CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple Sclerosis. Nat. Rev. Dis. Primers 2018, 4, 1–27. [Google Scholar] [CrossRef] [PubMed]
- EMD Serono. Rebif-[Prescribing Information]; EMD Serono: Rockland, MA, USA, 2020. [Google Scholar]
- Biogen Inc. Plegridy-[Prescribing Information]; Biogen Inc.: Cambridge, MA, USA, 2021. [Google Scholar]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon β for Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a032003. [Google Scholar] [CrossRef] [PubMed]
- Tsareva, E.; Kulakova, O.; Boyko, A.; Favorova, O. Pharmacogenetics of Multiple Sclerosis: Personalized Therapy with Immunomodulatory Drugs. Pharmacogenet Genom. 2016, 26, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Hočevar, K.; Ristić, S.; Peterlin, B. Pharmacogenomics of Multiple Sclerosis: A Systematic Review. Front. Neurol. 2019, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Campos, M.I.; Pérez-Ramírez, C.; Macías-Cortés, E.; Puerta-García, E.; Sánchez-Pozo, A.; Arnal-García, C.; Barrero-Hernández, F.J.; Calleja-Hernández, M.Á.; Jiménez-Morales, A.; Cañadas-Garre, M. Pharmacogenetic Predictors of Response to Interferon Beta Therapy in Multiple Sclerosis. Mol. Neurobiol. 2021, 58, 4716–4726. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aguilar, L.; Pérez-Ramírez, C.; Maldonado-Montoro, M.D.M.; Carrasco-Campos, M.I.; Membrive-Jiménez, C.; Martínez-Martínez, F.; García-Collado, C.; Calleja-Hernández, M.Á.; Ramírez-Tortosa, M.C.; Jiménez-Morales, A. Effect of Genetic Polymorphisms on Therapeutic Response in Multiple Sclerosis Relapsing-Remitting Patients Treated with Interferon-Beta. Mutat. Res. Rev. Mutat. Res. 2020, 785, 108322. [Google Scholar] [CrossRef]
- Szczuciński, A.; Losy, J. Chemokines and Chemokine Receptors in Multiple Sclerosis. Potential Targets for New Therapies. Acta Neurol. Scand. 2007, 115, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Uzawa, A.; Mori, M.; Hayakawa, S.; Masuda, S.; Nomura, F.; Kuwabara, S. Expression of Chemokine Receptors on Peripheral Blood Lymphocytes in Multiple Sclerosis and Neuromyelitis Optica. BMC Neurol. 2010, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, R.; Crisafulli, C.; Rinaldi, C.; Ruggeri, A.; Amato, A.; Sidoti, A. CCR5Δ32 Polymorphism Associated with a Slower Rate Disease Progression in a Cohort of RR-MS Sicilian Patients. Mult. Scler. Int. 2011, 2011, 153282. [Google Scholar] [CrossRef]
- Greenwald, R.J.; Oosterwegel, M.A.; van der Woude, D.; Kubal, A.; Mandelbrot, D.A.; Boussiotis, V.A.; Sharpe, A.H. CTLA-4 Regulates Cell Cycle Progression during a Primary Immune Response. Eur. J. Immunol. 2002, 32, 366–373. [Google Scholar] [CrossRef]
- Mäurer, M.; Ponath, A.; Kruse, N.; Rieckmann, P. CTLA4 Exon 1 Dimorphism Is Associated with Primary Progressive Multiple Sclerosis. J. Neuroimmunol. 2002, 131, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Song, G.G.; Lee, Y.H. A Meta-Analysis of the Relation between Chemokine Receptor 5 Delta32 Polymorphism and Multiple Sclerosis Susceptibility. Immunol. Investig. 2014, 43, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.-X. CTLA-4 Gene and the Susceptibility of Multiple Sclerosis: An Updated Meta-Analysis Study Including 12,916 Cases and 15,455 Controls. J. Neurogenet. 2014, 28, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, L.F.; Schito, A.M.; Rimmler, J.B.; Vittinghoff, E.; Shih, A.; Lincoln, R.; Callier, S.; Elkins, M.K.; Goodkin, D.E.; Haines, J.L.; et al. CC-Chemokine Receptor 5 Polymorphism and Age of Onset in Familial Multiple Sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 2000, 51, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Madsen, H.O.; Jensen, C.V.; Jensen, J.; Garred, P. CCR5 Delta32, Matrix Metalloproteinase-9 and Disease Activity in Multiple Sclerosis. J. Neuroimmunol. 2000, 102, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kantor, R.; Bakhanashvili, M.; Achiron, A. A Mutated CCR5 Gene May Have Favorable Prognostic Implications in MS. Neurology 2003, 61, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Gade-Andavolu, R.; Comings, D.E.; MacMurray, J.; Rostamkhani, M.; Cheng, L.S.-C.; Tourtellotte, W.W.; Cone, L.A. Association of CCR5 Delta32 Deletion with Early Death in Multiple Sclerosis. Genet. Med. 2004, 6, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Heggarty, S.; Suppiah, V.; Silversides, J.; O’doherty, C.; Droogan, A.; McDonnell, G.; Hawkins, S.; Graham, C.; Vandenbroeck, K. CTLA4 Gene Polymorphisms and Multiple Sclerosis in Northern Ireland. J. Neuroimmunol. 2007, 187, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Bilińska, M.; Frydecka, I.; Noga, L.; Dobosz, T.; Zołedziewska, M.; Suwalska, K.; Tutak, A.; Pokryszko-Dragan, A. Progression of Multiple Sclerosis Is Associated with Exon 1 CTLA-4 Gene Polymorphism. Acta Neurol. Scand. 2004, 110, 67–71. [Google Scholar] [CrossRef]
- Karabon, L.; Kosmaczewska, A.; Bilinska, M.; Pawlak, E.; Ciszak, L.; Jedynak, A.; Jonkisz, A.; Noga, L.; Pokryszko-Dragan, A.; Koszewicz, M.; et al. The CTLA-4 Gene Polymorphisms Are Associated with CTLA-4 Protein Expression Levels in Multiple Sclerosis Patients and with Susceptibility to Disease. Immunology 2009, 128, e787–e796. [Google Scholar] [CrossRef]
- Karam, R.A.; Rezk, N.A.; Amer, M.M.; Fathy, H.A. Immune Response Genes Receptors Expression and Polymorphisms in Relation to Multiple Sclerosis Susceptibility and Response to INF-β Therapy. IUBMB Life 2016, 68, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Kristiansen, T.B.; Wittenhagen, P.; Garred, P.; Eugen-Olsen, J.; Frederiksen, J.L.; Sørensen, T.L. Chemokine Receptor CCR5 in Interferon-Treated Multiple Sclerosis. Acta Neurol. Scand. 2007, 115, 413–418. [Google Scholar] [CrossRef]
- Kulakova, O.G.; Tsareva, E.Y.; Boyko, A.N.; Shchur, S.G.; Gusev, E.I.; Lvovs, D.; Favorov, A.V.; Vandenbroeck, K.; Favorova, O.O. Allelic Combinations of Immune-Response Genes as Possible Composite Markers of IFN-β Efficacy in Multiple Sclerosis Patients. Pharmacogenomics 2012, 13, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Ristić, S.; Lovrecić, L.; Starcević-Cizmarević, N.; Brajenović-Milić, B.; Jazbec, S.S.; Barac-Latas, V.; Vejnović, D.; Sepcić, J.; Kapović, M.; Peterlin, B. No Association of CCR5delta32 Gene Mutation with Multiple Sclerosis in Croatian and Slovenian Patients. Mult. Scler. 2006, 12, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Cizmarević, N.S.; Gašparović, I.; Peterlin, B.; Sepčić, J.; Rudolf, G.; Kapović, M.; Lavtar, P.; Ristić, S. CTLA-4 +49 A/G Gene Polymorphism in Croatian and Slovenian Multiple Sclerosis Patients. Int. J. Immunogenet. 2011, 38, 419–426. [Google Scholar] [CrossRef]
- Martinson, J.J.; Chapman, N.H.; Rees, D.C.; Liu, Y.T.; Clegg, J.B. Global Distribution of the CCR5 Gene 32-Basepair Deletion. Nat. Genet. 1997, 16, 100–103. [Google Scholar] [CrossRef]
- Bennetts, B.H.; Teutsch, S.M.; Buhler, M.M.; Heard, R.N.; Stewart, G.J. The CCR5 Deletion Mutation Fails to Protect against Multiple Sclerosis. Hum. Immunol. 1997, 58, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-W.; Hu, Y.-C.; Yang, Y.-H.; Chien, Y.-H.; Lee, N.-C.; Yu, H.-H.; Chiang, B.-L.; Wang, L.-C. CTLA-4 Gene Mutation and Multiple Sclerosis: A Case Report and Literature Review. J. Microbiol. Immunol. Infect. 2022, 55, 545–548. [Google Scholar] [CrossRef]
- Kosmaczewska, A.; Bilinska, M.; Ciszak, L.; Noga, L.; Pawlak, E.; Szteblich, A.; Podemski, R.; Frydecka, I. Different Patterns of Activation Markers Expression and CD4+ T-Cell Responses to Ex Vivo Stimulation in Patients with Clinically Quiescent Multiple Sclerosis (MS). J. Neuroimmunol. 2007, 189, 137–146. [Google Scholar] [CrossRef]
- Oliveira, E.M.L.; Bar-Or, A.; Waliszewska, A.I.; Cai, G.; Anderson, D.E.; Krieger, J.I.; Hafler, D.A. CTLA-4 Dysregulation in the Activation of Myelin Basic Protein Reactive T Cells May Distinguish Patients with Multiple Sclerosis from Healthy Controls. J. Autoimmun. 2003, 20, 71–81. [Google Scholar] [CrossRef]
- Eschborn, M.; Pawlitzki, M.; Wirth, T.; Nelke, C.; Pfeuffer, S.; Schulte-Mecklenbeck, A.; Lohmann, L.; Rolfes, L.; Pape, K.; Eveslage, M.; et al. Evaluation of Age-Dependent Immune Signatures in Patients With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1094. [Google Scholar] [CrossRef]
- Kuchroo, V.K.; Das, M.P.; Brown, J.A.; Ranger, A.M.; Zamvil, S.S.; Sobel, R.A.; Weiner, H.L.; Nabavi, N.; Glimcher, L.H. B7-1 and B7-2 Costimulatory Molecules Activate Differentially the Th1/Th2 Developmental Pathways: Application to Autoimmune Disease Therapy. Cell 1995, 80, 707–718. [Google Scholar] [CrossRef]
- Hallal-Longo, D.E.M.; Mirandola, S.R.; Oliveira, E.C.; Farias, A.S.; Pereira, F.G.; Metze, I.L.; Brandão, C.O.; Ruocco, H.H.; Damasceno, B.P.; Santos, L.M.B. Diminished Myelin-Specific T Cell Activation Associated with Increase in CTLA4 and Fas Molecules in Multiple Sclerosis Patients Treated with IFN-Beta. J. Interferon Cytokine Res. 2007, 27, 865–873. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Krakauer, M.; Khademi, M.; Olsson, T.; Sørensen, P.S. FOXP3, CBLB and ITCH Gene Expression and Cytotoxic T Lymphocyte Antigen 4 Expression on CD4(+) CD25(High) T Cells in Multiple Sclerosis. Clin. Exp. Immunol. 2012, 170, 149–155. [Google Scholar] [CrossRef]
- Espejo, C.; Brieva, L.; Ruggiero, G.; Río, J.; Montalban, X.; Martínez-Cáceres, E.M. IFN-Beta Treatment Modulates the CD28/CTLA-4-Mediated Pathway for IL-2 Production in Patients with Relapsing-Remitting Multiple Sclerosis. Mult. Scler. 2004, 10, 630–635. [Google Scholar] [CrossRef]
- Greer, J.M.; McCombe, P.A. Role of Gender in Multiple Sclerosis: Clinical Effects and Potential Molecular Mechanisms. J. Neuroimmunol. 2011, 234, 7–18. [Google Scholar] [CrossRef]
- Tzartos, J.S.; Friese, M.A.; Craner, M.J.; Palace, J.; Newcombe, J.; Esiri, M.M.; Fugger, L. Interleukin-17 Production in Central Nervous System-Infiltrating T Cells and Glial Cells Is Associated with Active Disease in Multiple Sclerosis. Am. J. Pathol. 2008, 172, 146–155. [Google Scholar] [CrossRef]
- Contasta, I.; Totaro, R.; Pellegrini, P.; Del Beato, T.; Carolei, A.; Berghella, A.M. A Gender-Related Action of IFNbeta-Therapy Was Found in Multiple Sclerosis. J. Transl. Med. 2012, 10, 223. [Google Scholar] [CrossRef]
- Golden, L.C.; Voskuhl, R. The Importance of Studying Sex Differences in Disease: The Example of Multiple Sclerosis. J. Neurosci. Res. 2017, 95, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Clarelli, F.; Liberatore, G.; Sorosina, M.; Osiceanu, A.M.; Esposito, F.; Mascia, E.; Santoro, S.; Pavan, G.; Colombo, B.; Moiola, L.; et al. Pharmacogenetic Study of Long-Term Response to Interferon-β Treatment in Multiple Sclerosis. Pharmacogenomics J. 2017, 17, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Río, J.; Nos, C.; Tintoré, M.; Téllez, N.; Galán, I.; Pelayo, R.; Comabella, M.; Montalban, X. Defining the Response to Interferon-Beta in Relapsing-Remitting Multiple Sclerosis Patients. Ann. Neurol. 2006, 59, 344–352. [Google Scholar] [CrossRef]
- Suppiah, V.; Alloza, I.; Heggarty, S.; Goris, A.; Dubois, B.; Carton, H.; Vandenbroeck, K. The CTLA4 +49 A/G*G-CT60*G Haplotype Is Associated with Susceptibility to Multiple Sclerosis in Flanders. J. Neuroimmunol. 2005, 164, 148–153. [Google Scholar] [CrossRef] [PubMed]
Males (n = 65) | Females (n = 230) | Total (n = 295) | |||||||
---|---|---|---|---|---|---|---|---|---|
Clinical Data | Responders (n = 40) | Non- Responders (n = 25) | p | Responders (n = 133) | Non- Responders (n = 97) | p | Responders (n = 173) | Non- Responders (n = 122) | p |
Age at onset, years * | 29.2 ± 6.9 | 28.4 ± 7.6 | 0.662 | 28.8 ± 7.8 | 26.9 ± 8.3 | 0.098 | 28.9 ± 7.6 | 27.2 ± 8.2 | 0.083 |
No. of relapses in previous 2 years * | 1.6 ± 1.0 (1–5) | 1.8 ± 1.1 (1–4) | 0.559 | 1.8 ± 1.2 (1–7) | 2.1 ± 1.2 (1–6) | 0.074 | 1.7 ± 1.1 (1–7) | 2.0 ± 1.2 (1–6) | 0.051 |
EDSS at baseline * | 2.7 ± 1.6 (1–6.5) | 2.1 ± 2.2 (1–7.5) | 0.355 | 2.8 ± 1.6 (0.5–7) | 3.0 ± 1.3 (1–5.5) | 0.349 | 2.8 ± 1.6 (0.5–7) | 2.9 ± 1.5 (1–7.5) | 0.623 |
EDSS at study endpoint * | 2.0 ± 1.0 (1–4) | 3.1 ± 2.8 (1–7.5) | 0.156 | 2.7 ± 1.7 (0.5–6.5) | 4.0 ± 1.5 (1–7) | 0.0001 | 2.5 ± 1.6 (1–6.5) | 3.9 ± 1.7 (1–7.5) | 0.0001 |
Males (n = 65) | Females (n = 230) | Total (n = 295) | |||||||
---|---|---|---|---|---|---|---|---|---|
Genotype/Allele * | IFN-β R (n = 40) | IFN-β NR (n = 25) | p | IFN-β R (n = 133) | IFN-β NR (n = 97) | p | IFN-β R (n = 173) | IFN-β NR (n = 122) | p |
CCR5 Δ32 | |||||||||
Codominant model | |||||||||
wtwt | 35 (87.5) | 23 (92.0) | 0.488 | 115 (86.5) | 87 (89.7) | 0.580 | 150 (86.7) | 110 (90.2) | 0.517 |
wtΔ32 | 5 (12.5) | 2 (8.0) | 17 (12.8) | 10 (10.3) | 22 (12.7) | 12 (9.8) | |||
Δ32Δ32 | 0 | 0 | 1 (0.7) | 0 | 1 (0.6) | 0 (0.0) | |||
Dominant model | |||||||||
wtΔ32 + Δ32Δ32 | 5 (12.5) | 2 (8.0) | 0.448 | 18 (13.5) | 10 (10.3) | 0.460 | 23 (13.3) | 12 (9.8) | 0.366 |
Recessive model | |||||||||
wtΔ32 + wtwt | 40 (100.0) | 25 (100.0) | - | 132 (99.3) | 97 (100.0) | 0.578 | 172 (99.4) | 122 (100.0) | 0.586 |
Overdominant model | |||||||||
wtwt + Δ32Δ32 | 35 (12.5) | 23 (8.0) | 0.448 | 116 (87.2) | 87 (89.7) | 0.359 | 151 (87.3) | 110 (90.2) | 0.284 |
wt | 93.8 | 96.0 | 0.451 | 92.9 | 94.8 | 0.392 | 93.1 | 95.1 | 0.313 |
Δ32 | 6.2 | 4.0 | 7.1 | 5.2 | 6.9 | 4.9 | |||
CTLA-4 +49 A/G | |||||||||
Codominant model | |||||||||
AA | 16 (40.0) | 12 (48.0) | 0.655 | 56 (42.1) | 28 (28.9) | 0.114 | 72 (41.6) | 40 (32.8) | 0.273 |
AG | 18 (45.0) | 11 (44.0) | 54 (40.6) | 50 (51.5) | 72 (41.6) | 61 (50.0) | |||
GG | 6 (15.0) | 2 (8.0) | 23 (17.3) | 19 (19.6) | 29 (16.8) | 21 (17.2) | |||
Dominant model | |||||||||
AG + GG | 24 (60.0) | 13 (52.0) | 0.583 | 77 (57.9) | 69 (71.1) | 0.039 | 101 (58.4) | 82 (67.2) | 0.123 |
Recessive model | |||||||||
AG + AA | 34 (85.0) | 23 (92.0) | 0.336 | 110 (82.7) | 78 (80.4) | 0.656 | 144 (83.2) | 101(82.8) | 0.920 |
Overdominant model | |||||||||
AA + GG | 22 (55.0) | 14 (56.0) | 0.937 | 79 (59.4) | 47 (48.5) | 0.100 | 101 (58.4) | 61 (50.0) | 0.154 |
A | 62.5 | 68.0 | 0.382 | 62.2 | 54.9 | 0.094 | 62.2 | 57.8 | 0.256 |
G | 37.8 | 32.0 | 37.8 | 45.1 | 37.8 | 42.2 | |||
CCR5 Δ32/CTLA4 +49 A/G | |||||||||
wtwt/AA | 14 (35.0) | 12 (48.0) | 0.546 | 49 (36.8) | 27 (27.8) | 0.118 | 63 (36.4) | 39 (32.0) | 0.146 |
wtΔ32/AA | 2 (5.0) | 0 (0.0) | 7 (5.3) | 1 (1.0) | 9 (5.2) | 1 (0.8) | |||
wtwt/G+ | 21 (52.5) | 11 (44.0) | 66 (49.6) | 60 (61.9) | 87 (50.3) | 71 (58.2) | |||
wtΔ32/G+ | 3 (7.5) | 2 (8.0) | 11 (8.3) | 9 (9.3) | 14 (8.1) | 11 (9.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekić, J.; Stanković Matić, I.; Rački, V.; Janko Labinac, D.; Vuletić, V.; Kapović, M.; Ristić, S.; Peterlin, B.; Starčević Čizmarević, N. CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. Int. J. Mol. Sci. 2024, 25, 7412. https://doi.org/10.3390/ijms25137412
Nekić J, Stanković Matić I, Rački V, Janko Labinac D, Vuletić V, Kapović M, Ristić S, Peterlin B, Starčević Čizmarević N. CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. International Journal of Molecular Sciences. 2024; 25(13):7412. https://doi.org/10.3390/ijms25137412
Chicago/Turabian StyleNekić, Jasna, Ivana Stanković Matić, Valentino Rački, Dolores Janko Labinac, Vladimira Vuletić, Miljenko Kapović, Smiljana Ristić, Borut Peterlin, and Nada Starčević Čizmarević. 2024. "CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients" International Journal of Molecular Sciences 25, no. 13: 7412. https://doi.org/10.3390/ijms25137412
APA StyleNekić, J., Stanković Matić, I., Rački, V., Janko Labinac, D., Vuletić, V., Kapović, M., Ristić, S., Peterlin, B., & Starčević Čizmarević, N. (2024). CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. International Journal of Molecular Sciences, 25(13), 7412. https://doi.org/10.3390/ijms25137412