in nuclei from electrons, protons, and alpha particles. Int. J. Radiat. Biol. 1989, 56, 1–19. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Terrisol, M.; Goodhead, D.T. Modeling of radiation-induced DNA damage: The early physical and chemical event. Int. J. Radiat. Biol. 1994, 66, 453–457. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Goodhead, D.T.; Terissol, M. Computational modeling of low energy electron induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol. 1997, 71, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Rahmanian, S.; Nikjoo, H. Spectrum of radiation-induced clustering non-DNA damage- A Monte Carlo track structure modeling and calculations. Radiat. Res. 2015, 183, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Friedland, W.; Dingfelder, M.; Kundrat, P.; Jacob, P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. 2011, 711, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Chatzipapas, K.P.; Papadimitroulas, P.; Obeidat, M.; McConnell, K.A.; Kirby, N.; Loudos, G.; Papanikolaou, N.; Kagadis, G.C. Quantification of DNA double-strand breaks using Geant4-DNA. Med. Phys. 2019, 46, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Schuemann, J.; McNamara, A.L.; Warmenhoven, J.W.; Henthorn, N.T.; Kirkby, K.J.; Merchant, M.J.; Ingram, S.; Paganetti, H.; Held, K.D.; Ramos-Mendez, J.; et al. A New Standard DNA Damage (SDD) Format. Radiat. Res. 2019, 191, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Lobrich, M.; Cooper, P.K.; Rydberg, B. Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts. Radiat. Res. 1998, 150, 619–626. [Google Scholar] [CrossRef]
- Sutherland, B.M.; Bennett, P.V.; Sidorkina, O.; Laval, J. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc. Natl. Acad. Sci. USA 2000, 97, 103–108. [Google Scholar] [CrossRef]
- Datta, K.; Purkayastha, S.; Neumann, R.D.; Pastwa, E.; Winters, T.A. Base damage immediately upstream from double-strand break ends is a more severe impediment to nonhomologous end joining than blocked 30-termini. Radiat. Res. 2011, 175, 97–112. [Google Scholar] [CrossRef]
- Mladenova, V.; Mladenova, E.; Stucshke, M.; Illiakis, G. DNA damage clustering after ionizing radiation and consequences in the processing of chromatin breaks. Molecules 2022, 27, 1540. [Google Scholar] [CrossRef]
- Schipler, A.; Mladenova, V.; Soni, A.; Nikolov, V.; Saha, J.; Mladenov, E.; Iliakis, G. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res. 2016, 44, 7673–7690. [Google Scholar] [CrossRef]
- Nakano, T.; Akamatsu, K.; Tsuda, M.; Tujimoto, A.; Hirayama, R.; Hiromoto, T.; Tamada, T.; Ide, H.; Shikazono, N. Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: Visualization and analysis with atomic force microscopy. Proc. Natl. Acad. Sci. USA 2022, 119, e2119132119. [Google Scholar] [CrossRef] [PubMed]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef]
- Desai, N.; Davis, E.; O’Neill, P.; Durante, M.; Cucinotta, F.A.; Wu, H. Immunofluorescent detection of DNA double strand breaks induced by high-LET radiation. Radiat. Res. 2005, 164, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, P. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transd. Targeted Ther. 2020, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Asaithamby, A.; Hu, B.; Chen, D.J. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc. Natl. Acad. Sci. USA 2011, 108, 8293–9298. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Saha, J.; Hada, M.; Pluth, J.M.; Anderson, J.; O’Neill, P.; Cucinotta, F.A. Novel Smad proteins localize to IR-induced double-strand breaks: Interplay between TGFß and ATM pathways. Nucleic Acids Res. 2013, 41, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Krishnakumar, E. Communication: Electron ionization of DNA bases. J. Chem. Phys. 2016, 144, 161102. [Google Scholar] [CrossRef]
- Charlton, D.E.; Goodhead, D.T.; Wilson, W.E.; Paretzke, H.G. Energy Deposition in Cylindrical Volumes: a) Protons Energy 0.3 MeV to 4.0 MeV, b) Alpha Particles Energy 1.0 MeV to 20.0 MeV; 85/1; MRC Radiobiology Unit Monograph: Chilton, UK, 1985. [Google Scholar]
- Nikjoo, H.; Goodhead, D.T.; Charlton, D.E.; Paretzke, H.G. Energy Deposition by Monoenergetic Electrons in Cylindrical Volumes; 94/1; MRC Radiobiology Unit Monograph: Chilton, UK, 1994. [Google Scholar]
- Cucinotta, F.A.; Nikjoo, H.; Goodhead, D.T. Model of the radial distribution of energy imparted in nanometer volumes from HZE particles. Radiat. Res. 2000, 153, 459–468. [Google Scholar] [CrossRef]
- Scholes, G.; Ward, J.F.; Weiss, J. Mechanism of the radiation-induced degradation of nucleic acids. J. Mol. Biol. 1960, 2, 379–391. [Google Scholar] [CrossRef]
- Davey, C.A.; Sargent, D.F.; Luger, K.; Maeder, A.W.; Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Angstrom resolution. J. Mol. Biol. 2002, 319, 1097–1113. [Google Scholar] [CrossRef]
- Prise, K.M.; Ahnström, G.; Belli, M.; Carlsson, J.; Frankenberg, D.; Kiefer, J.; Loöbrich, M.; Michael, B.D.; Nygren, J.; Simone, G.; et al. A review of dsb induction data for varying quality radiations. Int. J. Radiat. Biol. 1998, 74, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Jenner, T.J.; deLara, C.M.; O’Neill, P.; Stevens, D.L. Induction and rejoining of DNA double-strand breaks in V79-4 mammalian cells following γ– and α-irradiation. Int. J. Radiat. Biol. 1993, 64, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Tsao, D.; Kalogerinis, P.; Tabrizi, I.; Dingfelder, M.; Stewart, R.D.; Georgakilas, A.G. Induction and processing of oxidative clustered DNA lesions in 56Fe-ion-irradiated human monocytes. Radiat. Res. 2007, 168, 87–97. [Google Scholar] [CrossRef]
- Frankenberg, D.; Brede, H.J.; Schrewe, U.J.; Steinmetz, C.; Frankenberg-Schwager, M.; Kasten, G.; Pralle, E. Induction of DNA double-strand breaks by 1H and 4He ions in primary human skin fibroblasts in the LET range of 8 to 124 keV/μm. Radiat. Res. 1999, 151, 540–549. [Google Scholar] [CrossRef]
- Rydberg, B.; Heilbronn, L.; Holley, W.R.; Lobrich, M.; Zeitlin, C.; Chatterjee, A.; Cooper, P.K. Spatial distribution and yield of DNA double-strand breaks induced by 3–7 MeV helium ions in human fibroblasts. Radiat. Res. 2002, 158, 32–42. [Google Scholar] [CrossRef]
- Ikpeme, S.; Lobrich, M.; Akpa, T.; Schneider, E.; Kiefer, J. Heavy ion-induce DNA double-strand breaks with yeast as a model system. Radiat. Envion. Biophys. 1995, 34, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, J.; Taucher-Scholz, G.; Kraft, G. Induction of DNA double-strand breaks in CHO-K1 cells by carbon ions. Int. J. Radiat. Biol. 1995, 68, 153–162. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Wilson, J.W.; Saganti, P.; Hu, X.; Kim, M.Y.; Cleghorn, T.; Zeitlin, C.; Tripathi, R.K. Isotopic dependence of GCR fluence behind shielding. Radiat. Meas. 2006, 41, 1235–1249. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Plante, I.; Ponomarev, A.; Kim, M.Y. Nuclear interactions in heavy ion transport and event-based risk models. Radiat. Protect. Dosim. 2011, 143, 384–390. [Google Scholar] [CrossRef]
- Rydberg, B. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments, I.I. Experimental detection. Radiat. Res. 1996, 145, 200–209. [Google Scholar] [CrossRef]
- Stenerlow, B.; Hoglund, E.; Carlsson, J. Induction and rejoining of larger DNA fragments after ion irradiation. Radiat. Res. 1999, 151, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Campa, A.; Dini, V.; Esposito, G.; Furusawa, Y.; Simone, G.; Sorrentino, E.; Tabocchini, M.A. DNA fragmentation induced in human fibroblasts by accelerated 56Fe ions of differing energy. Radiat. Res. 2006, 165, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, A.G.; Bennett, P.V.; Sutherland, B.M. High efficiency detection of bistranded abasic clusters in irradiated DNA by putrescine. Nucleic Acids Res. 2002, 30, 2800–2808. [Google Scholar] [CrossRef]
- Wallace, S.S. DNA damages processed by base excision repair: Biological consequences. Int. J. Radiat. Biol. 1994, 66, 579–589. [Google Scholar] [CrossRef]
- Douki, T.; Ravanat, J.; Pouget, J.; Testard, I.; Cadet, J. Minor contribution of direct ionization to DNA base damage induced by heavy ions. Int. J. Radiat. Biol. 2006, 82, 119–127. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Pluth, J.M.; Anderson, J.; Harper, J.V.; O’Neill, P. Biochemical kinetics model of DSB repair and γH2AX foci by non-homologous end joining. Radiat. Res. 2008, 169, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Reynolds, P.; O’Neill, P.; Cucinotta, F.A. Modeling damage complexity-dependent nonhomologous end-joining repair pathway. PLoS ONE 2014, 9, e85816. [Google Scholar]
- Li, Y.; Cucinotta, F.A. Mathematical modeling ATM activation and chromatin relaxation by ionizing radiation. Int. J. Molec. Sci. 2020, 21, 1214. [Google Scholar] [CrossRef]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Onc. 2023, 25, 578–585. [Google Scholar] [CrossRef]
- Schipler, A.; Illiakis, G. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucl. Acids Res. 2013, 41, 7589–7605. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhang, P.; Wang, Y. The Ku-dependent nonhomologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation. DNA Repair 2008, 7, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, H.; Wang, Y.; Cucinotta, F.A. A stochastic model of DNA fragment rejoining. PLoS ONE 2012, 7, e44293. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, F.A.; Nikjoo, H.; Goodhead, D.T. Comment on the effects of delta-rays on the number of particle-track transversals per cell in laboratory and space exposures. Radiat. Res. 1998, 150, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Goodhead, D.T. Relationship of radiation track structure to biological effect: A re-interpretation of the parameters of the Katz model. Nuclear Tracks Radiat. Meas. 1989, 116, 177–184. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Wilson, J.W.; Shavers, M.R.; Katz, R. The effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells. Int. J. Radiat. Biol. 1996, 69, 593–600. [Google Scholar] [CrossRef]
Operand | Branching Probabilities |
---|---|
SSB(S) | q0 nSSB(S2) + q1[nSSB(+)+nDSB(S)] |
SSB(+) | q0 nSSB(+)nSSB(S) + q1[nSSB(++)+nDSB(+)] |
DSB(S) | q0 nDSB(S)nSSB(S) + 2q1nDSB(+) |
DSB(+) | q0 nDSB(+)nSSB(S) + 2q1nDSB(++) |
DSB(S) × SSB(S) | q0 nDSB(S)nSSB(S2) + q1[nDSB(+)nSSB(S) + nDSB(S)nDSB(S)] |
SSB(+) × SSB(S) | q0 nSSB(+)nSSB(S2) + q1/2 [nDSB(+)nSSB(S) + nSSB(++)nSSB(S) + nSSB(+)nDSB(S) + nSSB(+)nSSB(+)] |
Order | Term | Components |
---|---|---|
1 | PA | nSSB(S) |
1 | PB | r1nSSB(S) + r2nBD(1) |
1 | PC | nBD(1) |
2 | PAPA | q0nSSB(S2) + q1nDSB(S) + q1nSSB(+) |
2 | PAPB | r1q0nSSB(S2) + r1q1nDSB(S) + r1q1nSSB(+) + r2nSSB(S)nBD(1)+r3nSSB(S) |
2 | PAPC | nSSB(S)nBD(1) |
2 | PBPB | r12 [q0nSSB(S2) + q1nDSB(S) + q1nSSB(+)] + 2r1r2nSSB(S)nBD(1) + r22nBD(2) + r3[r1nSSB(S) + r2nBD(1)] |
2 | PBPC | [r1nSSB(S) + r3]nBD(1) + r2nBD(2) |
2 | PCPC | nBD(2) |
Term | Components |
---|---|
PAPAPA | q02nSSB(S3) + 2q0q1[nDSB(S)nSSB(S) + nSSB(+)nSSB(S)] + q12[3nDSB(+) + nSSB(++)] |
PAPAPB | r1{q02 nSSB(S3) + q0q1[nDSB(S)nSSB(S) + nSSB(+)nSSB(S)]+ q12/2[3nDSB(+) + nSSB(++)]} + r2{q0nSSB(S2) + q1[nDSB(S) + nSSB(+)]}nBD(1)+ r3{q0nSSB(S2) + q1[nDSB(S) + nSSB(+)]} |
PAPAPC | A2 nBD(1) |
PAPBPB | r12{q02nSSB(S3) + 3q0q1[nSSB(S)nSSB(S) + nSSB(+)nSSB(S)] + q12/2[3nDSB(+) + nSSB(++)]} + 2r1r2{q0nSSB(2) + q1nDSB(S) + q1nSSB(+)]nBD(1) + r2r3nSSB(2)nBD(1)} + r1r3{q0nSSB(S3) + q1nDSB(S)nSSB(S) + q1nSSB(+)nSSB(S) + q0nSSB(S2) + q1nDSB(S) + q1nSSB(+)}+ r22nSSB(S)nBD(1) + r32nSSB(2) |
PAPCPC | nSSB(S) nBD(2) |
PAPBPC | r1[q0nSSB(S2) + q1nDSB(S) + q1nSSB(+)]nBD(1) + r2nSSB(S)nBD(3) + r3nSSB(S)nBD(1) |
PBPBPB | ~Β2 r2nBD(1) + r3B1 |
PBPBPC | B2 r2nBD (1) + r3B1 |
PBPCPC | [r1nSSB(S) + r3]nBD(2) + r2nBD(3) |
PCPCPC | nBD(3) |
Term | Components |
---|---|
PAPAPAPA | See Equation (17) |
PAPAPAPB | r1A4 + [r2nBD(1) + r3]A3 |
PAPAPAPC | A3 nBD(1) |
PAPAPBPB | See Equation (15) |
PAPAPCPC | A2nBD(2) |
PAPAPBPC | r1A3nBD(1) + [r2nBD(2) + r3nBD(1)]A2 |
PAPBPBPC | A1B2 nBD(1) |
PAPBPBPB | ~A1B2 r2nBD(1) |
PAPCPCPC | nSSB(S)nBD(3) |
PAPBPCPC | A1B1nBD(2) |
PBPBPBPB | ~B2 [r22nBD(2) + r32 + 2r2r3nBD(1)] |
PBPBPBPC | r12 [q0nSSB(S2) + q1nDSB(S) + q1nSSB(C)]nBD(2) + 2r1r2nSSB(S)nBD(3) + r22nBD(4) |
PBPBPCPC | B2nBD(2) |
PCPCPCPA | nBD(3)nSSB(S) |
PCPCPCPB | [r1nSSB(S) + r3]nBD(3) + r2nBD(4) |
PCPCPCPC | nBD(4) |
Radiation Type/ Lesion | Electrons (100 keV) | 4He (1 MeV/u, LET = 104 keV/μm) | 12C (10 MeV/u, LET = 163 keV/μm) | 12C (1000 MeV/u, LET = 8 keV/μm) |
---|---|---|---|---|
SSB-S | 26.5 | 10.1 | 14.8 | 20.7 |
SSBS2 | 6.1 | 0.7 | 0.9 | 1.3 |
SSB+ | 6.1 | 3.1 | 4.0 | 5.4 |
SSB++ | 0.5 | 0.3 | 0.3 | 0.4 |
Total SSB * | 63.4 | 18.5 | 25.7 | 35.4 |
DSB-S | 6.5 | 3.3 | 4.3 | 5.8 |
DSB+ | 0.8 | 0.7 | 0.7 | 0.8 |
DSB++ | 2.7 | 5.3 | 4.3 | 2.8 |
Total DSB | 9.9 | 9.3 | 9.3 | 9.4 |
BD-1 | 36.7 | 15.0 | 20.5 | 27.0 |
BD-2 | 17.2 | 10.9 | 12.7 | 15.4 |
BD-3 | 8.7 | 8.0 | 8.1 | 8.4 |
BD > 3 | 4.4 | 7.5 | 6.2 | 4.4 |
Total BD * | 112.9 | 90.7 | 95.3 | 100.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucinotta, F.A. Modeling Clustered DNA Damage by Ionizing Radiation Using Multinomial Damage Probabilities and Energy Imparted Spectra. Int. J. Mol. Sci. 2024, 25, 12532. https://doi.org/10.3390/ijms252312532
Cucinotta FA. Modeling Clustered DNA Damage by Ionizing Radiation Using Multinomial Damage Probabilities and Energy Imparted Spectra. International Journal of Molecular Sciences. 2024; 25(23):12532. https://doi.org/10.3390/ijms252312532
Chicago/Turabian StyleCucinotta, Francis A. 2024. "Modeling Clustered DNA Damage by Ionizing Radiation Using Multinomial Damage Probabilities and Energy Imparted Spectra" International Journal of Molecular Sciences 25, no. 23: 12532. https://doi.org/10.3390/ijms252312532
APA StyleCucinotta, F. A. (2024). Modeling Clustered DNA Damage by Ionizing Radiation Using Multinomial Damage Probabilities and Energy Imparted Spectra. International Journal of Molecular Sciences, 25(23), 12532. https://doi.org/10.3390/ijms252312532