Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options
Abstract
:1. Inflammatory Bowel Disease
2. Underpinnings of IBD: From Molecular to Environmental Factors
2.1. Genetic Determinants
2.2. Immunological Dysregulation
2.3. Gut Microbiota Influence
2.4. Environmental Factors
3. Biological Markers for IBD Diagnosis and Prognosis
3.1. Genetic and Epigenetic Biomarkers
3.2. Blood Biomarkers
3.3. Fecal Biomarkers
3.4. Biomarker Evaluation Techniques
4. Therapeutic Targets and Treatments in IBD
5. Current Challenges
Author Contributions
Funding
Conflicts of Interest
References
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Caviglia, G.P.; Garrone, A.; Bertolino, C.; Vanni, R.; Bretto, E.; Poshnjari, A.; Tribocco, E.; Frara, S.; Armandi, A.; Astegiano, M.; et al. Epidemiology of Inflammatory Bowel Diseases: A Population Study in a Healthcare District of North-West Italy. J. Clin. Med. 2023, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-L.; Bao, J.-C.; Liao, X.-Y.; Chen, Y.-J.; Wang, L.-W.; Fan, Y.-Y.; Xu, Q.-Y.; Hao, L.-X.; Li, K.-J.; Liang, M.-X.; et al. Trends and Projections of Inflammatory Bowel Disease at the Global, Regional and National Levels, 1990–2050: A Bayesian Age-Period-Cohort Modeling Study. BMC Public Health 2023, 23, 2507. [Google Scholar] [CrossRef]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, M.; Liang, Y.; Xu, J.; Xu, H.; Nie, Y.; Wang, L.; Yao, J.; Li, D. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. J. Inflamm. Res. 2022, 15, 1825–1844. [Google Scholar] [CrossRef] [PubMed]
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- M’Koma, A.E. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J. The Montreal Classification of Inflammatory Bowel Disease: Controversies, Consensus, and Implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.R.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.-F.; Gasche, C.; Geboes, K.; et al. Toward an Integrated Clinical, Molecular and Serological Classification of Inflammatory Bowel Disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. J. Can. Gastroenterol. 2005, 19 (Suppl. A), 5A–36A. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Cleynen, I. Molecular Profiling of Inflammatory Bowel Disease: Is It Ready for Use in Clinical Decision-Making? Cells 2019, 8, 535. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Zapata-Cobo, P.; Velasco, M.; Palomino, L.M.; Clemente, S.; Segarra, O.; Sánchez, C.; Tolín, M.; Moreno-Álvarez, A.; Fernández-Lorenzo, A.; et al. Association between HLA DNA Variants and Long-Term Response to Anti-TNF Drugs in a Spanish Pediatric Inflammatory Bowel Disease Cohort. Int. J. Mol. Sci. 2023, 24, 1797. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Ruscher, R.; Hunter, L.; Daly, N.L.; Loukas, A.; Wangchuk, P. Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. J. Clin. Med. 2020, 9, 1273. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Jin, B.; Tseng, Y.; Lin, L.; Lin, L.; Shen, X.; Song, H.; Kong, M.; Luo, Z.; Chu, Y.; et al. A Precise Molecular Subtyping of Ulcerative Colitis Reveals the Immune Heterogeneity and Predicts Clinical Drug Responses. J. Transl. Med. 2023, 21, 466. [Google Scholar] [CrossRef] [PubMed]
- State, M.; Negreanu, L. Defining the Failure of Medical Therapy for Inflammatory Bowel Disease in the Era of Advanced Therapies: A Systematic Review. Biomedicines 2023, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Rebuck, R.; Wang, Y.; Zou, B.; Adedokun, O.J.; Gasink, C.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Five-Year Efficacy and Safety of Ustekinumab Treatment in Crohn’s Disease: The IM-UNITI Trial. Clin. Gastroenterol. Hepatol. 2022, 20, 578–590.e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiang, X.; Xia, W.; Li, X.; Wang, S.; Ye, S.; Tian, L.; Zhao, L.; Ai, F.; Shen, Z.; et al. Evolving Trends and Burden of Inflammatory Bowel Disease in Asia, 1990–2019: A Comprehensive Analysis Based on the Global Burden of Disease Study. J. Epidemiol. Glob. Health 2023, 13, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Cross, E.; Saunders, B.; Farmer, A.D.; Prior, J.A. Diagnostic Delay in Adult Inflammatory Bowel Disease: A Systematic Review. Indian J. Gastroenterol. 2023, 42, 40–52. [Google Scholar] [CrossRef]
- Scheurlen, K.M.; Parks, M.A.; Macleod, A.; Galandiuk, S. Unmet Challenges in Patients with Crohn’s Disease. J. Clin. Med. 2023, 12, 5595. [Google Scholar] [CrossRef]
- Sorrentino, D.; Nguyen, V.Q.; Chitnavis, M.V. Capturing the Biologic Onset of Inflammatory Bowel Diseases: Impact on Translational and Clinical Science. Cells 2019, 8, 548. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Christensen, H.S.; Bøgsted, M.; Colombel, J.-F.; Jess, T.; Allin, K.H. The Rising Burden of Inflammatory Bowel Disease in Denmark Over Two Decades: A Nationwide Cohort Study. Gastroenterology 2022, 163, 1547–1554.e5. [Google Scholar] [CrossRef]
- Kaplan, G.G. The Global Burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- GBD Results. Available online: https://vizhub.healthdata.org/gbd-results (accessed on 26 March 2024).
- Virta, L.J.; Saarinen, M.M.; Kolho, K.-L. Inflammatory Bowel Disease Incidence Is on the Continuous Rise Among All Paediatric Patients Except for the Very Young: A Nationwide Registry-Based Study on 28-Year Follow-Up. J. Crohns Colitis 2017, 11, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Khalili, H.; Gower-Rousseau, C.; Olen, O.; Benchimol, E.I.; Lynge, E.; Nielsen, K.R.; Brassard, P.; Vutcovici, M.; Bitton, A.; et al. Sex-Based Differences in Incidence of Inflammatory Bowel Diseases—Pooled Analysis of Population-Based Studies From Western Countries. Gastroenterology 2018, 155, 1079–1089.e3. [Google Scholar] [CrossRef] [PubMed]
- Burisch, J.; Pedersen, N.; Čuković-Čavka, S.; Brinar, M.; Kaimakliotis, I.; Duricova, D.; Shonová, O.; Vind, I.; Avnstrøm, S.; Thorsgaard, N.; et al. East–West Gradient in the Incidence of Inflammatory Bowel Disease in Europe: The ECCO-EpiCom Inception Cohort. Gut 2014, 63, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G.; Windsor, J.W. The Four Epidemiological Stages in the Global Evolution of Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef]
- Jung, S.; Ye, B.D.; Lee, H.-S.; Baek, J.; Kim, G.; Park, D.; Park, S.H.; Yang, S.-K.; Han, B.; Liu, J.; et al. Identification of Three Novel Susceptibility Loci for Inflammatory Bowel Disease in Koreans in an Extended Genome-Wide Association Study. J. Crohns Colitis 2021, 15, 1898–1907. [Google Scholar] [CrossRef]
- Turpin, W.; Goethel, A.; Bedrani, L.; Croitoru, K. Determinants of IBD Heritability: Genes, Bugs, and More. Inflamm. Bowel Dis. 2018, 24, 1133–1148. [Google Scholar] [CrossRef]
- Glassner, K.L.; Abraham, B.P.; Quigley, E.M.M. The Microbiome and Inflammatory Bowel Disease. J. Allergy Clin. Immunol. 2020, 145, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Sánchez-Martinez, H.; Gonzalez-Granado, J.M. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023, 24, 1526. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental Triggers in IBD: A Review of Progress and Evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Hussein, S.S.; Ali, E.N.; Zaki, N.H.; Ad’hiah, A.H. Genetic Polymorphism of HLA-G Gene (G*01:03, G*01:04, and G*01:05N) in Iraqi Patients with Inflammatory Bowel Disease (Ulcerative Colitis and Crohn’s Disease). Egypt. J. Med. Hum. Genet. 2021, 22, 34. [Google Scholar] [CrossRef]
- Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory Bowel Disease: Between Genetics and Microbiota. Mol. Biol. Rep. 2020, 47, 3053–3063. [Google Scholar] [CrossRef]
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Soderholm, A.T.; Pedicord, V.A. Intestinal Epithelial Cells: At the Interface of the Microbiota and Mucosal Immunity. Immunology 2019, 158, 267–280. [Google Scholar] [CrossRef]
- Peterson, L.W.; Artis, D. Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef]
- Foerster, E.G.; Mukherjee, T.; Cabral-Fernandes, L.; Rocha, J.D.B.; Girardin, S.E.; Philpott, D.J. How Autophagy Controls the Intestinal Epithelial Barrier. Autophagy 2022, 18, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Kaplan, G.G.; Bernstein, C.N.; Burke, K.E.; Lochhead, P.J.; Sasson, A.N.; Agrawal, M.; Tiong, J.H.T.; Steinberg, J.; Kruis, W.; et al. Lifestyle, Behaviour, and Environmental Modification for the Management of Patients with Inflammatory Bowel Diseases: An International Organization for Study of Inflammatory Bowel Diseases Consensus. Lancet Gastroenterol. Hepatol. 2022, 7, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.Y.; Fernandez-Hernandez, H.; Hu, J.; Schaffner, A.; Pankratz, N.; Hsu, N.-Y.; Chuang, L.-S.; Carmi, S.; Villaverde, N.; Li, X.; et al. Functional Variants in LRRK2 Confer Pleiotropic Effects on Risk for Crohn’s Disease and Parkinson’s Disease. Sci. Transl. Med. 2018, 10, eaai7795. [Google Scholar] [CrossRef]
- Carreras-Torres, R.; Ibáñez-Sanz, G.; Obón-Santacana, M.; Duell, E.J.; Moreno, V. Identifying Environmental Risk Factors for Inflammatory Bowel Diseases: A Mendelian Randomization Study. Sci. Rep. 2020, 10, 19273. [Google Scholar] [CrossRef] [PubMed]
- Mirkov, M.U.; Verstockt, B.; Cleynen, I. Genetics of Inflammatory Bowel Disease: Beyond NOD2. Lancet Gastroenterol. Hepatol. 2017, 2, 224–234. [Google Scholar] [CrossRef]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn’s Disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef]
- Ashton, J.J.; Latham, K.; Beattie, R.M.; Ennis, S. Review Article: The Genetics of the Human Leucocyte Antigen Region in Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2019, 50, 885–900. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.K.; Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Sarmiento-Aguilar, A.; Barreto-Zuñiga, R.; Martínez-Benitez, B.; Lara-Velazquez, M.A. Caspase Recruitment Domain (CARD) Family (CARD9, CARD10, CARD11, CARD14 and CARD15) Are Increased during Active Inflammation in Patients with Inflammatory Bowel Disease. J. Inflamm. 2018, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- PubChem NOD2—Nucleotide Binding Oligomerization Domain Containing 2 (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/NOD2/human (accessed on 1 April 2024).
- Chen, X.; Zhou, Z.; Zhang, Y.; Cheng, X.; Guo, X.; Yang, X. NOD2/CARD15 Gene Polymorphisms and Sarcoidosis Susceptibility: Review and Meta-Analysis. Sarcoidosis Vasc. Diffuse Lung Dis. 2018, 35, 115–122. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.-P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef]
- Mann, J.K.; Shen, J.; Park, S. Enhancement of Muramyl Dipeptide-Dependent NOD2 Activity by a Self-Derived Peptide. J. Cell. Biochem. 2017, 118, 1227–1238. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- El Hadad, J.; Schreiner, P.; Vavricka, S.R.; Greuter, T. The Genetics of Inflammatory Bowel Disease. Mol. Diagn. Ther. 2024, 28, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Poggi, A.; Benelli, R.; Venè, R.; Costa, D.; Ferrari, N.; Tosetti, F.; Zocchi, M.R. Human Gut-Associated Natural Killer Cells in Health and Disease. Front. Immunol. 2019, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Zhilin, I.V.; Chashkova, E.Y.; Zhilina, A.A.; Pushkarev, B.S.; Korotaeva, N.S. The role of TNF-alpha gene (-238G/A and -308G/A) polymorphisms in the etiology and pathogenesis of inflammatory bowel diseases in various ethnic groups. Alm. Clin. Med. 2019, 47, 548–558. [Google Scholar] [CrossRef]
- Fan, W.; Maoqing, W.; Wangyang, C.; Fulan, H.; Dandan, L.; Jiaojiao, R.; Xinshu, D.; Binbin, C.; Yashuang, Z. Relationship between the Polymorphism of Tumor Necrosis Factor-α-308 G>A and Susceptibility to Inflammatory Bowel Diseases and Colorectal Cancer: A Meta-Analysis. Eur. J. Hum. Genet. 2011, 19, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; Huebner, C.; Petermann, I.; Gearry, R.B.; Barclay, M.L.; Demmers, P.; McCulloch, A.; Han, D.Y. Single Nucleotide Polymorphism in the Tumor Necrosis Factor-Alpha Gene Affects Inflammatory Bowel Diseases Risk. World J. Gastroenterol. 2008, 14, 4652–4661. [Google Scholar] [CrossRef] [PubMed]
- Roussomoustakaki, M.; Satsangi, J.; Welsh, K.; Louis, E.; Fanning, G.; Targan, S.; Landers, C.; Jewell, D.P. Genetic Markers May Predict Disease Behavior in Patients with Ulcerative Colitis. Gastroenterology 1997, 112, 1845–1853. [Google Scholar] [CrossRef]
- van Heel, D.A.; Udalova, I.A.; De Silva, A.P.; McGovern, D.P.; Kinouchi, Y.; Hull, J.; Lench, N.J.; Cardon, L.R.; Carey, A.H.; Jewell, D.P.; et al. Inflammatory Bowel Disease Is Associated with a TNF Polymorphism That Affects an Interaction between the OCT1 and NF(-Kappa)B Transcription Factors. Hum. Mol. Genet. 2002, 11, 1281–1289. [Google Scholar] [CrossRef]
- Bonyadi, M.; Abdolmohammadi, R.; Jahanafrooz, Z.; Somy, M.-H.; Khoshbaten, M. TNF-Alpha Gene Polymorphisms in Iranian Azari Turkish Patients with Inflammatory Bowel Diseases. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2014, 20, 108–112. [Google Scholar] [CrossRef]
- Liu, J.Z.; van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association Analyses Identify 38 Susceptibility Loci for Inflammatory Bowel Disease and Highlight Shared Genetic Risk across Populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef]
- Kakuta, Y.; Kawai, Y.; Naito, T.; Hirano, A.; Umeno, J.; Fuyuno, Y.; Liu, Z.; Li, D.; Nakano, T.; Izumiyama, Y.; et al. A Genome-Wide Association Study Identifying RAP1A as a Novel Susceptibility Gene for Crohn’s Disease in Japanese Individuals. J. Crohns Colitis 2019, 13, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.F.; Caetano, M.A.F.; Magalhães, H.I.R.; Castelucci, P. Study of Tumor Necrosis Factor Receptor in the Inflammatory Bowel Disease. World J. Gastroenterol. 2023, 29, 2733–2746. [Google Scholar] [CrossRef] [PubMed]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A Road to Inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Jansen, L.E.; Rose, R.V.; Gregor, J.C.; Ponich, T.; Chande, N.; Khanna, R.; Yan, B.; Jairath, V.; Khanna, N.; et al. HLA-DQA1-HLA-DRB1 Polymorphism Is a Major Predictor of Azathioprine-Induced Pancreatitis in Patients with Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2018, 47, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, F.; Mayr, G.; Wendorff, M.; Boucher, G.; Ellinghaus, E.; Ellinghaus, D.; ElAbd, H.; Rosati, E.; Hübenthal, M.; Juzenas, S.; et al. Transethnic Analysis of the Human Leukocyte Antigen Region for Ulcerative Colitis Reveals Not Only Shared but Also Ethnicity-Specific Disease Associations. Hum. Mol. Genet. 2021, 30, 356–369. [Google Scholar] [CrossRef]
- Abdul-Hussein, S.S.; Ali, E.N.; Alkhalidi, N.M.F.; Zaki, N.H.; Ad’hiah, A.H. Susceptibility Role of Soluble HLA-G and HLA-G 14-Bp Insertion/Deletion Polymorphism in Inflammatory Bowel Disease. Egypt. J. Med. Hum. Genet. 2020, 21, 68. [Google Scholar] [CrossRef]
- Bergstein, S.; Spencer, E.A. DOP72 HLA-DQA1*05 Associates with Immunogenicity and Loss of Response to Anti-TNF Therapy in the IBD Population: A Meta-Analysis. J. Crohns Colitis 2023, 17, i148–i150. [Google Scholar] [CrossRef]
- IBD Related Genes—GeneCards. Available online: https://www.genecards.org/Search/Keyword?queryString=IBD&geneCategories=GeneticLocus&startPage=0 (accessed on 3 April 2024).
- Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/?term=ibd (accessed on 3 April 2024).
- Jeyakumar, T.; Fodil, N.; Van Der Kraak, L.; Meunier, C.; Cayrol, R.; McGregor, K.; Langlais, D.; Greenwood, C.M.T.; Beauchemin, N.; Gros, P. Inactivation of Interferon Regulatory Factor 1 Causes Susceptibility to Colitis-Associated Colorectal Cancer. Sci. Rep. 2019, 9, 18897. [Google Scholar] [CrossRef]
- Ferraris, A.; Torres, B.; Knafelz, D.; Barabino, A.; Lionetti, P.; de Angelis, G.L.; Iacono, G.; Papadatou, B.; D’Amato, G.; Di Ciommo, V.; et al. Relationship between CARD15, SLC22A4/5, and DLG5 Polymorphisms and Early-Onset Inflammatory Bowel Diseases: An Italian Multicentric Study. Inflamm. Bowel Dis. 2006, 12, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Sebastian-delaCruz, M.; Olazagoitia-Garmendia, A.; Gonzalez-Moro, I.; Santin, I.; Garcia-Etxebarria, K.; Castellanos-Rubio, A. Implication of m6A mRNA Methylation in Susceptibility to Inflammatory Bowel Disease. Epigenomes 2020, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yuan, W.; Park, S. Association between IL-10 Rs3024505 and Susceptibility to Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Cytokine 2022, 149, 155721. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shi, T.; Zhong, C.; Wang, Y.; Chang, M.; Liu, X. IL-10 and IL-10 Receptor Mutations in Very Early Onset Inflammatory Bowel Disease. Gastroenterol. Res. 2017, 10, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Michail, S.; Bultron, G.; DePaolo, R.W. Genetic Variants Associated with Crohn’s Disease. Appl. Clin. Genet. 2013, 6, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Li, C.-M.; Li, W.; Liu, Q.-S.; Hu, S.-Y.; Zhao, M.-Y.; Hu, D.-S.; Hao, Y.-W.; Zeng, J.-H.; Zhang, Y. How Autophagy, a Potential Therapeutic Target, Regulates Intestinal Inflammation. Front. Immunol. 2023, 14, 1087677. [Google Scholar] [CrossRef] [PubMed]
- Sivanesan, D.; Beauchamp, C.; Quinou, C.; Lee, J.; Lesage, S.; Chemtob, S.; Rioux, J.D.; Michnick, S.W. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function Due to Impaired Protein Stability and Intracellular Trafficking. J. Biol. Chem. 2016, 291, 8673–8685. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ruan, X.; Sun, Y.; Lu, S.; Hu, S.; Yuan, S.; Li, X. Multi-Omic Insight into the Molecular Networks of Mitochondrial Dysfunction in the Pathogenesis of Inflammatory Bowel Disease. eBioMedicine 2023, 99, 104934. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, J.; Ran, Z. Emerging Views of Mitophagy in Immunity and Autoimmune Diseases. Autophagy 2019, 16, 3–17. [Google Scholar] [CrossRef]
- Hirose, M.; Sekar, P.; Eladham, M.W.A.; Albataineh, M.T.; Rahmani, M.; Ibrahim, S.M. Interaction between Mitochondria and Microbiota Modulating Cellular Metabolism in Inflammatory Bowel Disease. J. Mol. Med. 2023, 101, 1513–1526. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Luo, J.; Zeng, Q.; Wang, M.; Bai, M.; Zhou, H.; Wang, J.; Jiang, H. Downregulation of OCTN2 by Cytokines Plays an Important Role in the Progression of Inflammatory Bowel Disease. Biochem. Pharmacol. 2020, 178, 114115. [Google Scholar] [CrossRef] [PubMed]
- Cader, M.Z.; de Almeida Rodrigues, R.P.; West, J.A.; Sewell, G.W.; Md-Ibrahim, M.N.; Reikine, S.; Sirago, G.; Unger, L.W.; Inglesias-Romero, A.B.; Ramshorn, K.; et al. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020, 180, 278–295.e23. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, X.; Zhang, S.; Qi, C.; Zhang, Z.; Ma, R.; Xiang, L.; Chen, L.; Zhu, Y.; Tang, C.; et al. Oxidative Stress Gene Expression, DNA Methylation, and Gut Microbiota Interaction Trigger Crohn’s Disease: A Multi-Omics Mendelian Randomization Study. BMC Med. 2023, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, F.; Ruan, X.; Sun, J.; Zhang, Y.; Zhang, H.; Zhao, J.; Zheng, J.; Larsson, S.C.; Wang, X.; et al. Therapeutic Targets for Inflammatory Bowel Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. EBioMedicine 2023, 89, 104494. [Google Scholar] [CrossRef] [PubMed]
- Weimers, P.; Halfvarson, J.; Sachs, M.C.; Saunders-Pullman, R.; Ludvigsson, J.F.; Peter, I.; Burisch, J.; Olén, O. Inflammatory Bowel Disease and Parkinson’s Disease: A Nationwide Swedish Cohort Study. Inflamm. Bowel Dis. 2019, 25, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Fernández, C.; Egiguren-Ortiz, J.; Razquin, J.; Gómez-Galán, M.; De las Heras-García, L.; Paredes-Rodríguez, E.; Astigarraga, E.; Miguélez, C.; Barreda-Gómez, G. Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int. J. Mol. Sci. 2023, 24, 3321. [Google Scholar] [CrossRef] [PubMed]
- Pap, D.; Veres-Székely, A.; Szebeni, B.; Vannay, Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int. J. Mol. Sci. 2022, 23, 6626. [Google Scholar] [CrossRef] [PubMed]
- Lippai, R.; Veres-Székely, A.; Sziksz, E.; Iwakura, Y.; Pap, D.; Rokonay, R.; Szebeni, B.; Lotz, G.; Béres, N.J.; Cseh, Á.; et al. Immunomodulatory Role of Parkinson’s Disease 7 in Inflammatory Bowel Disease. Sci. Rep. 2021, 11, 14582. [Google Scholar] [CrossRef]
- Wallings, R.L.; Tansey, M.G. LRRK2 Regulation of Immune-Pathways and Inflammatory Disease. Biochem. Soc. Trans. 2019, 47, 1581–1595. [Google Scholar] [CrossRef]
- GeneCards—Human Genes|Gene Database|Gene Search. Available online: https://www.genecards.org/ (accessed on 15 June 2024).
- Follin-Arbelet, B.; Cvancarova Småstuen, M.; Hovde, Ø.; Jelsness-Jørgensen, L.-P.; Moum, B. Mortality in Patients with Inflammatory Bowel Disease: Results from 30 Years of Follow-up in a Norwegian Inception Cohort (the IBSEN Study). J. Crohns Colitis 2022, 17, 497–503. [Google Scholar] [CrossRef]
- McComb, S.; Thiriot, A.; Akache, B.; Krishnan, L.; Stark, F. Introduction to the Immune System. In Immunoproteomics: Methods and Protocols; Fulton, K.M., Twine, S.M., Eds.; Springer: New York, NY, USA, 2019; pp. 1–24. ISBN 978-1-4939-9597-4. [Google Scholar]
- Hernandez-Suarez, L.; Diez-Martin, E.; Egiguren-Ortiz, J.; Fernandez, R.; Etxebarria, A.; Astigarraga, E.; Miguelez, C.; Ramirez-Garcia, A.; Barreda-Gómez, G. Serological Antibodies against Kidney, Liver, and Spleen Membrane Antigens as Potential Biomarkers in Patients with Immune Disorders. Int. J. Mol. Sci. 2024, 25, 2025. [Google Scholar] [CrossRef] [PubMed]
- Boden, E.K.; Snapper, S.B. Regulatory T Cells in Inflammatory Bowel Disease. Curr. Opin. Gastroenterol. 2008, 24, 733–741. [Google Scholar] [CrossRef] [PubMed]
- IQWiG. How Does the Immune System Work? In InformedHealth.org [Internet]; Institute for Quality and Efficiency in Health Care (IQWiG): Köln, Germany, 2020. [Google Scholar]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An Introduction to Immunology and Immunopathology. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2018, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- IQWiG. The Innate and Adaptive Immune Systems. In InformedHealth.org [Internet]; Institute for Quality and Efficiency in Health Care (IQWiG): Köln, Germany, 2020. [Google Scholar]
- Hegazy, A.N.; West, N.R.; Stubbington, M.J.T.; Wendt, E.; Suijker, K.I.M.; Datsi, A.; This, S.; Danne, C.; Campion, S.; Duncan, S.H.; et al. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology 2017, 153, 1320–1337.e16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hand, T. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cui, W.; Li, X.; Yang, H. Interaction Between Commensal Bacteria, Immune Response and the Intestinal Barrier in Inflammatory Bowel Disease. Front. Immunol. 2021, 12, 761981. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.-Z.; Yao, Y.; Zhai, J.-S.; Zhu, J.-H.; Li, J.-P.; Wu, K. The Role of Autophagy in Inflammatory Bowel Disease. Front. Physiol. 2021, 12, 621132. [Google Scholar] [CrossRef] [PubMed]
- Serigado, J.M.; Foulke-Abel, J.; Hines, W.C.; Hanson, J.A.; In, J.; Kovbasnjuk, O. Ulcerative Colitis: Novel Epithelial Insights Provided by Single Cell RNA Sequencing. Front. Med. 2022, 9, 868508. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Wang, B.-Y.; Wang, T.-T.; Wang, F.-F.; Guo, Y.-X.; Hua, R.-X.; Shang, H.-W.; Lu, X.; Xu, J.-D. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021, 10, 583. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Kalafateli, M.; Tsounis, E.P.; Triantos, C. Exploring the Role of IL-1β in Inflammatory Bowel Disease Pathogenesis. Front. Med. 2024, 11, 1307394. [Google Scholar] [CrossRef] [PubMed]
- de Mattos, B.R.R.; Garcia, M.P.G.; Nogueira, J.B.; Paiatto, L.N.; Albuquerque, C.G.; Souza, C.L.; Fernandes, L.G.R.; Tamashiro, W.M.d.S.C.; Simioni, P.U. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments. Mediators Inflamm. 2015, 2015, 493012. [Google Scholar] [CrossRef]
- Sun, D.; Li, C.; Chen, S.; Zhang, X. Emerging Role of Dendritic Cell Intervention in the Treatment of Inflammatory Bowel Disease. BioMed Res. Int. 2022, 2022, 7025634. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.P.; Goswami, R. A Decade of Th9 Cells: Role of Th9 Cells in Inflammatory Bowel Disease. Front. Immunol. 2018, 9, 1139. [Google Scholar] [CrossRef] [PubMed]
- Wieber, K.; Zimmer, C.L.; Hertl, M. Detection of Autoreactive CD4+ T Cells by MHC Class II Multimers in HLA-Linked Human Autoimmune Diseases. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Russ, B.E.; Prier, J.E.; Rao, S.; Turner, S.J. T Cell Immunity as a Tool for Studying Epigenetic Regulation of Cellular Differentiation. Front. Genet. 2013, 4, 218. [Google Scholar] [CrossRef]
- Hamilton, M.J.; Snapper, S.B.; Blumberg, R.S. Update on Biologic Pathways in Inflammatory Bowel Disease and Their Therapeutic Relevance. J. Gastroenterol. 2012, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Keppler, S.J.; Goess, M.C.; Heinze, J.M. The Wanderings of Gut-Derived IgA Plasma Cells: Impact on Systemic Immune Responses. Front. Immunol. 2021, 12, 670290. [Google Scholar] [CrossRef] [PubMed]
- Castro-Dopico, T.; Clatworthy, M.R. Mucosal IgG in Inflammatory Bowel Disease—A Question of (Sub)Class? Gut Microbes 2020, 12, 1651596. [Google Scholar] [CrossRef] [PubMed]
- Sterling, K.G.; Dodd, G.K.; Alhamdi, S.; Asimenios, P.G.; Dagda, R.K.; De Meirleir, K.L.; Hudig, D.; Lombardi, V.C. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int. J. Mol. Sci. 2022, 23, 13328. [Google Scholar] [CrossRef]
- Zogorean, R.; Wirtz, S. The Yin and Yang of B Cells in a Constant State of Battle: Intestinal Inflammation and Inflammatory Bowel Disease. Front. Immunol. 2023, 14, 1260266. [Google Scholar] [CrossRef]
- Shapiro, J.M.; de Zoete, M.R.; Palm, N.W.; Laenen, Y.; Bright, R.; Mallette, M.; Bu, K.; Bielecka, A.A.; Xu, F.; Hurtado-Lorenzo, A.; et al. Immunoglobulin A Targets a Unique Subset of the Microbiota in Inflammatory Bowel Disease. Cell Host Microbe 2021, 29, 83–93.e3. [Google Scholar] [CrossRef]
- Lin, R.; Chen, H.; Shu, W.; Sun, M.; Fang, L.; Shi, Y.; Pang, Z.; Wu, W.; Liu, Z. Clinical Significance of Soluble Immunoglobulins A and G and Their Coated Bacteria in Feces of Patients with Inflammatory Bowel Disease. J. Transl. Med. 2018, 16, 359. [Google Scholar] [CrossRef]
- Castro-Dopico, T.; Clatworthy, M.R. IgG and Fcγ Receptors in Intestinal Immunity and Inflammation. Front. Immunol. 2019, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.Y.; Cisalpino, D.; Varadarajan, S.; Hellman, J.; Warren, H.S.; Cascalho, M.; Inohara, N.; Núñez, G. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 2016, 44, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Roo-Brand, G.; Lisotto, P.; Sadaghian Sadabad, M.; Reitsema, R.D.; de Goffau, M.C.; Faber, K.N.; Dijkstra, G.; Harmsen, H.J.M. Patients With Inflammatory Bowel Disease Show IgG Immune Responses Towards Specific Intestinal Bacterial Genera. Front. Immunol. 2022, 13, 842911. [Google Scholar] [CrossRef]
- Chen, H.H.; Simmons, A. Becalming Type 17 Inflammation in Ulcerative Colitis. Immunity 2019, 50, 1029–1031. [Google Scholar] [CrossRef]
- Castro-Dopico, T.; Dennison, T.W.; Ferdinand, J.R.; Mathews, R.J.; Fleming, A.; Clift, D.; Stewart, B.J.; Jing, C.; Strongili, K.; Labzin, L.I.; et al. Anti-Commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity 2019, 50, 1099–1114.e10. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, F.; Zhou, G.; Sun, M.; Ai, F.; Liu, Z. Food-Specific IgGs Are Highly Increased in the Sera of Patients with Inflammatory Bowel Disease and Are Clinically Relevant to the Pathogenesis. Intern. Med. 2018, 57, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Shirazi, L.; Gasche, C.H.; Natter, S.; Gangl, A.; Smolen, J.; SPITZAUER, S.; VALENT, P.; KRAFT, D.; VALENTA, R. IgA Autoreactivity: A Feature Common to Inflammatory Bowel and Connective Tissue Diseases. Clin. Exp. Immunol. 2002, 128, 102–109. [Google Scholar] [CrossRef]
- Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome—A Potential Controller of Wellness and Disease. Front. Microbiol. 2018, 9, 356589. [Google Scholar] [CrossRef] [PubMed]
- Nogal, A.; Valdes, A.M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhou, G.; Qin, X.; Huang, S.; Wang, B.; Cao, H. The Potential Role of Gut Mycobiome in Irritable Bowel Syndrome. Front. Microbiol. 2019, 10, 458003. [Google Scholar] [CrossRef] [PubMed]
- Houshyar, Y.; Massimino, L.; Lamparelli, L.A.; Danese, S.; Ungaro, F. Going Beyond Bacteria: Uncovering the Role of Archaeome and Mycobiome in Inflammatory Bowel Disease. Front. Physiol. 2021, 12, 783295. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Conti, E.; Ricci, L.; Walker, A.W. Links between Diet, Intestinal Anaerobes, Microbial Metabolites and Health. Biomedicines 2023, 11, 1338. [Google Scholar] [CrossRef] [PubMed]
- Jansen, D.; Matthijnssens, J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023, 15, 173. [Google Scholar] [CrossRef]
- Dubik, M.; Pilecki, B.; Moeller, J.B. Commensal Intestinal Protozoa—Underestimated Members of the Gut Microbial Community. Biology 2022, 11, 1742. [Google Scholar] [CrossRef] [PubMed]
- Gouba, N.; Hien, Y.E.; Guissou, M.L.; Fonkou, M.D.M.; Traoré, Y.; Tarnagda, Z. Digestive Tract Mycobiota and Microbiota and the Effects on the Immune System. Hum. Microbiome J. 2019, 12, 100056. [Google Scholar] [CrossRef]
- Anjana; Tiwari, S.K. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Corrêa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of Immune Cell Function by Short-Chain Fatty Acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef] [PubMed]
- Konjar, Š.; Pavšič, M.; Veldhoen, M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int. J. Mol. Sci. 2021, 22, 9170. [Google Scholar] [CrossRef] [PubMed]
- Clinton, N.A.; Hameed, S.A.; Agyei, E.K.; Jacob, J.C.; Oyebanji, V.O.; Jabea, C.E. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J. Immunol. Res. 2022, 2022, e7883945. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455. [Google Scholar] [CrossRef]
- Khosravi, A.; Mazmanian, S.K. Disruption of the Gut Microbiome as a Risk Factor for Microbial Infections. Curr. Opin. Microbiol. 2013, 16, 221–227. [Google Scholar] [CrossRef]
- Gonçalves, P.; Araújo, J.R.; Di Santo, J.P. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 558–572. [Google Scholar] [CrossRef]
- Roy, S.; Dhaneshwar, S. Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World J. Gastroenterol. 2023, 29, 2078–2100. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Multiple Bacteriocin Production in Lactic Acid Bacteria. J. Biosci. Bioeng. 2022, 134, 277–287. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and Potential Use as Antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Nabavi-Rad, A.; Sadeghi, A.; Asadzadeh Aghdaei, H.; Yadegar, A.; Smith, S.M.; Zali, M.R. The Double-Edged Sword of Probiotic Supplementation on Gut Microbiota Structure in Helicobacter Pylori Management. Gut Microbes 2022, 14, 2108655. [Google Scholar] [CrossRef]
- Redanz, S.; Cheng, X.; Giacaman, R.A.; Pfeifer, C.S.; Merritt, J.; Kreth, J. Live and Let Die: Hydrogen Peroxide Production by the Commensal Flora and Its Role in Maintaining a Symbiotic Microbiome. Mol. Oral Microbiol. 2018, 33, 337–352. [Google Scholar] [CrossRef]
- Caenepeel, C.; Sadat Seyed Tabib, N.; Vieira-Silva, S.; Vermeire, S. Review Article: How the Intestinal Microbiota May Reflect Disease Activity and Influence Therapeutic Outcome in Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2020, 52, 1453–1468. [Google Scholar] [CrossRef]
- Dong, L.-N.; Wang, M.; Guo, J.; Wang, J.-P. Role of Intestinal Microbiota and Metabolites in Inflammatory Bowel Disease. Chin. Med. J. 2019, 132, 1610. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N. Microbiome-Based Biomarkers for IBD. Inflamm. Bowel Dis. 2020, 26, 1463–1469. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.Z.; He, Y.; Yang, Y.; Liu, L.; Lin, Q.; Nie, Y.; Li, M.; Zhi, F.; Liu, S.; et al. Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction. mSystems 2018, 3, e00188-17. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, F. Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: A Meta-Analysis. BioMed Res. Int. 2016, 2016, 5828959. [Google Scholar] [CrossRef] [PubMed]
- Steed, H.; Macfarlane, G.T.; Blackett, K.L.; Bahrami, B.; Reynolds, N.; Walsh, S.V.; Cummings, J.H.; Macfarlane, S. Clinical Trial: The Microbiological and Immunological Effects of Synbiotic Consumption—A Randomized Double-Blind Placebo-Controlled Study in Active Crohn’s Disease. Aliment. Pharmacol. Ther. 2010, 32, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.K.; Ding, T.; Koumpouras, C.; Telesco, S.E.; Monast, C.; Das, A.; Brodmerkel, C.; Schloss, P.D. Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn’s Disease Patients. mBio 2018, 9, e02120-17. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, C.; Xu, J.; Xu, H.; Liu, L.; Zhao, H.; Wang, J.; Huang, W.; Peng, W.; Chen, Y.; et al. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front. Nutr. 2022, 8, 818902. [Google Scholar] [CrossRef]
- Takahashi, K.; Nishida, A.; Fujimoto, T.; Fujii, M.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Sugimoto, M.; Andoh, A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion 2016, 93, 59–65. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, W.; Li, Y.; Cong, Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2020, 26, 11–20. [Google Scholar] [CrossRef]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.-F. Adherent-Invasive Escherichia Coli in Inflammatory Bowel Disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef]
- Liu, F.; Ma, R.; Tay, C.Y.A.; Octavia, S.; Lan, R.; Chung, H.K.L.; Riordan, S.M.; Grimm, M.C.; Leong, R.W.; Tanaka, M.M.; et al. Genomic Analysis of Oral Campylobacter Concisus Strains Identified a Potential Bacterial Molecular Marker Associated with Active Crohn’s Disease. Emerg. Microbes Infect. 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Loubinoux, J.; Bronowicki, J.-P.; Pereira, I.A.C.; Mougenel, J.-L.; Faou, A.E. Sulfate-Reducing Bacteria in Human Feces and Their Association with Inflammatory Bowel Diseases. FEMS Microbiol. Ecol. 2002, 40, 107–112. [Google Scholar] [CrossRef]
- Neil, J.A.; Cadwell, K. The Intestinal Virome and Immunity. J. Immunol. 2018, 201, 1615–1624. [Google Scholar] [CrossRef]
- Cao, Z.; Sugimura, N.; Burgermeister, E.; Ebert, M.P.; Zuo, T.; Lan, P. The Gut Virome: A New Microbiome Component in Health and Disease. eBioMedicine 2022, 81. [Google Scholar] [CrossRef]
- Tiamani, K.; Luo, S.; Schulz, S.; Xue, J.; Costa, R.; Khan Mirzaei, M.; Deng, L. The Role of Virome in the Gastrointestinal Tract and Beyond. FEMS Microbiol. Rev. 2022, 46, fuac027. [Google Scholar] [CrossRef]
- Shuwen, H.; Kefeng, D. Intestinal Phages Interact with Bacteria and Are Involved in Human Diseases. Gut Microbes 2022, 14, 2113717. [Google Scholar] [CrossRef]
- Freer, G.; Maggi, F.; Pifferi, M.; Di Cicco, M.E.; Peroni, D.G.; Pistello, M. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood. Front. Microbiol. 2018, 9, 686. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Arellano-Santoyo, H.; Temple, E.R.; Costliow, Z.A.; Pichaud, M.; Hall, A.B.; Liu, K.; Durney, M.A.; Gu, X.; Plichta, D.R.; et al. Gut Microbiome ADP-Ribosyltransferases Are Widespread Phage-Encoded Fitness Factors. Cell Host Microbe 2021, 29, 1351–1365.e11. [Google Scholar] [CrossRef]
- Jahn, M.T.; Arkhipova, K.; Markert, S.M.; Stigloher, C.; Lachnit, T.; Pita, L.; Kupczok, A.; Ribes, M.; Stengel, S.T.; Rosenstiel, P.; et al. A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion. Cell Host Microbe 2019, 26, 542–550.e5. [Google Scholar] [CrossRef]
- Aktories, K.; Schwan, C.; Jank, T. Clostridium Difficile Toxin Biology. Annu. Rev. Microbiol. 2017, 71, 281–307. [Google Scholar] [CrossRef]
- Richard, M.L.; Sokol, H. The Gut Mycobiota: Insights into Analysis, Environmental Interactions and Role in Gastrointestinal Diseases. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 331–345. [Google Scholar] [CrossRef]
- Gutierrez, M.W.; Arrieta, M.-C. The Intestinal Mycobiome as a Determinant of Host Immune and Metabolic Health. Curr. Opin. Microbiol. 2021, 62, 8–13. [Google Scholar] [CrossRef]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.-P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Original Article: Fungal Microbiota Dysbiosis in IBD. Gut 2017, 66, 1039. [Google Scholar] [CrossRef]
- Beheshti-Maal, A.; Shahrokh, S.; Ansari, S.; Mirsamadi, E.S.; Yadegar, A.; Mirjalali, H.; Zali, M.R. Gut Mycobiome: The Probable Determinative Role of Fungi in IBD Patients. Mycoses 2021, 64, 468–476. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Mozhgani, S.-H.; Sharifinejad, N. The Role of Mycobiota-Genotype Association in Inflammatory Bowel Diseases: A Narrative Review. Gut Pathog. 2021, 13, 31. [Google Scholar] [CrossRef]
- Deng, L.; Wojciech, L.; Gascoigne, N.R.J.; Peng, G.; Tan, K.S.W. New Insights into the Interactions between Blastocystis, the Gut Microbiota, and Host Immunity. PLoS Pathog. 2021, 17, e1009253. [Google Scholar] [CrossRef]
- Petersen, A.M.; Stensvold, C.R.; Mirsepasi, H.; Engberg, J.; Friis-Møller, A.; Porsbo, L.J.; Hammerum, A.M.; Nordgaard-Lassen, I.; Nielsen, H.V.; Krogfelt, K.A. Active Ulcerative Colitis Associated with Low Prevalence of Blastocystis and Dientamoeba Fragilis Infection. Scand. J. Gastroenterol. 2013, 48, 638–639. [Google Scholar] [CrossRef]
- Rossen, N.G.; Bart, A.; Verhaar, N.; van Nood, E.; Kootte, R.; de Groot, P.F.; D’Haens, G.R.; Ponsioen, C.Y.; van Gool, T. Low Prevalence of Blastocystis Sp. in Active Ulcerative Colitis Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1039–1044. [Google Scholar] [CrossRef]
- Mafra, D.; Ribeiro, M.; Fonseca, L.; Regis, B.; Cardozo, L.F.M.F.; Fragoso dos Santos, H.; Emiliano de Jesus, H.; Schultz, J.; Shiels, P.G.; Stenvinkel, P.; et al. Archaea from the Gut Microbiota of Humans: Could Be Linked to Chronic Diseases? Anaerobe 2022, 77, 102629. [Google Scholar] [CrossRef]
- Candeliere, F.; Sola, L.; Raimondi, S.; Rossi, M.; Amaretti, A. Good and Bad Dispositions between Archaea and Bacteria in the Human Gut: New Insights from Metagenomic Survey and Co-Occurrence Analysis. Synth. Syst. Biotechnol. 2024, 9, 88–98. [Google Scholar] [CrossRef]
- Kim, J.Y.; Whon, T.W.; Lim, M.Y.; Kim, Y.B.; Kim, N.; Kwon, M.-S.; Kim, J.; Lee, S.H.; Choi, H.-J.; Nam, I.-H.; et al. The Human Gut Archaeome: Identification of Diverse Haloarchaea in Korean Subjects. Microbiome 2020, 8, 114. [Google Scholar] [CrossRef]
- Foppa, C.; Rizkala, T.; Repici, A.; Hassan, C.; Spinelli, A. Microbiota and IBD: Current Knowledge and Future Perspectives. Dig. Liver Dis. 2024, 56, 911–922. [Google Scholar] [CrossRef]
- Fassarella, M.; Blaak, E.E.; Penders, J.; Nauta, A.; Smidt, H.; Zoetendal, E.G. Gut Microbiome Stability and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health. Gut 2021, 70, 595–605. [Google Scholar] [CrossRef]
- Round, J.L.; Palm, N.W. Causal Effects of the Microbiota on Immune-Mediated Diseases. Sci. Immunol. 2018, 3, eaao1603. [Google Scholar] [CrossRef]
- Walter, J.; Armet, A.M.; Finlay, B.B.; Shanahan, F. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell 2020, 180, 221–232. [Google Scholar] [CrossRef]
- Al Radi, Z.M.A.; Prins, F.M.; Collij, V.; Vich Vila, A.; Festen, E.A.M.; Dijkstra, G.; Weersma, R.K.; Klaassen, M.A.Y.; Gacesa, R. Exploring the Predictive Value of Gut Microbiome Signatures for Therapy Intensification in Patients with Inflammatory Bowel Disease: A 10-Year Follow-up Study. Inflamm. Bowel Dis. 2024, izae064. [Google Scholar] [CrossRef]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef]
- van der Sloot, K.W.J.; Weersma, R.K.; Alizadeh, B.Z.; Dijkstra, G. Identification of Environmental Risk Factors Associated With the Development of Inflammatory Bowel Disease. J. Crohns Colitis 2020, 14, 1662–1671. [Google Scholar] [CrossRef]
- Singh, N.; Bernstein, C.N. Environmental Risk Factors for Inflammatory Bowel Disease. United Eur. Gastroenterol. J. 2022, 10, 1047–1053. [Google Scholar] [CrossRef]
- Ho, S.-M.; Lewis, J.D.; Mayer, E.A.; Bernstein, C.N.; Plevy, S.E.; Chuang, E.; Rappaport, S.M.; Croitoru, K.; Korzenik, J.R.; Krischer, J.; et al. Challenges in IBD Research: Environmental Triggers. Inflamm. Bowel Dis. 2019, 25, S13–S23. [Google Scholar] [CrossRef]
- Berkowitz, L.; Schultz, B.M.; Salazar, G.A.; Pardo-Roa, C.; Sebastián, V.P.; Álvarez-Lobos, M.M.; Bueno, S.M. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 2018, 9, 325253. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef]
- Khalili, H.; Chan, S.S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The Role of Diet in the Aetiopathogenesis of Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 525–535. [Google Scholar] [CrossRef]
- Sugihara, K.; Kamada, N. Diet–Microbiota Interactions in Inflammatory Bowel Disease. Nutrients 2021, 13, 1533. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef]
- Hirai, F.; Takeda, T.; Takada, Y.; Kishi, M.; Beppu, T.; Takatsu, N.; Miyaoka, M.; Hisabe, T.; Yao, K.; Ueki, T. Efficacy of Enteral Nutrition in Patients with Crohn’s Disease on Maintenance Anti-TNF-Alpha Antibody Therapy: A Meta-Analysis. J. Gastroenterol. 2020, 55, 133–141. [Google Scholar] [CrossRef]
- Abdalla, S.; Benoist, S.; Maggiori, L.; Zerbib, P.; Lefevre, J.H.; Denost, Q.; Germain, A.; Cotte, E.; Beyer-Berjot, L.; Corte, H.; et al. Impact of Preoperative Enteral Nutritional Support on Postoperative Outcome in Patients with Crohn’s Disease Complicated by Malnutrition: Results of a Subgroup Analysis of the Nationwide Cohort Registry from the GETAID Chirurgie Group. Colorectal Dis. 2021, 23, 1451–1462. [Google Scholar] [CrossRef]
- Meade, S.; Patel, K.V.; Luber, R.P.; O’Hanlon, D.; Caracostea, A.; Pavlidis, P.; Honap, S.; Anandarajah, C.; Griffin, N.; Zeki, S.; et al. A Retrospective Cohort Study: Pre-Operative Oral Enteral Nutritional Optimisation for Crohnʼs Disease in a UK Tertiary IBD Centre. Aliment. Pharmacol. Ther. 2022, 56, 646–663. [Google Scholar] [CrossRef]
- Olendzki, B.C.; Silverstein, T.D.; Persuitte, G.M.; Ma, Y.; Baldwin, K.R.; Cave, D. An Anti-Inflammatory Diet as Treatment for Inflammatory Bowel Disease: A Case Series Report. Nutr. J. 2014, 13, 5. [Google Scholar] [CrossRef]
- Konijeti, G.G.; Kim, N.; Lewis, J.D.; Groven, S.; Chandrasekaran, A.; Grandhe, S.; Diamant, C.; Singh, E.; Oliveira, G.; Wang, X.; et al. Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 2054–2060. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Groven, S.; Lewis, J.D.; Levy, S.S.; Diamant, C.; Singh, E.; Konijeti, G.G. An Autoimmune Protocol Diet Improves Patient-Reported Quality of Life in Inflammatory Bowel Disease. Crohns Colitis 360 2019, 1, otz019. [Google Scholar] [CrossRef]
- Levine, A.; Wine, E.; Assa, A.; Sigall Boneh, R.; Shaoul, R.; Kori, M.; Cohen, S.; Peleg, S.; Shamaly, H.; On, A.; et al. Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology 2019, 157, 440–450.e8. [Google Scholar] [CrossRef]
- Szczubełek, M.; Pomorska, K.; Korólczyk-Kowalczyk, M.; Lewandowski, K.; Kaniewska, M.; Rydzewska, G. Effectiveness of Crohn’s Disease Exclusion Diet for Induction of Remission in Crohn’s Disease Adult Patients. Nutrients 2021, 13, 4112. [Google Scholar] [CrossRef]
- Yanai, H.; Levine, A.; Hirsch, A.; Boneh, R.S.; Kopylov, U.; Eran, H.B.; Cohen, N.A.; Ron, Y.; Goren, I.; Leibovitzh, H.; et al. The Crohn’s Disease Exclusion Diet for Induction and Maintenance of Remission in Adults with Mild-to-Moderate Crohn’s Disease (CDED-AD): An Open-Label, Pilot, Randomised Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 49–59. [Google Scholar] [CrossRef]
- Sarbagili-Shabat, C.; Albenberg, L.; Van Limbergen, J.; Pressman, N.; Otley, A.; Yaakov, M.; Wine, E.; Weiner, D.; Levine, A. A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021, 13, 3736. [Google Scholar] [CrossRef]
- Radziszewska, M.; Smarkusz-Zarzecka, J.; Ostrowska, L.; Pogodziński, D. Nutrition and Supplementation in Ulcerative Colitis. Nutrients 2022, 14, 2469. [Google Scholar] [CrossRef]
- Svolos, V.; Hansen, R.; Nichols, B.; Quince, C.; Ijaz, U.Z.; Papadopoulou, R.T.; Edwards, C.A.; Watson, D.; Alghamdi, A.; Brejnrod, A.; et al. Treatment of Active Crohn’s Disease With an Ordinary Food-Based Diet That Replicates Exclusive Enteral Nutrition. Gastroenterology 2019, 156, 1354–1367.e6. [Google Scholar] [CrossRef]
- Pigneur, B.; Ruemmele, F.M. Nutritional Interventions for the Treatment of IBD: Current Evidence and Controversies. Ther. Adv. Gastroenterol. 2019, 12, 1756284819890534. [Google Scholar] [CrossRef]
- Chiba, M.; Abe, T.; Tsuda, H.; Sugawara, T.; Tsuda, S.; Tozawa, H.; Fujiwara, K.; Imai, H. Lifestyle-Related Disease in Crohn’s Disease: Relapse Prevention by a Semi-Vegetarian Diet. World J. Gastroenterol. WJG 2010, 16, 2484–2495. [Google Scholar] [CrossRef]
- Kikut, J.; Konecka, N.; Ziętek, M.; Kulpa, D.; Szczuko, M. Diet Supporting Therapy for Inflammatory Bowel Diseases. Eur. J. Nutr. 2021, 60, 2275–2291. [Google Scholar] [CrossRef]
- Larrea, A.; Elexpe, A.; Díez-Martín, E.; Torrecilla, M.; Astigarraga, E.; Barreda-Gómez, G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr. Issues Mol. Biol. 2023, 45, 8552–8585. [Google Scholar] [CrossRef]
- Alghoul, Z.; Yang, C.; Merlin, D. The Current Status of Molecular Biomarkers for Inflammatory Bowel Disease. Biomedicines 2022, 10, 1492. [Google Scholar] [CrossRef]
- Jagannath, B.; Lin, K.-C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A Sweat-Based Wearable Enabling Technology for Real-Time Monitoring of IL-1β and CRP as Potential Markers for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1533–1542. [Google Scholar] [CrossRef]
- Wagatsuma, K.; Yokoyama, Y.; Nakase, H. Role of Biomarkers in the Diagnosis and Treatment of Inflammatory Bowel Disease. Life 2021, 11, 1375. [Google Scholar] [CrossRef]
- D’Incà, R.; Sturniolo, G. Biomarkers in IBD: What to Utilize for the Diagnosis? Diagnostics 2023, 13, 2931. [Google Scholar] [CrossRef]
- Wang, S.; Hou, Y.; Chen, W.; Wang, J.; Xie, W.; Zhang, X.; Zeng, L. KIF9-AS1, LINC01272 and DIO3OS lncRNAs as Novel Biomarkers for Inflammatory Bowel Disease. Mol. Med. Rep. 2018, 17, 2195–2202. [Google Scholar] [CrossRef]
- Yarani, R.; Mirza, A.H.; Kaur, S.; Pociot, F. The Emerging Role of lncRNAs in Inflammatory Bowel Disease. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Liu, D.; Saikam, V.; Skrada, K.A.; Merlin, D.; Iyer, S.S. Inflammatory Bowel Disease Biomarkers. Med. Res. Rev. 2022, 42, 1856–1887. [Google Scholar] [CrossRef]
- Schönauen, K.; Le, N.; von Arnim, U.; Schulz, C.; Malfertheiner, P.; Link, A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 1547–1557. [Google Scholar] [CrossRef]
- Thorlacius-Ussing, G.; Schnack Nielsen, B.; Andersen, V.; Holmstrøm, K.; Pedersen, A.E. Expression and Localization of miR-21 and miR-126 in Mucosal Tissue from Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 739–752. [Google Scholar] [CrossRef]
- Sakurai, T.; Saruta, M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease. Digestion 2022, 104, 30–41. [Google Scholar] [CrossRef]
- Schaefer, J.S.; Attumi, T.; Opekun, A.R.; Abraham, B.; Hou, J.; Shelby, H.; Graham, D.Y.; Streckfus, C.; Klein, J.R. MicroRNA Signatures Differentiate Crohn’s Disease from Ulcerative Colitis. BMC Immunol. 2015, 16, 5. [Google Scholar] [CrossRef]
- Vasiliauskas, E.A.; Plevy, S.E.; Landers, C.J.; Binder, S.W.; Ferguson, D.M.; Yang, H.; Rotter, J.I.; Vidrich, A.; Targan, S.R. Perinuclear Antineutrophil Cytoplasmic Antibodies in Patients with Crohn’s Disease Define a Clinical Subgroup. Gastroenterology 1996, 110, 1810–1819. [Google Scholar] [CrossRef]
- Purnamaningsih, S.M. Serum Markers of Inflammatory Bowel Disease: A Literature Review. Bali Med. J. 2018, 7. [Google Scholar] [CrossRef]
- Ruemmele, F.M.; Targan, S.R.; Levy, G.; Dubinsky, M.; Braun, J.; Seidman, E.G. Diagnostic Accuracy of Serological Assays in Pediatric Inflammatory Bowel Disease. Gastroenterology 1998, 115, 822–829. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, G.; Lin, J.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Serum Biomarkers for Inflammatory Bowel Disease. Front. Med. 2020, 7, 123. [Google Scholar] [CrossRef]
- Schwarz, E.; Carson, W.E. Analysis of Potential Biomarkers of Response to IL-12 Therapy. J. Leukoc. Biol. 2022, 112, 557–567. [Google Scholar] [CrossRef]
- Strober, W.; Fuss, I.; Mannon, P. The Fundamental Basis of Inflammatory Bowel Disease. J. Clin. Investig. 2007, 117, 514–521. [Google Scholar] [CrossRef]
- Mitsuyama, K.; Niwa, M.; Takedatsu, H.; Yamasaki, H.; Kuwaki, K.; Yoshioka, S.; Yamauchi, R.; Fukunaga, S.; Torimura, T. Antibody Markers in the Diagnosis of Inflammatory Bowel Disease. World J. Gastroenterol. 2016, 22, 1304–1310. [Google Scholar] [CrossRef]
- Soubières, A.A.; Poullis, A. Emerging Role of Novel Biomarkers in the Diagnosis of Inflammatory Bowel Disease. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 41–50. [Google Scholar] [CrossRef]
- Li, X.; Conklin, L.; Alex, P. New Serological Biomarkers of Inflammatory Bowel Disease. World J. Gastroenterol. WJG 2008, 14, 5115–5124. [Google Scholar] [CrossRef]
- Seow, C.H.; Stempak, J.M.; Xu, W.; Lan, H.; Griffiths, A.M.; Greenberg, G.R.; Steinhart, A.H.; Dotan, N.; Silverberg, M.S. Novel Anti-Glycan Antibodies Related to Inflammatory Bowel Disease Diagnosis and Phenotype. Am. J. Gastroenterol. 2009, 104, 1426–1434. [Google Scholar] [CrossRef]
- Dotan, I.; Fishman, S.; Dgani, Y.; Schwartz, M.; Karban, A.; Lerner, A.; Weishauss, O.; Spector, L.; Shtevi, A.; Altstock, R.T.; et al. Antibodies Against Laminaribioside and Chitobioside Are Novel Serologic Markers in Crohn’s Disease. Gastroenterology 2006, 131, 366–378. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, K.-Z.; Pan, G. Role of Oncostatin M in the Prognosis of Inflammatory Bowel Disease: A Meta-Analysis. World J. Gastrointest. Surg. 2024, 16, 228–238. [Google Scholar] [CrossRef]
- Li, T.; Qian, Y.; Bai, T.; Li, J. Prediction of Complications in Inflammatory Bowel Disease Using Routine Blood Parameters at Diagnosis. Ann. Transl. Med. 2022, 10, 185. [Google Scholar] [CrossRef]
- Liu, F.; Lee, S.A.; Riordan, S.M.; Zhang, L.; Zhu, L. Global Studies of Using Fecal Biomarkers in Predicting Relapse in Inflammatory Bowel Disease. Front. Med. 2020, 7, 580803. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 256587. [Google Scholar] [CrossRef]
- Haley, K.P.; Delgado, A.G.; Piazuelo, M.B.; Mortensen, B.L.; Correa, P.; Damo, S.M.; Chazin, W.J.; Skaar, E.P.; Gaddy, J.A. The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter Pylori Growth and Regulation of Virulence. Infect. Immun. 2015, 83, 2944–2956. [Google Scholar] [CrossRef] [PubMed]
- Prata, M.d.M.G.; Havt, A.; Bolick, D.; Pinkerton, R.; Lima, A.; Guerrant, R. Comparisons between Myeloperoxidase, Lactoferrin, Calprotectin and Lipocalin-2, as Fecal Biomarkers of Intestinal Inflammation in Malnourished Children. J. Transl. Sci. 2016, 2, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Chami, B.; Martin, N.J.J.; Dennis, J.M.; Witting, P.K. Myeloperoxidase in the Inflamed Colon: A Novel Target for Treating Inflammatory Bowel Disease. Arch. Biochem. Biophys. 2018, 645, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Chen, Z.; Wang, Q.; Luo, Y.; Huang, Y.; Wang, B.; Gu, R. The Role of Intestinal Immune Cells and Matrix Metalloproteinases in Inflammatory Bowel Disease. Front. Immunol. 2023, 13, 1067950. [Google Scholar] [CrossRef] [PubMed]
- Duvoisin, G.; Lopez, R.N.; Day, A.S.; Lemberg, D.A.; Gearry, R.B.; Leach, S.T. Novel Biomarkers and the Future Potential of Biomarkers in Inflammatory Bowel Disease. Mediators Inflamm. 2017, 2017, e1936315. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Ruan, H.; Wu, D.; Lang, Y.; Sun, K.; Xu, C. Assessment of Clinical Activity and Severity Using Serum ANCA and ASCA Antibodies in Patients with Ulcerative Colitis. Allergy Asthma Clin. Immunol. 2020, 16, 37. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, X. Serologic Markers in Inflammatory Bowel Disease. Clin. Chem. 2006, 52, 171–181. [Google Scholar] [CrossRef]
- Mokhtarifar, A.; Ganji, A.; Sadrneshin, M.; Bahari, A.; Esmaeilzadeh, A.; Ghafarzadegan, K.; Nikpour, S. Diagnostic Value of ASCA and Atypical P-ANCA in Differential Diagnosis of Inflammatory Bowel Disease. Middle East J. Dig. Dis. 2013, 5, 93–97. [Google Scholar]
- Peeters, M.; Joossens, S.; Vermeire, S.; Vlietinck, R.; Bossuyt, X.; Rutgeerts, P. Diagnostic Value of Anti-Saccharomyces Cerevisiae and Antineutrophil Cytoplasmic Autoantibodies in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2001, 96, 730–734. [Google Scholar] [CrossRef]
- Linskens, R.K.; Mallant-Hent, R.C.; Groothuismink, Z.M.A.; Bakker-Jonges, L.E.; van de Merwe, J.P.; Hooijkaas, H.; von Blomberg, B.M.E.; Meuwissen, S.G.M. Evaluation of Serological Markers to Differentiate between Ulcerative Colitis and Crohn’s Disease: pANCA, ASCA and Agglutinating Antibodies to Anaerobic Coccoid Rods. Eur. J. Gastroenterol. Hepatol. 2002, 14, 1013–1018. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Landers, C.J.; Tremaine, W.J.; Targan, S.R. Association of Antineutrophil Cytoplasmic Antibodies with Resistance to Treatment of Left-Sided Ulcerative Colitis: Results of a Pilot Study. Mayo Clin. Proc. 1996, 71, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Vasiliauskas, E.A.; Kam, L.Y.; Karp, L.C.; Gaiennie, J.; Yang, H.; Targan, S.R. Marker Antibody Expression Stratifies Crohn’s Disease into Immunologically Homogeneous Subgroups with Distinct Clinical Characteristics. Gut 2000, 47, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, S.; Verstockt, B.; Vermeire, S. Oncostatin M as a New Diagnostic, Prognostic and Therapeutic Target in Inflammatory Bowel Disease (IBD). Expert Opin. Ther. Targets 2019, 23, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; Jenkins, B.J. Recent Insights into Targeting the IL-6 Cytokine Family in Inflammatory Diseases and Cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Fan, Q.; Li, Z.; Goll, R.; Florholmen, J. Evaluation of Anti-TNF Therapeutic Response in Patients with Inflammatory Bowel Disease: Current and Novel Biomarkers. eBioMedicine 2021, 66, 103329. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Theopistos, V.I.; Katsanos, K.H.; Christodoulou, D.K. Pancreatic Involvement in Inflammatory Bowel Disease: A Review. J. Clin. Med. Res. 2018, 10, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Gkiouras, K.; Grammatikopoulou, M.G.; Theodoridis, X.; Pagkalidou, E.; Chatzikyriakou, E.; Apostolidou, A.G.; Rigopoulou, E.I.; Sakkas, L.I.; Bogdanos, D.P. Diagnostic and Clinical Significance of Antigen-Specific Pancreatic Antibodies in Inflammatory Bowel Diseases: A Meta-Analysis. World J. Gastroenterol. 2020, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Werner, L.; Paclik, D.; Fritz, C.; Reinhold, D.; Roggenbuck, D.; Sturm, A. Identification of Pancreatic Glycoprotein 2 as an Endogenous Immunomodulator of Innate and Adaptive Immune Responses. J. Immunol. 2012, 189, 2774–2783. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, P.; Shums, Z.; Koutsoumpas, A.L.; Milo, J.; Papp, M.; Umemura, T.; Lakatos, P.L.; Smyk, D.S.; Bogdanos, D.P.; Forbes, A.; et al. Diagnostic and Clinical Significance of Crohn’s Disease-Specific Anti-MZGP2 Pancreatic Antibodies by a Novel ELISA. Clin. Chim. Acta 2015, 441, 176–181. [Google Scholar] [CrossRef]
- Michaels, M.A.; Jendrek, S.T.; Korf, T.; Nitzsche, T.; Teegen, B.; Komorowski, L.; Derer, S.; Schröder, T.; Baer, F.; Lehnert, H.; et al. Pancreatic Autoantibodies Against CUZD1 and GP2 Are Associated with Distinct Clinical Phenotypes of Crohn’s Disease. Inflamm. Bowel Dis. 2015, 21, 2864–2872. [Google Scholar] [CrossRef]
- Alomair, A.; Alswayeh, A.; Alhazmi, A.; Alshammari, A.; Alsaffar, S.; Falamarzi, A.; Alothman, M.; Rayes, L.; Alkhathami, M.; Alhamidah, A. Intestinal Inflammation Markers in Inflammatory Bowel Disease. Int. J. Community Med. Public Health 2018, 5, 829–833. [Google Scholar] [CrossRef]
- Papp, M.; Lakatos, P.L. Serological Studies in Inflammatory Bowel Disease: How Important Are They? Curr. Opin. Gastroenterol. 2014, 30, 359. [Google Scholar] [CrossRef]
- Lewis, J.D. The Utility of Biomarkers in the Diagnosis and Therapy of Inflammatory Bowel Disease. Gastroenterology 2011, 140, 1817–1826.e2. [Google Scholar] [CrossRef]
- Tishkowski, K.; Gupta, V. Erythrocyte Sedimentation Rate. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Khaki-Khatibi, F.; Qujeq, D.; Kashifard, M.; Moein, S.; Maniati, M.; Vaghari-Tabari, M. Calprotectin in Inflammatory Bowel Disease. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 510, 556–565. [Google Scholar] [CrossRef]
- Däbritz, J.; Langhorst, J.; Lügering, A.; Heidemann, J.; Mohr, M.; Wittkowski, H.; Krummenerl, T.; Foell, D. Improving Relapse Prediction in Inflammatory Bowel Disease by Neutrophil-Derived S100A12. Inflamm. Bowel Dis. 2013, 19, 1130–1138. [Google Scholar] [CrossRef]
- Kopylov, U.; Rosenfeld, G.; Bressler, B.; Seidman, E. Clinical Utility of Fecal Biomarkers for the Diagnosis and Management of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2014, 20, 742–756. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Chen, X.; Guo, C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants 2024, 13, 132. [Google Scholar] [CrossRef]
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med. Sci. 2018, 6, 33. [Google Scholar] [CrossRef]
- Marônek, M.; Marafini, I.; Gardlík, R.; Link, R.; Troncone, E.; Monteleone, G. Metalloproteinases in Inflammatory Bowel Diseases. J. Inflamm. Res. 2021, 14, 1029–1041. [Google Scholar] [CrossRef]
- Derkacz, A.; Olczyk, P.; Olczyk, K.; Komosinska-Vassev, K. The Role of Extracellular Matrix Components in Inflammatory Bowel Diseases. J. Clin. Med. 2021, 10, 1122. [Google Scholar] [CrossRef]
- Shamseya, A.M.; Hussein, W.M.; Elnely, D.A.; Adel, F.; Header, D.A. Serum matrix metalloproteinase-9 concentration as a marker of disease activity in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2021, 33, e803. [Google Scholar] [CrossRef] [PubMed]
- Gavini, K.; Parameshwaran, K. Western Blot. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Garg, E.; Zubair, M. Mass Spectrometer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tamara, S.; den Boer, M.A.; Heck, A.J.R. High-Resolution Native Mass Spectrometry. Chem. Rev. 2022, 122, 7269–7326. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, M.; Rodríguez-Agirretxe, I.; Vecino, E.; Astigarraga, E.; Acera, A.; Barreda-Gómez, G. Elevation of Tear MMP-9 Concentration as a Biomarker of Inflammation in Ocular Pathology by Antibody Microarray Immunodetection Assays. Int. J. Mol. Sci. 2022, 23, 5639. [Google Scholar] [CrossRef]
- Martin-Souto, L.; Antoran, A.; Areitio, M.; Aparicio-Fernandez, L.; Martín-Gómez, M.T.; Fernandez, R.; Astigarraga, E.; Barreda-Gómez, G.; Schwarz, C.; Rickerts, V.; et al. Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/Lomentospora in Cystic Fibrosis Patients. J. Fungi 2023, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Madhvapathy, S.R.; Bury, M.I.; Wang, L.W.; Ciatti, J.L.; Avila, R.; Huang, Y.; Sharma, A.K.; Rogers, J.A. Miniaturized Implantable Temperature Sensors for the Long-Term Monitoring of Chronic Intestinal Inflammation. Nat. Biomed. Eng. 2024, 1–13. [Google Scholar] [CrossRef]
- Govindarajan, R.; Duraiyan, J.; Kaliyappan, K.; Palanisamy, M. Microarray and Its Applications. J. Pharm. Bioallied Sci. 2012, 4, S310–S312. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Elhag, D.A.; Kumar, M.; Saadaoui, M.; Akobeng, A.K.; Al-Mudahka, F.; Elawad, M.; Al Khodor, S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int. J. Mol. Sci. 2022, 23, 6966. [Google Scholar] [CrossRef]
- Chhibba, T.; Ma, C. Is There Room for Immunomodulators in Ulcerative Colitis? Expert Opin. Biol. Ther. 2020, 20, 379–390. [Google Scholar] [CrossRef]
- Gubatan, J.; Keyashian, K.; Rubin, S.J.S.; Wang, J.; Buckman, C.A.; Sinha, S. Anti-Integrins for the Treatment of Inflammatory Bowel Disease: Current Evidence and Perspectives. Clin. Exp. Gastroenterol. 2021, 14, 333–342. [Google Scholar] [CrossRef]
- Núñez, P.; Quera, R.; Yarur, A.J. Safety of Janus Kinase Inhibitors in Inflammatory Bowel Diseases. Drugs 2023, 83, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Sasson, A.N.; Ananthakrishnan, A.N.; Raman, M. Diet in Treatment of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 425–435.e3. [Google Scholar] [CrossRef] [PubMed]
- Caio, G.; Lungaro, L.; Caputo, F.; Zoli, E.; Giancola, F.; Chiarioni, G.; De Giorgio, R.; Zoli, G. Nutritional Treatment in Crohn’s Disease. Nutrients 2021, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; Barreiro-de Acosta, M.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis 2024, 18, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Magraner, L.; de la Fuente, M.; Evans, C.; Miles, J.; Elexpe, A.; Rodriguez-Astigarraga, M.; Astigarraga, E.; Barreda-Gómez, G. Quantification of PD-1/PD-L1 Interaction between Membranes from PBMCs and Melanoma Samples Using Cell Membrane Microarray and Time-Resolved Förster Resonance Energy Transfer. Analytica 2021, 2, 156–170. [Google Scholar] [CrossRef]
- Wu, K.; Tonini, D.; Liang, S.; Saha, R.; Chugh, V.K.; Wang, J.-P. Giant Magnetoresistance Biosensors in Biomedical Applications. ACS Appl. Mater. Interfaces 2022, 14, 9945–9969. [Google Scholar] [CrossRef] [PubMed]
- Hirten, R.P.; Lin, K.-C.; Whang, J.; Shahub, S.; Churcher, N.K.M.; Helmus, D.; Muthukumar, S.; Sands, B.; Prasad, S. Longitudinal Monitoring of IL-6 and CRP in Inflammatory Bowel Disease Using IBD-AWARE. Biosens. Bioelectron. X 2024, 16, 100435. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, K.B.; Barańska, D.; Grzelak, P.; Czkwianianc, E.; Szabelska-Zakrzewska, K. Up-to-Date Overview of Imaging Techniques in the Diagnosis and Management of Inflammatory Bowel Diseases. Przegla̜d Gastroenterol. 2019, 14, 19–25. [Google Scholar] [CrossRef]
- Frias-Gomes, C.; Torres, J.; Palmela, C. Intestinal Ultrasound in Inflammatory Bowel Disease: A Valuable and Increasingly Important Tool. GE Port. J. Gastroenterol. 2021, 29, 223–239. [Google Scholar] [CrossRef]
- Bennett, A.L.; Munkholm, P.; Andrews, J.M. Tools for Primary Care Management of Inflammatory Bowel Disease: Do They Exist? World J. Gastroenterol. WJG 2015, 21, 4457–4465. [Google Scholar] [CrossRef]
- Mounsif, S.; Setouani, H.; Nadi, A.; Ghalim, F.; Delsa, H. Management of Ulcerative Colitis Flare-Ups in the Era of COVID-19. Cureus 2022, 14, e32153. [Google Scholar] [CrossRef] [PubMed]
- Uhlir, V.; Stallmach, A.; Grunert, P.C. Fatigue in Patients with Inflammatory Bowel Disease—Strongly Influenced by Depression and Not Identifiable through Laboratory Testing: A Cross-Sectional Survey Study. BMC Gastroenterol. 2023, 23, 288. [Google Scholar] [CrossRef] [PubMed]
Loci | Gene | Function | Associated Disease | References |
---|---|---|---|---|
IBD1 | NOD2/CARD15 | Microorganism detection | CD | [33,38,40,48,50,52,53,54,76,80,81] |
IBD3 | HLA class I | Autotolerance | IBD | [12,37,38,49,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
HLA class II | ||||
HLA class III | Triggers inflammatory response; stimulates antigen uptake | |||
IBD5 | IRF1 | Transcription factor that stimulates pro-inflammatory cytokines; | IBD | [75,76,77,86] |
SLC22A4 | L-carnitine transporter | IBD (CD) | ||
SLC22A5 | ||||
IL-10; IL-10R | Anti-inflammatory response | IBD | [38,78,79] | |
IL-23; IL-23R | Pro-inflammatory response | IBD | [38,40] | |
IL1RA | IL-1 receptor antagonist | Pediatric IBD | [38,80] | |
ATG16L1 | Autophagy | CD | [38,81] | |
IRGM | Autophagy | CD | [38,81] | |
PTPN2 | Autophagy | IBD | [38,80] | |
CDH1 | E-cadherin of adherent junction production | UC | [38] | |
HNF4-α | Expression of cell junctions | UC | [38,40] | |
ULK1 | Autophagy | IBD | [43] | |
IL8RA | Pro-inflammatory response | EIMs in IBD | [4,95] | |
PRDM1 | Regulation of immune response | EIMs in IBD | [4,95] | |
USP15 | Deubiquitination of proteins | EIMs in IBD | [4,95] | |
TIMP3 | Anti-inflammatory response | EIMs in IBD | [4,95] | |
ITGB3 | Component of certain integrin receptors | EIMs in IBD | [4,95] | |
SOCS5 | Anti-inflammatory response | EIMs in IBD | [4,95] | |
CLEC4K/CD207 | Innate immune response | EIMs in IBD | [4,95] | |
ITGAL | Component of integrins | EIMs in IBD | [4,95] | |
PTGER4 | Prostaglandin E2 receptor | EIMs in IBD | [4,95] | |
TYK2 | Cytokine receptor | EIMs in IBD | [4,95] | |
STAT3 | Transcription factor of cytokines and growth factors | EIMs in IBD | [4,95] | |
JAK2 | Cytokine and growth factor signaling | EIMs in IBD | [4,95] | |
SOCS1 | Suppressor of cytokine signaling | EIMs in IBD | [4,95] | |
FOXO1 | Myogenic growth and differentiation | EIMs in IBD | [4,95] | |
IRF8 | Regulation of genes involved in immune response | EIMs in IBD | [4,95] | |
BCL211 | Apoptotic activator | EIMs in IBD | [4,95] | |
UBASH3A | Modulates T cell activation and function | EIMs in IBD | [4,95] | |
ACADM | Degradation of medium-chain fatty acids | UC | [83] | |
PDK1 | Regulation of glucose and fatty acid metabolisms | UC | [83] | |
FIS1 | Mitochondrial fission | UC | [83] | |
LACC1 | Purine nucleoside enzyme regulating redox balance and preventing cytoplasmic acidification | CD | [85,87] | |
GPX1; GPX3 | Reduce organic peroxide and hydrogen peroxide | CD | [85,88] | |
ALDH2 | Cellular metabolisms | IBD | [64,85] | |
STAT3 | Transcription factor | IBD | [85,89] | |
PARK7 | Redox sensing | IBD | [83,85] | |
LRRK2 | Autophagy, mitophagy, apoptosis | CD | [85,91,94] | |
GAK | Clathrin-coated vesicle trafficking | IBD | [90,94] | |
MAPT | Microtubules and axonal transport | IBD | [90,94] |
Classification | Biomarker | Associated Disease | References | |
---|---|---|---|---|
Genetic and epigenetic biomarkers | NOD2; PRDM1; NDP52 | CD | ||
KIF9-AS1; LINC01272; DIO3OS; DQ786243; CDKN2B-AS1 (ANRIL); IFNG-AS | IBD | [218,219] | ||
miR-21; miR-223; miR-155 | IBD | [220,221,222] | ||
miR-375 | UC | [223,224] | ||
Blood Biomarkers | Serological biomarkers | perinuclear antineutrophil cytoplasmic antibodies (pANCA) | UC | [220,225] |
Anti-Saccharomyces cerevisiae antibodies (ASCA) | CD | [220,226,227] | ||
C reactive protein (CRP) | IBD | [220,226,228] | ||
Pro-inflammatory cytokines (TNF, IL-1β, IL-12, IL,23, etc.) | IBD | [62,67,215,220,229,230] | ||
Anti-OmpC | CD | [220,228,231] | ||
Pancreatic antibodies (PABs) | CD | [231,232] | ||
Anti-carbohydrate antibodies (ALCA, ACCA, AMCA) | CD | [231,233,234,235] | ||
Cytokine oncostatin M (OSM) | IBD | [228,236] | ||
Antibodies anti-membrane antigens | IBD | [98] | ||
Leucine-rich α2 glycoprotein (LRG) | IBD | [214,223] | ||
Hematological parameters | Erythrocyte sedimentation rate (ESR); total white blood cell (WBC); eosinophil (EOS) count; platelet (PLT) count | IBD | [223,237] | |
Fecal biomarkers | Calprotectin | IBD | [220,223,226] | |
Lactoferrin | IBD | [158,220,238,239] | ||
FIT | IBD | [216] | ||
Calgranulin C (S100A12) | IBD | [158,238,240] | ||
Myeloperoxidase (MPO) | IBD | [220,241,242] | ||
Matrix metalloproteinases (MMPs) | IBD | [220,243] |
Weaknesses | Strengths |
|
|
Threats | Opportunities |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez-Martin, E.; Hernandez-Suarez, L.; Muñoz-Villafranca, C.; Martin-Souto, L.; Astigarraga, E.; Ramirez-Garcia, A.; Barreda-Gómez, G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int. J. Mol. Sci. 2024, 25, 7062. https://doi.org/10.3390/ijms25137062
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. International Journal of Molecular Sciences. 2024; 25(13):7062. https://doi.org/10.3390/ijms25137062
Chicago/Turabian StyleDiez-Martin, Eguzkiñe, Leidi Hernandez-Suarez, Carmen Muñoz-Villafranca, Leire Martin-Souto, Egoitz Astigarraga, Andoni Ramirez-Garcia, and Gabriel Barreda-Gómez. 2024. "Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options" International Journal of Molecular Sciences 25, no. 13: 7062. https://doi.org/10.3390/ijms25137062