Circadian Rhythm Genes and Their Association with Sleep and Sleep Restriction
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Group
4.2. Protocol
4.3. Molecular Analysis
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abrams, R.M. Sleep Deprivation. Obstet. Gynecol. Clin. N. Am. 2015, 42, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Ebisawa, T. Circadian rhythms in the CNS and peripheral clock disorders: Human sleep disorders and clock genes. J. Pharmacol. Sci. 2007, 103, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Turkiewicz, S.; Karuga, F.F.; Sochal, M.; Strzelecki, D.; Białasiewicz, P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients—Possible Mechanisms Involved and Clinical Implication. Int. J. Mol. Sci. 2022, 23, 709. [Google Scholar] [CrossRef] [PubMed]
- Orzeł-Gryglewska, J. Consequences of sleep deprivation. Int. J. Occup. Med. Environ. Health 2010, 23, 95–114. [Google Scholar] [CrossRef]
- Spencer, S.; Falcon, E.; Kumar, J.; Krishnan, V.; Mukherjee, S.; Birnbaum, S.G.; McClung, C.A. Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur. J. Neurosci. 2013, 37, 242–250. [Google Scholar] [CrossRef]
- Roybal, K.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S.; et al. Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. USA 2007, 104, 6406–6411. [Google Scholar] [CrossRef]
- Lamont, E.W.; Legault-Coutu, D.; Cermakian, N.; Boivin, D.B. The role of circadian clock genes in mental disorders. Dialogues Clin. Neurosci. 2007, 9, 333–342. [Google Scholar] [CrossRef]
- Sochal, M.; Ditmer, M.; Binienda, A.; Tarasiuk, A.; Białasiewicz, P.; Turkiewicz, S.; Karuga, F.F.; Jakub, F.; Gabryelska, A. Interactions between neurotrophins, mood, and physical activity under the conditions of sleep deprivation. Transl. Psychiatry 2024, 14, 158. [Google Scholar] [CrossRef]
- Shen, B.; Ma, C.; Wu, G.; Liu, H.; Chen, L.; Yang, G. Effects of exercise on circadian rhythms in humans. Front. Pharmacol. 2023, 14, 1282357. [Google Scholar] [CrossRef]
- Lou, X.; Wang, H.; Tu, Y.; Tan, W.; Jiang, C.; Sun, J.; Bao, Z. Alterations of sleep quality and circadian rhythm genes expression in elderly thyroid nodule patients and risks associated with thyroid malignancy. Sci. Rep. 2021, 11, 13682. [Google Scholar] [CrossRef]
- Sochal, M.; Binienda, A.; Tarasiuk, A.; Gabryelska, A.; Białasiewicz, P.; Ditmer, M.; Turkiewicz, S.; Karuga, F.F.; Fichna, J.; Wysokiński, A. The Relationship between Sleep Parameters Measured by Polysomnography and Selected Neurotrophic Factors. J. Clin. Med. 2024, 13, 893. [Google Scholar] [CrossRef] [PubMed]
- Kopp, C.; Albrecht, U.; Zheng, B.; Tobler, I. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 2002, 16, 1099–1106. [Google Scholar] [CrossRef]
- Franken, P.; Thomason, R.; Heller, H.C.; O’Hara, B.F. A non-circadian role for clock-genes in sleep homeostasis: A strain comparison. BMC Neurosci. 2007, 8, 87. [Google Scholar] [CrossRef]
- Viola, A.U.; Archer, S.N.; James, L.M.; Groeger, J.A.; Lo, J.C.; Skene, D.J.; von Schantz, M.; Dijk, D.J. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 2007, 17, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Patrick, G.T.W.; Gilbert, J.A. Studies from the psychological laboratory of the University of Iowa: On the effects of loss of sleep. Psychol. Rev. 1896, 3, 469. [Google Scholar] [CrossRef]
- Mongrain, V.; La Spada, F.; Curie, T.; Franken, P. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 2011, 6, e26622. [Google Scholar] [CrossRef]
- Wisor, J.P.; Pasumarthi, R.K.; Gerashchenko, D.; Thompson, C.L.; Pathak, S.; Sancar, A.; Franken, P.; Lein, E.S.; Kilduff, T.S. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J. Neurosci. 2008, 28, 7193–7201. [Google Scholar] [CrossRef] [PubMed]
- Mongrain, V.; Hernandez, S.A.; Pradervand, S.; Dorsaz, S.; Curie, T.; Hagiwara, G.; Gip, P.; Heller, H.C.; Franken, P. Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 2010, 33, 1147–1157. [Google Scholar] [CrossRef]
- Bolsius, Y.G.; Zurbriggen, M.D.; Kim, J.K.; Kas, M.J.; Meerlo, P.; Aton, S.J.; Havekes, R. The role of clock genes in sleep, stress and memory. Biochem. Pharmacol. 2021, 191, 114493. [Google Scholar] [CrossRef]
- Renthlei, Z.; Gurumayum, T.; Borah, B.K.; Trivedi, A.K. Daily expression of clock genes in central and peripheral tissues of tree sparrow (Passer montanus). Chronobiol. Int. 2019, 36, 110–121. [Google Scholar] [CrossRef]
- James, F.O.; Boivin, D.B.; Charbonneau, S.; Bélanger, V.; Cermakian, N. Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles. Chronobiol. Int. 2007, 24, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Aroca-Crevillén, A.; Adrover, J.M.; Hidalgo, A. Circadian Features of Neutrophil Biology. Front. Immunol. 2020, 11, 576. [Google Scholar] [CrossRef]
- Ackermann, K.; Plomp, R.; Lao, O.; Middleton, B.; Revell, V.L.; Skene, D.J.; Kayser, M. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol. Int. 2013, 30, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Kavcic, P.; Rojc, B.; Dolenc-Groselj, L.; Claustrat, B.; Fujs, K.; Poljak, M. The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat. Med. J. 2011, 52, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, I.; Talapko, J.; Juzbašić, M.; Steiner, R. Sex Differences in Circadian Clock Genes and Myocardial Infarction Susceptibility. J. Cardiovasc. Dev. Dis. 2021, 8, 53. [Google Scholar] [CrossRef]
- Talamanca, L.; Gobet, C.; Naef, F. Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science 2023, 379, 478–483. [Google Scholar] [CrossRef]
- Walton, J.C.; Bumgarner, J.R.; Nelson, R.J. Sex Differences in Circadian Rhythms. Cold Spring Harb. Perspect. Biol. 2022, 14, a039107. [Google Scholar] [CrossRef]
- Furtado, A.; Costa, D.; Lemos, M.C.; Cavaco, J.E.; Santos, C.R.A.; Quintela, T. Chapter Three—The impact of biological clock and sex hormones on the risk of disease. In Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press: New York, NY, USA, 2023; Volume 137, pp. 39–81. [Google Scholar]
- Bunney, B.G.; Bunney, W.E. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: Clock genes and circadian rhythms. Biol. Psychiatry 2013, 73, 1164–1171. [Google Scholar] [CrossRef]
- Foo, J.C.; Trautmann, N.; Sticht, C.; Treutlein, J.; Frank, J.; Streit, F.; Witt, S.H.; De La Torre, C.; von Heydendorff, S.C.; Sirignano, L.; et al. Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl. Psychiatry 2019, 9, 343. [Google Scholar] [CrossRef]
- Moriya, S.; Tahara, Y.; Sasaki, H.; Hamaguchi, Y.; Kuriki, D.; Ishikawa, R.; Ishigooka, J.; Shibata, S. Effect of quetiapine on Per1, Per2, and Bmal1 clock gene expression in the mouse amygdala and hippocampus. J. Pharmacol. Sci. 2014, 125, 329–332. [Google Scholar] [CrossRef]
- Bollinger, T.; Schibler, U. Circadian rhythms—From genes to physiology and disease. Swiss Med. Wkly. 2014, 144, w13984. [Google Scholar] [CrossRef] [PubMed]
- Matejů, K.; Bendová, Z.; El-Hennamy, R.; Sládek, M.; Sosniyenko, S.; Sumová, A. Development of the light sensitivity of the clock genes Period1 and Period2, and immediate-early gene c-fos within the rat suprachiasmatic nucleus. Eur. J. Neurosci. 2009, 29, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Lavebratt, C.; Sjöholm, L.K.; Soronen, P.; Paunio, T.; Vawter, M.P.; Bunney, W.E.; Adolfsson, R.; Forsell, Y.; Wu, J.C.; Kelsoe, J.R.; et al. CRY2 is associated with depression. PLoS ONE 2010, 5, e9407. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.S.A.; Uzeloto, J.S.; Lira, F.S.; Pereira, T.; Coelho, E.S.M.J.; Caseiro, A. Exercise as a Peripheral Circadian Clock Resynchronizer in Vascular and Skeletal Muscle Aging. Int. J. Environ. Res. Public Health 2021, 18, 12949. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogata, H.; Kayaba, M.; Ando, A.; Park, I.; Yajima, K.; Araki, A.; Suzuki, C.; Osumi, H.; Zhang, S.; et al. Effect of a single bout of exercise on clock gene expression in human leukocyte. J. Appl. Physiol. 2020, 128, 847–854. [Google Scholar] [CrossRef]
- Cedernaes, J.; Osler, M.E.; Voisin, S.; Broman, J.E.; Vogel, H.; Dickson, S.L.; Zierath, J.R.; Schioth, H.B.; Benedict, C. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men. J. Clin. Endocrinol. Metab. 2015, 100, E1255–E1261. [Google Scholar] [CrossRef]
- Rudkowska, I.; Raymond, C.; Ponton, A.; Jacques, H.; Lavigne, C.; Holub, B.J.; Marette, A.; Vohl, M.C. Validation of the use of peripheral blood mononuclear cells as surrogate model for skeletal muscle tissue in nutrigenomic studies. OMICS 2011, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.R.S.; Ottestad, I.; Gjevestad, G.O.; Holven, K.B.; Ulven, S.M.; Christensen, J.J. Associations between PBMC whole genome transcriptome, muscle strength, muscle mass, and physical performance in healthy home-dwelling older women. GeroScience 2023, 45, 3175–3186. [Google Scholar] [CrossRef] [PubMed]
- Gjevestad, G.O.; Hamarsland, H.; Raastad, T.; Ottestad, I.; Christensen, J.J.; Eckardt, K.; Drevon, C.A.; Biong, A.S.; Ulven, S.M.; Holven, K.B. Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. Genes Nutr. 2017, 12, 8. [Google Scholar] [CrossRef]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Siddall, A.G.; Powell, S.D.; Needham-Beck, S.C.; Edwards, V.C.; Thompson, J.E.S.; Kefyalew, S.S.; Singh, P.A.; Orford, E.R.; Venables, M.C.; Jackson, S.; et al. Validity of energy expenditure estimation methods during 10 days of military training. Scand. J. Med. Sci. Sports 2019, 29, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Fraysse, F.; Post, D.; Eston, R.; Kasai, D.; Rowlands, A.V.; Parfitt, G. Physical Activity Intensity Cut-Points for Wrist-Worn GENEActiv in Older Adults. Front. Sports Act. Living 2020, 2, 579278. [Google Scholar] [CrossRef] [PubMed]
N | 74 |
Age (years, median, IQR) | 24 (22–26) |
BMI (kg/m2, mean, SD) | 22.9 ± 2.8 |
Women (n, %) | 38, 51.4 |
Smoking (n, %) | 9, 12.2 |
Surgical operations (n, %) | 29, 39.2 |
Higher education (n, %) | 34, 45.9 |
TST in PSG (min, median, IQR) | 407.5 (360.5–470.5) |
Sleep latencies in PSG (min, median, IQR) | 34.5 (22.5–55.5) |
Sleep efficiency in PSG (%, mean, SD) | 78 ± 10.5 |
REM duration in PSG (min, mean, SD) | 98.7 ± 44.0 |
NREM duration in PSG (min, mean, SD) | 321.8 ± 53.0 |
Movement in deprivation (median, IQR) | 317.5 (252.8–424.9) |
A | B | C | D | p (A − B) | p (C − D) | p (B − D) | p (A/B − C/D) | |
---|---|---|---|---|---|---|---|---|
CLOCK | −3.7 (−4.3–(−3.0)), n = 57 | −3.2 (−3.7–(−2.6)), n = 68 | −3.1 (−3.7–(−2.5)), n = 62 | −3.0 (−3.3–(−2.4)), n = 71 | 0.009 | 0.432 | 0.027 | 0.033 |
BMAL1 | −3.9 (−4.4–(−2.9)), n = 65 | −3.5 (−3.9–(−2.6)), n = 70 | −3.4 (−4.2–(−2.6)), n = 68 | −3.0 (−3.5–(−2.6)), n = 73 | 0.017 | 0.183 | 0.028 | 0.375 |
PER1 | −3.9 (−4.7–(−3.2)), n = 53 | −2.4 (−3.1–(−2.1)), n = 55 | −3.5 (−4.0–(−3.2)), n = 48 | −3.0 (−3.8–(−2.7)), n = 53 | <0.001 | 0.137 | 0.005 | <0.001 |
CRY1 | −4.0 (−4.5–(−3.3)), n = 59 | −3.5 (−3.9–(−2.9)), n = 72 | −3.5 (−4.3–(−3.0)), n = 65 | −3.1 (−3.7–(−2.7)), n = 71 | 0.001 | 0.009 | 0.090 | 0.194 |
NR1D1 | −3.9 (−4.5–(−3.1)), n = 59 | −3.4 (−3.8–(−2.7)), n = 66 | −3.4 (−4.2–(−3.0)), n = 57 | −3.1 (−3.5–(−2.8)), n = 66 | <0.001 | 0.034 | 0.108 | 0.120 |
NPAS2 | −4.3 (−4.7–(−3.9)), n = 41 | −4.0 (−4.3–(−3.5)), n = 51 | −4.3 (−4.7–(−3.9)), n = 48 | −3.8 (−4.0–(−3.6)), n = 54 | 0.015 | <0.001 | 0.434 | 0.787 |
B | D | ||||
---|---|---|---|---|---|
TST | NREM Dur. | REM Dur. | Latency | Movement | |
CLOCK | −0.01, 0.942 | 0.01, 0.906 | −0.01, 0.937 | −0.06, 0.599 | 0.27, 0.022 |
BMAL1 | −0.07, 0.576 | 0.06, 0.635 | −0.09, 0.453 | 0.01, 0.916 | 0.37, 0.001 |
PER1 | 0.30, 0.024 | 0.32, 0.018 | 0.08, 0.552 | −0.38, 0.004 | 0.04, 0.753 |
CRY1 | −0.05, 0.689 | 0.01, 0.942 | −0.03, 0.794 | −0.06, 0.611 | 0.28, 0.017 |
NR1D1 | −0.03, 0.824 | 0.10, 0.438 | −0.05, 0.665 | 0.10, 0.404 | 0.24, 0.050 |
NPAS2 | 0.07, 0.617 | 0.10, 0.468 | 0.00, 0.992 | −0.08, 0.578 | 0.11, 0.419 |
Alpha | Beta | Theta | Delta | |
---|---|---|---|---|
F4A1 | 28, −0.02, 0.914 | 28, 0.05, 0.797 | 28, −0.04, 0.842 | 28, −0.06, 0.780 |
F3A2 | 32, −0.03, 0.891 | 32, −0.13, 0.470 | 33, −0.02, 0.903 | 33, −0.17, 0.346 |
C4A1 | 28, 0.01, 0.960 | 28, 0.12, 0.545 | 28, −0.04, 0.855 | 28, 0.00, 0.989 |
C3A2 | 32, 0.00, 0.979 | 32, −0.12, 0.507 | 33, 0.03, 0.883 | 33, −0.18, 0.326 |
O2A1 | 24, −0.03, 0.878 | 24, 0.05, 0.818 | 24, −0.15, 0.475 | 24, −0.07, 0.734 |
O1A2 | 29, −0.38, 0.042 | 29, −0.40, 0.033 | 29, −0.32, 0.096 | 29, −0.53, 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochal, M.; Ditmer, M.; Tarasiuk-Zawadzka, A.; Binienda, A.; Turkiewicz, S.; Wysokiński, A.; Karuga, F.F.; Białasiewicz, P.; Fichna, J.; Gabryelska, A. Circadian Rhythm Genes and Their Association with Sleep and Sleep Restriction. Int. J. Mol. Sci. 2024, 25, 10445. https://doi.org/10.3390/ijms251910445
Sochal M, Ditmer M, Tarasiuk-Zawadzka A, Binienda A, Turkiewicz S, Wysokiński A, Karuga FF, Białasiewicz P, Fichna J, Gabryelska A. Circadian Rhythm Genes and Their Association with Sleep and Sleep Restriction. International Journal of Molecular Sciences. 2024; 25(19):10445. https://doi.org/10.3390/ijms251910445
Chicago/Turabian StyleSochal, Marcin, Marta Ditmer, Aleksandra Tarasiuk-Zawadzka, Agata Binienda, Szymon Turkiewicz, Adam Wysokiński, Filip Franciszek Karuga, Piotr Białasiewicz, Jakub Fichna, and Agata Gabryelska. 2024. "Circadian Rhythm Genes and Their Association with Sleep and Sleep Restriction" International Journal of Molecular Sciences 25, no. 19: 10445. https://doi.org/10.3390/ijms251910445