Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Results
2.1. EE-cMSCs Inhibit RANKL-Induced Osteoclast Differentiation
2.2. EE-cMSCs Exhibit Osteogenic Effects in Fibrin Gel
2.3. EE-cMSCs with Fibrin Gel Transplantation Promote Bone Regeneration in an Osteoporotic Vertebral Body Bone Defect Model
2.4. EE-cMSCs with Fibrin Gel Transplantation Regulate Bone Remodeling Post-Osteoporotic Vertebral Bone Defect
2.5. EE-cMSCs with Fibrin Gel Transplantation Promote Angiogenesis Post-Osteoporotic Vertebral Bone Defect
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Isolation and Culture
4.3. Alizarin Red S Staining
4.4. 3D Cell Culture Mold Fabrication
4.5. Cell Viability
4.6. Co-Culture of EE-cMSCs with RAW264.7 Cells
4.7. TRAP Staining
4.8. Phalloidin Staining
4.9. RT-PCR and Quantitative PCR
4.10. Animals and OVCF Modeling Procedures
4.11. Micro-Computed Tomography (μCT) Analysis
4.12. Histological Analysis
4.13. Immunohistochemistry
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OVCFs | osteoporotic vertebral compression fractures |
MSCs | mesenchymal stem cells |
EE-cMSCs | ectopic embryonic calvaria derived mesenchymal stem cells |
bFGF | basic fibroblast growth factor |
BMP-2 | bone morphogenetic protein-2 |
RANK | receptor activator of nuclear factor kappa-B |
RANKL | receptor activator of nuclear factor kappa-B ligand |
NFATc1 | nuclear factor of activated T-cells, cytoplasmic 1 |
CtsK | cathepsin K |
TRAP | tartrate-resistant acid phosphatase |
RUNX2 | runt-related transcription factor 2 |
OVX | ovariectomized |
BMD | bone mineral density |
BV/TV | bone volume over total volume |
Tb.N | trabecular number |
Tb.Th | trabecular thickness |
Tb.Sp | trabecular separation |
OPG | osteoprotegerin |
OCN | osteocalcin |
References
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Mitani, K.; Takahashi, T.; Tokunaga, S.; Inoue, T.; Kanematsu, R.; Minami, M.; Hanakita, J. Therapeutic Prediction of Osteoporotic Vertebral Compression Fracture Using the AO Spine-DGOU Osteoporotic Fracture Classification and Classification-Based Score: A Single-Center Retrospective Observational Study. Neurospine 2023, 20, 1166–1176. [Google Scholar] [CrossRef] [PubMed]
- Parreira, P.C.S.; Maher, C.G.; Megale, R.Z.; March, L.; Ferreira, M.L. An overview of clinical guidelines for the management of vertebral compression fracture: A systematic review. Spine J. 2017, 17, 1932–1938. [Google Scholar] [CrossRef]
- Kawanishi, M.; Tanaka, H.; Ito, Y.; Yamada, M.; Yokoyama, K.; Sugie, A.; Ikeda, N. Treatment for Osteoporotic Vertebral Fracture—A Short Review of Orthosis and Percutaneous Vertebroplasty and Balloon Kyphoplasty. Neurospine 2023, 20, 1124–1131. [Google Scholar] [CrossRef]
- Shin, Y.H.; Shin, W.C.; Kim, J.W. Effect of Osteoporosis Medication on Fracture Healing: An Evidence Based Review. J. Bone Metab. 2020, 27, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Garfin, S.R.; Yuan, H.A.; Reiley, M.A. New technologies in spine: Kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila. PA 1976) 2001, 26, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Jabbouri, S.S.; Whang, P.G. Commentary on “Utilization of Vertebroplasty/Kyphoplasty in the Management of Compression Fractures: National Trends and Predictors of Vertebroplasty/Kyphoplasty”. Neurospine 2023, 20, 1140–1141. [Google Scholar] [CrossRef] [PubMed]
- Kallmes, D.F.; Comstock, B.A.; Heagerty, P.J.; Turner, J.A.; Wilson, D.J.; Diamond, T.H.; Edwards, R.; Gray, L.A.; Stout, L.; Owen, S.; et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N. Engl. J. Med. 2009, 361, 569–579. [Google Scholar] [CrossRef]
- Rousing, R.; Hansen, K.L.; Andersen, M.O.; Jespersen, S.M.; Thomsen, K.; Lauritsen, J.M. Twelve-months follow-up in forty-nine patients with acute/semiacute osteoporotic vertebral fractures treated conservatively or with percutaneous vertebroplasty: A clinical randomized study. Spine (Phila. PA 1976) 2010, 35, 478–482. [Google Scholar] [CrossRef]
- Yokoyama, K.; Ikeda, N.; Tanaka, H.; Ito, Y.; Sugie, A.; Yamada, M.; Wanibuchi, M.; Kawanishi, M. The Effectiveness of Vertebral Height Restoration Based on the Vertebroplasty Procedure Used to Treat Osteoporotic Vertebral Fractures. Neurospine 2023, 20, 1159–1165. [Google Scholar] [CrossRef]
- Khandaker, M.; Meng, Z. The Effect of Nanoparticles and Alternative Monomer on the Exothermic Temperature of PMMA Bone Cement. Procedia Eng. 2015, 105, 946–952. [Google Scholar] [CrossRef]
- Arjmand, B.; Sarvari, M.; Alavi-Moghadam, S.; Payab, M.; Goodarzi, P.; Gilany, K.; Mehrdad, N.; Larijani, B. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front. Endocrinol. 2020, 11, 430. [Google Scholar] [CrossRef]
- Takami, T.; Shimokawa, N.; Parthiban, J.; Zileli, M.; Ali, S. Pharmacologic and Regenerative Cell Therapy for Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020, 17, 785–796. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, P.; Zhang, X.; Lv, L.; Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 2021, 54, e12956. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Kim, K.T.; Kim, K.G.; Choi, U.Y.; Kyung, J.W.; Sohn, S.; Lim, S.H.; Choi, H.; Ahn, T.K.; Choi, H.J.; et al. Safety and efficacy of Wharton’s jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: A phase I/IIa study. Stem Cells Transl. Med. 2021, 10, 554–567. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, C.; Zheng, L.; Li, Q.; Ge, J.; Geng, S.; Zhai, M.; Chen, X.; Yuan, H.; Li, Y.; et al. Safety and efficacy of umbilical cord tissue-derived mesenchymal stem cells in the treatment of patients with aging frailty: A phase I/II randomized, double-blind, placebo-controlled study. Stem Cell Res. Ther. 2024, 15, 122. [Google Scholar] [CrossRef]
- Song, I.; Rim, J.; Lee, J.; Jang, I.; Jung, B.; Kim, K.; Lee, S. Therapeutic Potential of Human Fetal Mesenchymal Stem Cells in Musculoskeletal Disorders: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 1439. [Google Scholar] [CrossRef]
- Kumar, D.; Moore, R.M.; Mercer, B.M.; Mansour, J.M.; Moore, J.J. Mechanism of Human Fetal Membrane Biomechanical Weakening, Rupture and Potential Targets for Therapeutic Intervention. Obstet. Gynecol. Clin. N. Am. 2020, 47, 523–544. [Google Scholar] [CrossRef]
- Gotherstrom, C.; Ringden, O.; Westgren, M.; Tammik, C.; Le Blanc, K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003, 32, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hocking, A.M.; Gibran, N.S. Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Exp. Cell Res. 2010, 316, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Teoh, S.H.; Chong, M.S.; Schantz, J.T.; Fisk, N.M.; Choolani, M.A.; Chan, J. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 2009, 27, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Teoh, S.H.; Chong, M.S.; Lee, E.S.; Tan, L.G.; Mattar, C.N.; Fisk, N.M.; Choolani, M.; Chan, J. Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 2010, 31, 608–620. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, J.K.; Kim, J.H.; Lee, J.; Kim, D.S.; An, S.; Park, S.B.; Kim, T.H.; Rim, J.S.; Lee, S.; et al. Advanced PLGA hybrid scaffold with a bioactive PDRN/BMP2 nanocomplex for angiogenesis and bone regeneration using human fetal MSCs. Sci. Adv. 2021, 7, eabj1083. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Zhou, S.; Zhang, P.; Ma, X.; Ha, N.; Yang, X.; Yu, Z.; Fang, B.; Jiang, L. Force-induced increased osteogenesis enables accelerated orthodontic tooth movement in ovariectomized rats. Sci. Rep. 2017, 7, 3906. [Google Scholar] [CrossRef]
- Ryu, S.J.; Ryu, D.S.; Kim, J.Y.; Park, J.Y.; Kim, K.H.; Chin, D.K.; Kim, K.S.; Cho, Y.E.; Kuh, S.U. Bone Mineral Density Changes after Orchiectomy using a Scrotal Approach in Rats. Korean J. Spine 2015, 12, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Sheyn, D.; Kallai, I.; Tawackoli, W.; Cohn Yakubovich, D.; Oh, A.; Su, S.; Da, X.; Lavi, A.; Kimelman-Bleich, N.; Zilberman, Y.; et al. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol. Pharm. 2011, 8, 1592–1601. [Google Scholar] [CrossRef]
- Shen, G.Y.; Ren, H.; Tang, J.J.; Qiu, T.; Zhang, Z.D.; Zhao, W.H.; Yu, X.; Huang, J.J.; Liang, D.; Yao, Z.S.; et al. Effect of osteoporosis induced by ovariectomy on vertebral bone defect/fracture in rat. Oncotarget 2017, 8, 73559–73567. [Google Scholar] [CrossRef]
- Sakata, M.; Tonomura, H.; Itsuji, T.; Ishibashi, H.; Takatori, R.; Mikami, Y.; Nagae, M.; Matsuda, K.I.; Tanaka, M.; Kubo, T. Osteoporotic effect on bone repair in lumbar vertebral body defects in a rat model. J. Orthop. Surg. 2018, 26, 2309499018770349. [Google Scholar] [CrossRef]
- Zeng, X.Z.; He, L.G.; Wang, S.; Wang, K.; Zhang, Y.Y.; Tao, L.; Li, X.J.; Liu, S.W. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-kappaB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol. Sin. 2016, 37, 255–263. [Google Scholar] [CrossRef]
- Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H. BMP-2 and titanium particles synergistically activate osteoclast formation. Braz. J. Med. Biol. Res. 2014, 47, 461–469. [Google Scholar] [CrossRef]
- Lampiasi, N.; Russo, R.; Kireev, I.; Strelkova, O.; Zhironkina, O.; Zito, F. Osteoclasts Differentiation from Murine RAW 264.7 Cells Stimulated by RANKL: Timing and Behavior. Biology 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, W.; Li, H.; Lin, H.; Chen, Z.; Chen, H.; Zhang, P.; Tian, Y.; Xu, X.; Shen, Y. CpG oligodeoxynucleotides inhibit the proliferation and osteoclastic differentiation of RAW264.7 cells. RSC Adv. 2020, 10, 14885–14891. [Google Scholar] [CrossRef]
- Su, X.; Guo, W.; Yuan, B.; Wang, D.; Liu, L.; Wu, X.; Zhang, Y.; Kong, X.; Lin, N. Artesunate attenuates bone erosion in rheumatoid arthritis by suppressing reactive oxygen species via activating p62/Nrf2 signaling. Biomed. Pharmacother. 2021, 137, 111382. [Google Scholar] [CrossRef]
- Park, Y.; Huh, K.M.; Kang, S.W. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int. J. Mol. Sci. 2021, 22, 2491. [Google Scholar] [CrossRef]
- Deng, Y.; Ren, J.; Chen, G.; Li, G.; Wu, X.; Wang, G.; Gu, G.; Li, J. Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci. Rep. 2017, 7, 2699. [Google Scholar] [CrossRef]
- Li, Y.; Fu, G.; Gong, Y.; Li, B.; Li, W.; Liu, D.; Yang, X. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells by enhancing mitochondrial activity. J. Musculoskelet. Neuronal Interact. 2022, 22, 123–131. [Google Scholar]
- Gromolak, S.; Krawczenko, A.; Antonczyk, A.; Buczak, K.; Kielbowicz, Z.; Klimczak, A. Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2. Int. J. Mol. Sci. 2020, 21, 9726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zhang, H.Z.; Zhang, Z.Y. 3D printed poly(epsilon-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp. Ther. Med. 2019, 17, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhu, Y.; Qiu, S.; Xu, J.; Chai, Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res. Ther. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zacchetti, G.; Dayer, R.; Rizzoli, R.; Ammann, P. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. BioMed Res. Int. 2014, 2014, 549785. [Google Scholar] [CrossRef]
- Yao, X.W.; Liu, H.D.; Ren, M.X.; Li, T.L.; Jiang, W.K.; Zhou, Z.; Liu, Z.Y.; Yang, M. Aloe polysaccharide promotes osteogenesis potential of adipose-derived stromal cells via BMP-2/Smads and prevents ovariectomized-induced osteoporosis. Mol. Biol. Rep. 2022, 49, 11913–11924. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yuan, X.; Feng, D.; Wu, M.; Yuan, Y.; Ma, C.; Xie, D.; Guo, J.; Liu, C.; Lu, Z. In vivo study of polyurethane and tannin-modified hydroxyapatite composites for calvarial regeneration. J. Tissue Eng. 2020, 11, 2041731420968030. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.W.; Lian, W.S.; Chen, Y.S.; Ko, J.Y.; Wang, S.Y.; Jahr, H.; Wang, F.S. Piezoelectric Microvibration Mitigates Estrogen Loss-Induced Osteoporosis and Promotes Piezo1, MicroRNA-29a, and Wnt3a Signaling in Osteoblasts. Int. J. Mol. Sci. 2021, 22, 9476. [Google Scholar] [CrossRef] [PubMed]
- Valable, S.; Montaner, J.; Bellail, A.; Berezowski, V.; Brillault, J.; Cecchelli, R.; Divoux, D.; Mackenzie, E.T.; Bernaudin, M.; Roussel, S.; et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: Both effects decreased by Ang-1. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow. Metab. 2005, 25, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Mira-Pascual, L.; Tran, A.N.; Andersson, G.; Näreoja, T.A.-O.; Lång, P. A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1. Int. J. Mol. Sci. 2020, 21, 538. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.H.; Park, H.J.; Seo, Y.A.-O. Reduction of Osteoclastic Differentiation of Raw 264.7 Cells by EMF Exposure through TRPV4 and p-CREB Pathway. Int. J. Mol. Sci. 2023, 24, 3058. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.B.; Mikhael, C.; Han, G.; de Faria, L.P.; Rody, W.J., Jr.; Holliday, L.S. Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts. Sci. Rep. 2021, 11, 9214. [Google Scholar] [CrossRef] [PubMed]
- Yamanouchi, D.; Igari, K. The inhibition of Wnt signaling attenuates RANKL-induced osteoclastogenic macrophage activation. Vasc. Biol. 2023, 5, e230007. [Google Scholar] [CrossRef] [PubMed]
- Molstad, D.H.H.; Mattson, A.M.; Begun, D.L.; Westendorf, J.J.; Bradley, E.W. Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. J. Biol. Chem. 2020, 295, 17713–17723. [Google Scholar] [CrossRef]
- Ibáñez, L.A.-O.; Guillem-Llobat, P.; Marín, M.; Guillén, M.A.-O. Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 4693. [Google Scholar] [CrossRef]
- Wang, L.; Chen, K.; He, J.; Kenny, J.; Yuan, Y.; Chen, J.; Liu, Q.; Tan, R.; Zhao, J.; Xu, J. Cytochalasin Z11 inhibits RANKL-induced osteoclastogenesis via suppressing NFATc1 activation. RSC Adv. 2019, 9, 38438–38446. [Google Scholar] [CrossRef]
- Martin, T.J.; Seeman, E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023, 20, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Oliva, D.; Barrena-Blazquez, S.; Jimenez-Alvarez, L.; Fraile-Martinez, O.; Garcia-Montero, C.; Lopez-Gonzalez, L.; Torres-Carranza, D.; Garcia-Puente, L.M.; Carranza, S.T.; Alvarez-Mon, M.A.; et al. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef] [PubMed]
- Kapasa, E.R.; Giannoudis, P.V.; Jia, X.; Hatton, P.V.; Yang, X.B. The Effect of RANKL/OPG Balance on Reducing Implant Complications. J. Funct. Biomater. 2017, 8, 42. [Google Scholar] [CrossRef]
- Ryu, S.; Yoon, S.J.; Lee, C.K.; Yi, S.; Kim, K.N.; Ha, Y.; Shin, D.A. The Combined Effects of RhBMP-2 and Systemic RANKL Inhibitor in Patients With Bone Density Loss Undergoing Posterior Lumbar Interbody Fusion: A Retrospective Observational Analysis With Propensity Score Matching. Neurospine 2023, 20, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, M.L.; Crisafulli, L.; Camisaschi, C.; De Simone, G.; Liberati, F.R.; Palagano, E.; Rucci, N.; Ficara, F.; Sobacchi, C. Rankl genetic deficiency and functional blockade undermine skeletal stem and progenitor cell differentiation. Stem Cell Res. Ther. 2024, 15, 203. [Google Scholar] [CrossRef]
- Boyce, B.F.; Li, J.; Yao, Z.; Xing, L. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis. Endocrinol. Metab. 2023, 38, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.A.-O.; Wang, Z.; Liu, J.; Zhao, W.; Qiao, F.; He, Q.; Shi, J.; Meng, Q.; Wei, J.A.-O.; Cheng, L.A.-O. Atsttrin regulates osteoblastogenesis and osteoclastogenesis through the TNFR pathway. Commun. Biol. 2023, 6, 1251. [Google Scholar] [CrossRef]
- Jin, X.; Xu, J.; Yang, F.; Chen, J.; Luo, F.; Xu, B.; Xu, J.A.-O.X. Oridonin Attenuates Thioacetamide-Induced Osteoclastogenesis Through MAPK/NF-κB Pathway and Thioacetamide-Inhibited Osteoblastogenesis Through BMP-2/RUNX2 Pathway. Calcif. Tissue Int. 2023, 112, 704–715. [Google Scholar] [CrossRef]
- Wang, J.A.-O.X.; Xu, C.; Zhang, J.; Bao, Y.; Tang, Y.; Lv, X.; Ma, B.; Wu, X.; Mao, G. RhoA promotes osteoclastogenesis and regulates bone remodeling through mTOR-NFATc1 signaling. Mol. Med. 2023, 29, 49, Correction in Mol. Med. 2023, 29, 102. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.-Y.; Lee, J.-S.; Jeong, Y.M.; Cho, H.J.; Park, E.; Kim, D.; Kim, S.-S.; Kim, B.-T.; Choi, Y.J.; et al. UBAP2 plays a role in bone homeostasis through the regulation of osteoblastogenesis and osteoclastogenesis. Nat. Commun. 2023, 14, 3668. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tian, L.; Pu, X.; Zeng, Q.; Xiao, Y.; Chen, X.; Zhang, X. Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis. Biomater. Sci. 2022, 10, 5925–5937. [Google Scholar] [CrossRef] [PubMed]
- Mattson, A.M.; Begun, D.L.; Molstad, D.H.H.; Meyer, M.A.; Oursler, M.J.; Westendorf, J.J.; Bradley, E.W. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J. Biol. Chem. 2019, 294, 11772–11784. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xing, J.; Long, C.L.; Peng, Q.; Humphrey, M.B. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis. J. Bone Miner. Res. 2017, 32, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Cheon, Y.H.; Kwak, S.C.; Baek, J.M.; Yoon, K.H.; Lee, M.S.; Oh, J. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J. Bone Miner. Res. 2014, 29, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Ashrafi, S.J.; Vaez-Ghaemi, R.; Hatamian-Zaremi, A.; Webster, T.J. A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomed. 2017, 12, 4937–4961. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Inose, H.; Tamai, K.; Iwamae, M.; Terai, H.; Nakamura, H. Risk of Revision After Vertebral Augmentation for Osteoporotic Vertebral Fracture: A Narrative Review. Neurospine 2023, 20, 852–862. [Google Scholar] [CrossRef]
- Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C.E.; Villemure, I. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra. J. Musculoskelet. Neuronal Interact. 2016, 16, 211–220. [Google Scholar] [PubMed]
- Wang, M.L.; Massie, J.; Perry, A.; Garfin, S.R.; Kim, C.W. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements. Spine J. 2007, 7, 466–474. [Google Scholar] [CrossRef]
- Zhen, G.; Fu, Y.; Zhang, C.; Ford, N.C.; Wu, X.; Wu, Q.; Yan, D.; Chen, X.; Cao, X.; Guan, Y. Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res. 2022, 10, 44. [Google Scholar] [CrossRef]
- Shih, Y.V.; Kingsley, D.; Newman, H.; Hoque, J.; Gupta, A.; Lascelles, B.D.X.; Varghese, S. Multi-Functional Small Molecule Alleviates Fracture Pain and Promotes Bone Healing. Adv. Sci. 2023, 10, e2303567. [Google Scholar] [CrossRef] [PubMed]
- Mustafy, T.; Londono, I.; Moldovan, F.; Villemure, I. High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci. Rep. 2019, 9, 13128. [Google Scholar] [CrossRef]
- Tan, J.; Li, L.; Wang, H.; Wei, L.; Gao, X.; Zeng, Z.; Liu, S.; Fan, Y.; Liu, T.; Chen, J. Biofunctionalized fibrin gel co-embedded with BMSCs and VEGF for accelerating skin injury repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111749. [Google Scholar] [CrossRef] [PubMed]
- McClellan, A.; Evans, R.; Sze, C.; Kan, S.; Paterson, Y.; Guest, D. A novel mechanism for the protection of embryonic stem cell derived tenocytes from inflammatory cytokine interleukin 1 beta. Sci. Rep. 2019, 9, 2755. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.Y.; Joshi, H.P.; Payne, S.; Kim, K.T.; Kyung, J.W.; Choi, H.; Cooke, M.J.; Kwon, S.Y.; Roh, E.J.; Sohn, S.; et al. An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton’s Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int. J. Mol. Sci. 2020, 21, 7391. [Google Scholar] [CrossRef]
- Bernar, A.; Gebetsberger, J.V.; Bauer, M.; Streif, W.; Schirmer, M. Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts. Int. J. Mol. Sci. 2022, 24, 723. [Google Scholar] [CrossRef]
- Kuo, C.T.; Wang, J.Y.; Lin, Y.F.; Wo, A.M.; Chen, B.P.C.; Lee, H. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci. Rep. 2017, 7, 4363. [Google Scholar] [CrossRef]
- Vis, M.A.M.; Ito, K.; Hofmann, S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front. Bioeng. Biotechnol. 2020, 8, 911. [Google Scholar] [CrossRef]
- Kuroda, K.; Kabata, T.; Hayashi, K.; Maeda, T.; Kajino, Y.; Iwai, S.; Fujita, K.; Hasegawa, K.; Inoue, D.; Sugimoto, N.; et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet. Disord. 2015, 16, 236. [Google Scholar] [CrossRef]
- Kotagudda Ranganath, S.; Schlund, M.; Delattre, J.; Ferri, J.; Chai, F. Bilateral double site (calvarial and mandibular) critical-size bone defect model in rabbits for evaluation of a craniofacial tissue engineering constructs. Mater. Today Bio 2022, 14, 100267. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Z.; Yang, R.; Zong, S.; Wei, X.; Wang, C.; Guo, L.; Sun, J.; Li, H.; Li, P. Inactivation of Ihh in Sp7-Expressing Cells Inhibits Osteoblast Proliferation, Differentiation, and Bone Formation, Resulting in a Dwarfism Phenotype with Severe Skeletal Dysplasia in Mice. Calcif. Tissue Int. 2022, 111, 519–534. [Google Scholar] [CrossRef] [PubMed]
Concentration | Fibrinogen (mg/mL) | Aprotinin (kIU/mL) | Thrombin (IU/mL) | 10X CaCl2 (mM) | 20X PBS (X) | |
---|---|---|---|---|---|---|
Fibrin gel | Low | 6.25 | 500 | 2 | 0.8 | 1 |
Mid | 12.5 | 500 | 2 | 0.8 | 1 | |
High | 25 | 500 | 2 | 0.8 | 1 | |
Concentration | Collagen (mg/mL) | NaOH (mM) | 20X PBS (X) | |||
Collagen gel | Low | 0.625 | 40 | 1 | ||
Mid | 1.25 | 40 | 1 |
Primer | Directions | Sequences |
---|---|---|
m-RANK | Forward | CACTGGAACTCAGACTGCGA |
Reverse | TTGTTGAGCTGCAAGGGATG | |
m-CTSK | Forward | GCACCCTTAGTCTTCCGCTC |
Reverse | ACCCACATCCTGCTGTTGAG | |
m-NFATc1 | Forward | CTGCAACAAGCGCAAGTACA |
Reverse | AGGTCCAGAGTGCTATCGGT | |
m-TRAP | Forward | CACTCCCACCCTGAGATTTGT |
Reverse | CATCGTCTGCACGGTTCTG | |
h-BSP | Forward | GCTCAGCATTTTGGGAATGGC |
Reverse | CTGCATTGGCTCCAGTGACAC | |
h-ALP | Forward | CCAAGATCTCCAACATGACT |
Reverse | TCATAGAAGTTGATTACCACAT | |
h-RUNX2 | Forward | CATGTCCCTCGGTATGTCCG |
Reverse | ACTCTGGCTTTGGGAAGAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Lee, S.; Bock, M.; An, S.B.; Shin, H.E.; Rim, J.S.; Kwon, J.-o.; Park, K.-S.; Han, I. Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 8174. https://doi.org/10.3390/ijms25158174
Yu Y, Lee S, Bock M, An SB, Shin HE, Rim JS, Kwon J-o, Park K-S, Han I. Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2024; 25(15):8174. https://doi.org/10.3390/ijms25158174
Chicago/Turabian StyleYu, Yerin, Somin Lee, Minsung Bock, Seong Bae An, Hae Eun Shin, Jong Seop Rim, Jun-oh Kwon, Kwang-Sook Park, and Inbo Han. 2024. "Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells" International Journal of Molecular Sciences 25, no. 15: 8174. https://doi.org/10.3390/ijms25158174