Isolation, Identification, and Biological Activities of a New Chlorin e6 Derivative
Abstract
:1. Introduction
2. Results
2.1. Isolation and Purification of Impurities
2.2. Identification and Structure Elucidiation of Impurity 4.5
2.3. The Scheme of the Formation of Rhodin g7 71-ethyl Ester
2.4. Analysis of Chlorin e6 and Rhodin g7 71-ethyl ester Uptake in MIA PaCa-2 and BV2 Cells
2.5. Analysis of Singlet Oxygen Photogeneration
2.6. Biodistribution Study
2.7. Detection of Reactive Oxygen Species (ROS)
2.8. Cytotoxicity of Chlorin e6-PDT and Rhodin g7 71-ethyl Ester-PDT in Cancer Cells
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Synthesis of Chlorin e6 and the Charracterization Data for Rhodin g7 71-ethyl Ester
4.3. Analysis of Singlet Oxygen Photogeneration
4.4. Cell Culture
4.5. Detection of Reactive Oxygen Species (ROS)
4.6. Cellular Toxicity
4.7. Biodistribution Study
4.8. Analysis of Chlorin e6 and Rhodin g7 71-ethyl ester Uptake in MIA PaCa-2 and BV2 Cells
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef] [PubMed]
- Simelane, N.W.N.; Kruger, C.A.; Abrahamse, H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv. 2020, 10, 41560–41576. [Google Scholar] [CrossRef] [PubMed]
- Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 2009, 24, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D.V. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Shao, X.; Zhao, J.; Wu, M. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency. Adv. Sci. 2017, 4, 1700113. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.H.; Childs, C.J.; Sibata, C.H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021, 11, 3278–3300. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, X.; Jin, Y.; Zhang, J.; Li, Y.; Tang, Y.; Song, Y.; Wang, S. Chlorin e6-Biotin conjugates for tumor-targeting photodynamic therapy. Molecules 2021, 26, 7342. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Kang, L.; Lu, Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int. J. Clin. Exp. Med. 2014, 7, 4867. [Google Scholar]
- Wang, Y.; Wang, H.; Zhou, L.; Lu, J.; Jiang, B.; Liu, C.; Guo, J. Photodynamic therapy of pancreatic cancer: Where have we come from and where are we going? Photodiagn. Photodyn. Ther. 2020, 31, 101876. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.G.; Andrén-Sandberg, A. Photodynamic therapy for pancreatic cancer. Pancreas 2007, 34, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T. Photodynamic therapy (PDT) for lung cancers. J. Thorac. Oncol. 2006, 1, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Yavari, N.; Andersson-Engels, S.; Segersten, U.; Malmstrom, P.U. An overview on preclinical and clinical experiences with photodynamic therapy for bladder cancer. Can. J. Urol. 2011, 18, 5778. [Google Scholar] [PubMed]
- Amos-Tautua, B.M.; Songca, S.P.; Oluwafemi, O.S. Application of porphyrings in antibacterial photodynamic therapy. Molecules 2019, 24, 2456. [Google Scholar] [CrossRef] [PubMed]
- Sai, D.L.; Lee, J.; Nguyen, D.L.; Kim, Y.-P. Tailoring photosensitive ROS for Advanced photodynamic therapy. Exp. Mol. Med. 2021, 53, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Stern, A. Die Chemie des Pyrrols; Akademische Verlag: Leipzig, Germany, 1940; Volume 4. [Google Scholar]
- Kenner, G.W.; McCombie, S.W.; Smith, K.M. Pyrroles and related compounds. Part XXIV. Separation and oxidative degradation of chlorophyll derivatives. J. Chem. Soc. Perkin Trans. 1973, 1, 2517–2523. [Google Scholar] [CrossRef] [PubMed]
- Loetjoenen, S.; Hynninen, P.H.A. Convenient method for the preparation of chlorin e6 and rhodin g7 trimethyl Esters. Synthesis 1980, 7, 541–543. [Google Scholar] [CrossRef]
- Isakau, H.A.; Trukhacheva, T.V.; Petrov, P.T. Isolation and identification of impurities in chlorin e6. J. Pharm. Biomed. Anal. 2007, 45, 20–29. [Google Scholar] [CrossRef]
- Isakau, H.A.; Trukhacheva, T.V.; Zhebentyaev, A.I.; Petrov, P.T. HPLC study of chlorin e6 and its molecular complex with polyvinylpyrrolidone. Biomed. Chromatogr. 2007, 21, 318–325. [Google Scholar] [CrossRef]
- Shrestha, R.; Lee, H.J.; Lim, J.; Gurung, P.; Thapa Magar, T.B.; Kim, Y.-T.; Lee, K.; Bae, S.; Kim, Y.-W. Effect of photodynamic therapy with chlorin e6 on canine tumors. Life 2022, 12, 2102. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Mallik, S.K.; Lim, J.; Gurung, P.; Thapa Magar, T.B.; Kim, Y.-W. Efficient synthesis of chlorin e6 and its potential photodynamic immunotherapy in mouse melanoma by the abscopal effect. Int. J. Mol. Sci. 2023, 24, 3901. [Google Scholar] [CrossRef] [PubMed]
- Thapa Magar, T.B.; Mallik, S.K.; Gurung, P.; Lim, J.; Kim, Y.-T.; Shrestha, R.; Kim, Y.-W. Chlorin E6-Curcumin-Mediated Photodynamic Therapy Promotes an Anti-Photoaging Effect in UVB-Irradiated Fibroblasts. Int. J. Mol. Sci. 2023, 24, 13468. [Google Scholar] [CrossRef]
- Viera, I.; Pérez-Gálvez, A.; Roca, M. Green natural colorants. Molecules 2019, 24, 154. [Google Scholar] [CrossRef] [PubMed]
- Vermathen, M.; Marzorati, M.; Vermathen, P.; Bigler, P. pH-dependendent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy. Langmuir 2010, 26, 11085–11094. [Google Scholar] [CrossRef]
- Marzorati, M.; Bigler, P.; Vermathen, M. Interactions between selected photosensitizers and model membranes: An NMR classification. Biochim. Biophys. Acta Biomembr. 2011, 1808, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, K.; Jiao, T.; Xing, R.; Shen, G.; Yan, X. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy. Sci. Rep. 2017, 7, 42978. [Google Scholar] [CrossRef]
- Mehraban, N.; Freeman, H.S. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. Materials 2015, 8, 4421–4456. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Dwarakanath, B.S.; Muralidhar, K.; Jain, V. Cellular uptake, localization and photodynamic effects of haematoporphyrin derivative in human glioma and squamous carcinoma cell lines. J. Photochem. Photobiol. B Biol. 2003, 69, 107–120. [Google Scholar] [CrossRef]
- Thapa Magar, T.B.; Lee, J.; Lee, J.H.; Jeon, J.; Gurung, P.; Lim, J.; Kim, Y.-W. Novel Chlorin e6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity. Pharmaceutics 2023, 15, 1577. [Google Scholar] [CrossRef]
No. | Cell Line | Type | Chlorin e6 (µM) | Rhodin g7 71-ethyl Ester (µM) | ||
---|---|---|---|---|---|---|
PDT | Dark | PDT | Dark | |||
1 | B16F10 | Murine melanoma | 33.6 (±2.2) | 555.7 (±6.1) | 12.3 (±1.8) | 262.0 (± 2.9) |
cancer cell | ||||||
2 | HT29 | Human colorectal cancer cell | 28.1 (±1.4) | 543.0 (±11.8) | 30.1 (±3.8) | 222.9 (±56.2) |
3 | MIA PaCa-2 | Human pancreatic cancer cell | 23.3 (±0.8) | 430.3 (±4.7) | 7.6 (±1.0) | 160.7 (±1.8) |
4 | PANC-1 | Human pancreatic cancer cell | 17.9 (±1.8) | 301.8 (±19.4) | 8.4 (±1.6) | 279.2 (±16.4) |
5 | AsPC-1 | Human pancreatic cancer cell | 30.4 (±2.1) | 248.2 (±5.5) | 49.1 (±0.9) | 395.2 (±11.4) |
6 | RAW264.7 | Murine Macrophage cell | 45.4 (±9.0) | 455.9 (±42.7) | 55.2 (±3.4) | 465.7 (±13.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandit, R.P.; Thapa Magar, T.B.; Shrestha, R.; Lim, J.; Gurung, P.; Kim, Y.-W. Isolation, Identification, and Biological Activities of a New Chlorin e6 Derivative. Int. J. Mol. Sci. 2024, 25, 7114. https://doi.org/10.3390/ijms25137114
Pandit RP, Thapa Magar TB, Shrestha R, Lim J, Gurung P, Kim Y-W. Isolation, Identification, and Biological Activities of a New Chlorin e6 Derivative. International Journal of Molecular Sciences. 2024; 25(13):7114. https://doi.org/10.3390/ijms25137114
Chicago/Turabian StylePandit, Rameshwar Prasad, Til Bahadur Thapa Magar, Rajeev Shrestha, Junmo Lim, Pallavi Gurung, and Yong-Wan Kim. 2024. "Isolation, Identification, and Biological Activities of a New Chlorin e6 Derivative" International Journal of Molecular Sciences 25, no. 13: 7114. https://doi.org/10.3390/ijms25137114
APA StylePandit, R. P., Thapa Magar, T. B., Shrestha, R., Lim, J., Gurung, P., & Kim, Y.-W. (2024). Isolation, Identification, and Biological Activities of a New Chlorin e6 Derivative. International Journal of Molecular Sciences, 25(13), 7114. https://doi.org/10.3390/ijms25137114