The Role of Fenugreek in the Management of Type 2 Diabetes
Abstract
:1. Introduction
Current Methods for the Management of Type 2 Diabetes
2. The Role of Natural Compounds in Diabetes Management
2.1. Promising Naturally Derived Compounds for Diabetes Management
2.2. Fenugreek as a Promising Natural Treatment for the Management of Type 2 Diabetes
2.3. Toxicity and Adverse Effects
Constituent Type | Constituent | Fenugreek Seeds (Approximate %) | Fenugreek Leaves (Approximate %) |
---|---|---|---|
Macronutrients | Proteins | 20–30% | 4–6% |
Dietary Fibre | 25–30% | 3–5% | |
Carbohydrates | 40–60% | 5–10% | |
Fats | 5–10% | <1% | |
Vitamins | B Vitamins (e.g., B6, B12) | 0.3–0.6% | 0.1–0.2% |
Vitamin K | Trace amounts | 0.2–0.4% | |
Vitamin A | Trace amounts | 0.02–0.05% | |
Vitamin C | 0.1–0.3% | 0.3–0.7% | |
Folate (Folic Acid) | 0.02–0.05% | 0.01–0.03% | |
Vitamin E | Trace amounts | Trace amounts | |
Minerals | Iron | 1–2% | 2–4% |
Calcium | 0.2–0.5% | 1–3% | |
Magnesium | 0.1–0.3% | 0.2–0.5% | |
Phosphorus | 0.3–0.6% | 0.2–0.4% | |
Potassium | 0.4–0.8% | 0.5–1% | |
Sodium | <0.1% | <0.1% | |
Zinc | 0.01–0.03% | 0.01–0.03% | |
Bioactive Compounds | Saponins | 2–6% | <1% |
Alkaloids | <1% | Trace amounts | |
4-hydroxyisoleucine | 1–2% | Trace amounts | |
Flavonoids | 0.5–1% | 0.2–0.5% | |
Phenolic Acids | 0.1–0.3% | 0.1–0.2% | |
Coumarins | Trace amounts | Trace amounts | |
Lecithin | 0.1–0.3% | Trace amounts | |
Other Components | Water Content | 5–10% | 75–85% |
Essential Oils | Trace to 1% | Trace amounts | |
Mucilage | 1–3% | <1% | |
Choline | 0.02–0.05% | Trace amounts |
2.4. Bioactive Components of Fenugreek
4-Hydroxy Isoleucine
2.5. Fenugreek and the Microbiome
2.6. Mechanisms Involved in the Antidiabetic Effects of Fenugreek
3. Discussion
3.1. Bioavailability and the Microbiome
3.2. Limitations and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wu, Y.; He, X.; Zhou, J.; Wang, Y.; Yu, L.; Li, X.; Liu, T.; Luo, J. Impact of healthy lifestyle on the risk of type 2 diabetes mellitus in southwest China: A prospective cohort study. J. Diabetes Investig. 2022, 13, 2091–2100. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J. Diabetes Res. 2021, 2021, 7796727. [Google Scholar] [CrossRef]
- Zheng, D.; Dou, J.; Liu, G.; Pan, Y.; Yan, Y.; Liu, F.; Gaisano, H.Y.; Lu, J.; He, Y. Association Between Triglyceride Level and Glycemic Control Among Insulin-Treated Patients With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Nagar, S.D.; Nápoles, A.M.; Jordan, I.K.; Mariño-Ramírez, L. Socioeconomic deprivation and genetic ancestry interact to modify type 2 diabetes ethnic disparities in the United Kingdom. EClinicalMedicine 2021, 37, 100960. [Google Scholar] [CrossRef]
- Vadadokhau, U.; Varga, I.; Káplár, M.; Emri, M.; Csősz, É. Examination of the Complex Molecular Landscape in Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 4781. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B. The Genetic Epidemiology of Type 2 Diabetes: Opportunities for Health Translation. Curr. Diabetes Rep. 2019, 19, 62. [Google Scholar] [CrossRef]
- Sevcuka, A.; White, K.; Terry, C. Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus. Life 2022, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; White, K.; Terry, C. Linking hIAPP misfolding and aggregation with type 2 diabetes mellitus: A structural perspective. Biosci. Rep. 2022, 42, BSR20211297. [Google Scholar] [CrossRef]
- Juvinao-Quintero, D.L.; Sharp, G.C.; Sanderson, E.C.M.; Relton, C.L.; Elliott, H.R. Investigating causality in the association between DNA methylation and type 2 diabetes using bidirectional two-sample Mendelian randomisation. Diabetologia 2023, 66, 1247–1259. [Google Scholar] [CrossRef]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ Clin. Res. Ed. 2020, 369, m1361. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, J.; You, X.; Gong, H. Risk factors and drug discovery for cognitive impairment in type 2 diabetes mellitus using artificial intelligence interpretation and graph neural networks. Front. Endocrinol. 2023, 14, 1213711. [Google Scholar] [CrossRef] [PubMed]
- Pinhas-Hamiel, O.; Shah, A.S.; van Raalte, D.H.; Pavkov, M.E.; Nelson, R.G. Youth-onset type 2 diabetes mellitus: An urgent challenge. Nat. Rev. Nephrol. 2023, 19, 168–184. [Google Scholar] [CrossRef]
- World Health Organization; International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006. Available online: https://www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf (accessed on 10 February 2024).
- Wilkin, T.J. The accelerator hypothesis: A unifying explanation for type-1 and type-2 diabetes. Nestle Nutr. Workshop Ser. Clin. Perform. Programme 2006, 11, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, I. Reversing Type 2 Diabetes: The Time for Lifestyle Medicine Has Come! Nutrients 2020, 12, 1974. [Google Scholar] [CrossRef] [PubMed]
- Galindo, R.J.; Trujillo, J.M.; Low Wang, C.C.; McCoy, R.G. Advances in the management of type 2 diabetes in adults. BMJ Med. 2023, 2, e000372. [Google Scholar] [CrossRef] [PubMed]
- Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. 2012, 122, 253–270. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar] [CrossRef]
- Storgaard, H.; Cold, F.; Gluud, L.L.; Vilsbøll, T.; Knop, F.K. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes. Metab. 2017, 19, 906–908. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. LEADER Steering Committee, & LEADER Trial Investigators Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Giorgino, F.; Vora, J.; Fenici, P.; Solini, A. Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. Cardiovasc. Diabetol. 2020, 19, 196. [Google Scholar] [CrossRef] [PubMed]
- Mathern, J.R.; Raatz, S.K.; Thomas, W.; Slavin, J.L. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother. Res. PTR 2009, 23, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.D.; Ismail, A.A.; Wan Rosli, W.I. Trigonella foenum-graecum seeds lowers postprandial blood glucose in overweight and obese individuals. J. Nutr. Metab. 2014, 2014, 964873. [Google Scholar] [CrossRef] [PubMed]
- Madar, Z.; Abel, R.; Samish, S.; Arad, J. Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. Eur. J. Clin. Nutr. 1988, 42, 51–54. [Google Scholar] [PubMed]
- Geberemeskel, G.A.; Debebe, Y.G.; Nguse, N.A. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella foenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J. Diabetes Res. 2019, 2019, 8507453. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.F.; Ali, M.T.; Mohsin, A.A.; Hiware, S.D.; Ahmad, A.; Daimi, S.R.H.; Moizuddin, K.; Shaikh, S.A.; Siddiqui, F.B. A Comparative Study on Clinical Evaluation of the Hypolipidemic Effects of Allium sativum, Trigonella foenum-graecum, Commiphora mukul, Picrorhiza kurroa, and Piper nigrum: A Pilot Study. Cureus 2022, 14, e26597. [Google Scholar] [CrossRef] [PubMed]
- Wangchuk, P. Therapeutic Applications of Natural Products in Herbal Medicines, Biodiscovery Programs, and Biomedicine. J. Biol. Act. Prod. Nat. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug. Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Terry, C. Insights from Nature: A Review of Natural Compounds That Target Protein Misfolding in Vivo. Curr. Res. Biotechnol. 2020, 2, 131–144. [Google Scholar] [CrossRef]
- Franko, A.; Rodriguez Camargo, D.C.; Böddrich, A.; Garg, D.; Camargo, A.R.; Rathkolb, B.; Janik, D.; Aichler, M.; Feuchtinger, A.; Neff, F.; et al. Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice. Sci. Rep. 2018, 8, 1116. [Google Scholar] [CrossRef] [PubMed]
- Amssayef, A.; Eddouks, M. Alkaloids as Promising Agents for the Management of Insulin Resistance: A Review. Curr. Pharm. Des. 2023, 29, 3123–3136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit. Rev. Food Sci. Nutr. 2023, 63, 12372–12397. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Adams-Huet, B.; Brinkley, L.; Grundy, S.M.; Garg, A. Lipid, glycemic, and insulin responses to meals rich in saturated, cis-monounsaturated, and polyunsaturated (n-3 and n-6) fatty acids in subjects with type 2 diabetes. Diabetes Care 2007, 30, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Mitchelson, K.A.J.; Tran, T.T.T.; Dillon, E.T.; Vlckova, K.; Harrison, S.M.; Ntemiri, A.; Cunningham, K.; Gibson, I.; Finucane, F.M.; O’Connor, E.M.; et al. Yeast β-Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, e2100819. [Google Scholar] [CrossRef] [PubMed]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xiao, Y.; Gao, J.; Zheng, Z.; Zhang, Z.; Yao, L.; Li, D. Curcumin improves insulin sensitivity in high-fat diet-fed mice through gut microbiota. Nutr. Metab. 2022, 19, 76. [Google Scholar] [CrossRef]
- MacDonald-Ramos, K.; Michán, L.; Martínez-Ibarra, A.; Cerbón, M. Silymarin is an ally against insulin resistance: A review. Ann. Hepatol. 2021, 23, 100255. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Anlar, H.G.; Aydın, S.; Çal, T.; Arı, N.; Ündeğer Bucurgat, Ü.; Başaran, A.A.; Başaran, N. D-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2017, 110, 434–442. [Google Scholar] [CrossRef]
- El Omari, N.; Mrabti, H.N.; Benali, T.; Ullah, R.; Alotaibi, A.; Abdullah, A.D.I.; Goh, K.W.; Bouyahya, A. Expediting Multiple Biological Properties of Limonene and α-Pinene: Main Bioactive Compounds of Pistacia lentiscus L., Essential Oils. Front. Biosci. Landmark Ed. 2023, 28, 229. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Z.; Cai, Y.; Yang, Y.; Yuan, J.; Chen, Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur. J. Med. Chem. 2023, 253, 115336. [Google Scholar] [CrossRef] [PubMed]
- Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front. Nutr. 2020, 7, 64. [Google Scholar] [CrossRef]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef]
- Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012, 32, 537–541. [Google Scholar] [CrossRef]
- García-Martínez, B.I.; Ruiz-Ramos, M.; Pedraza-Chaverri, J.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Hypoglycemic Effect of Resveratrol: A Systematic Review and Meta-Analysis. Antioxidants 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Mongioì, L.M.; La Vignera, S.; Cannarella, R.; Cimino, L.; Compagnone, M.; Condorelli, R.A.; Calogero, A.E. The Role of Resveratrol Administration in Human Obesity. Int. J. Mol. Sci. 2021, 22, 4362. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, S.S. Momordica charantia L.-Diabetes-Related Bioactivities, Quality Control, and Safety Considerations. Front. Pharmacol. 2022, 13, 904643. [Google Scholar] [CrossRef] [PubMed]
- Striegel, L.; Kang, B.; Pilkenton, S.J.; Rychlik, M.; Apostolidis, E. Effect of Black Tea and Black Tea Pomace Polyphenols on α-Glucosidase and α-Amylase Inhibition, Relevant to Type 2 Diabetes Prevention. Front. Nutr. 2015, 2, 3. [Google Scholar] [CrossRef]
- Riyaphan, J.; Pham, D.C.; Leong, M.K.; Weng, C.F. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021, 11, 1877. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Al-Ali, S.; Tranchant, C.C.; Gammoh, S.; Alrosan, M.; Kubow, S.; Tan, T.C.; Ghatasheh, S. Current perspectives on fenugreek bioactive compounds and their potential impact on human health: A review of recent insights into functional foods and other high value applications. J. Food Sci. 2024, 89, 1835–1864. [Google Scholar] [CrossRef]
- Pournamdari, M.; Mandegary, A.; Sharififar, F.; Zarei, G.; Zareshahi, R.; Asadi, A.; Mehdipour, M. Anti-Inflammatory Subfractions Separated from Acidified Chloroform Fraction of Fenugreek Seeds (Trigonella foenum-graecum L.). J. Diet. Suppl. 2018, 15, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Idris, S.; Mishra, A.; Khushtar, M. Recent Therapeutic Interventions of Fenugreek Seed: A Mechanistic Approach. Drug Res. 2021, 71, 180–192. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wu, Q.; Ding, X.; Yin, C.; Yang, E.; Sun, D.; Wang, W.; Yang, Y.; Guo, F. Multiple responses optimization of antioxidative components extracted from Fenugreek seeds using response surface methodology to identify their chemical compositions. Food Sci. Nutr. 2022, 10, 3475–3484. [Google Scholar] [CrossRef] [PubMed]
- Almalki, D.A.; Naguib, D.M. Anticancer Activity of Aqueous Fenugreek Seed Extract Against Pancreatic Cancer, Histological Evidence. J. Gastrointest. Cancer 2022, 53, 683–686. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Zheng, K.; Ma, Y.J.; He, R.X.; Arowolo, M.A.; Zhou, Y.J.; Xiao, D.F.; He, J.H. Effects of fenugreek seed extracts on growth performance and intestinal health of broilers. Poult. Sci. 2022, 101, 101939. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Luan, G.; He, Y.; Tie, F.; Wang, Z.; Suo, Y.; Ma, C.; Wang, H. Polyphenol Stilbenes from Fenugreek (Trigonella foenum-graecum L.) Seeds Improve Insulin Sensitivity and Mitochondrial Function in 3T3-L1 Adipocytes. Oxidative Med. Cell. Longev. 2018, 2018, 7634362. [Google Scholar] [CrossRef] [PubMed]
- Naicker, N.; Nagiah, S.; Phulukdaree, A.; Chuturgoon, A. Trigonella foenum-graecum Seed Extract, 4-Hydroxyisoleucine, and Metformin Stimulate Proximal Insulin Signaling and Increase Expression of Glycogenic Enzymes and GLUT2 in HepG2 Cells. Metab. Syndr. Relat. Disord. 2016, 14, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Knott, E.J.; Richard, A.J.; Mynatt, R.L.; Ribnicky, D.; Stephens, J.M.; Bruce-Keller, A. Fenugreek supplementation during high-fat feeding improves specific markers of metabolic health. Sci. Rep. 2017, 7, 12770. [Google Scholar] [CrossRef]
- Baquer, N.Z.; Kumar, P.; Taha, A.; Kale, R.K.; Cowsik, S.M.; McLean, P. Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J. Biosci. 2011, 36, 383–396. [Google Scholar] [CrossRef]
- Khound, R.; Shen, J.; Song, Y.; Santra, D.; Su, Q. Phytoceuticals in Fenugreek Ameliorate VLDL Overproduction and Insulin Resistance via the Insig Signaling Pathway. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Diwedi, V.; Bhardwaj, Y. In vitro α -amylase and α-glucosidase inhibitory potential of Trigonella foenum-graecum leaves extract. Ayu 2013, 34, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Al-Habori, M.; Raman, A.; Lawrence, M.J.; Skett, P. In vitro effect of fenugreek extracts on intestinal sodium-dependent glucose uptake and hepatic glycogen phosphorylase A. Int. J. Exp. Diabetes Res. 2001, 2, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chaurasia, P.K.; Bharati, S. Hypoglycemic and Hypocholesterolemic Properties of Fenugreek: A Comprehensive Assessment. Appl. Food Res. 2023, 3, 100311. [Google Scholar] [CrossRef]
- Deshpande, P.O.; Mohan, V.; Pore, M.P.; Gumaste, S.; Thakurdesai, P.A. Prenatal Developmental Toxicity Study of Glycosides-based Standardized Fenugreek Seed Extract in Rats. Pharmacogn. Mag. 2017, 13 (Suppl. 1), S135–S141. [Google Scholar] [CrossRef] [PubMed]
- Kalailingam, P.; Kannaian, B.; Tamilmani, E.; Kaliaperumal, R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine Int. J. Phytother. Phytopharm. 2014, 21, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.P.; Prasath, G.S. Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. Biomed. Prev. Nutr. 2014, 4, 475–480. [Google Scholar] [CrossRef]
- Aldakinah, A.A.; Al-Shorbagy, M.Y.; Abdallah, D.M.; El-Abhar, H.S. Trigonelline and vildagliptin antidiabetic effect: Improvement of insulin signalling pathway. J. Pharm. Pharmacol. 2017, 69, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Alsuliam, S.M.; Albadr, N.A.; Almaiman, S.A.; Al-Khalifah, A.S.; Alkhaldy, N.S.; Alshammari, G.M. Fenugreek Seed Galactomannan Aqueous and Extract Protects against Diabetic Nephropathy and Liver Damage by Targeting NF-κB and Keap1/Nrf2 Axis. Toxics 2022, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Broca, C.; Breil, V.; Cruciani-Guglielmacci, C.; Manteghetti, M.; Rouault, C.; Derouet, M.; Rizkalla, S.; Pau, B.; Petit, P.; Ribes, G.; et al. Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E463–E471. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, K.S.; Prajapati, R.; Sharma, S.; Rath, S.K.; Narender, T.; Mugale, M.N. 4-HIL mitigates type-2 diabetic complications through inhibiting inflammation and Nrf2 mediated oxidative stress in rats. Phytomedicine Plus 2022, 2, 100141. [Google Scholar] [CrossRef]
- Hannan, J.M.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br. J. Nutr. 2007, 97, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.L.; Li, X.S.; Zhang, J.; Liu, Y.H.; Wang, Z.L.; Zhang, R.J. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 422–426. [Google Scholar] [PubMed]
- Eidi, A.; Eidi, M.; Sokteh, M. Effect of fenugreek (Trigonella foenum graecum L) seeds on serum parameters in normal and streptozotocin-induced rats. Nutr. Res. 2007, 27, 728–733. [Google Scholar] [CrossRef]
- Bafadam, S.; Mahmoudabady, M.; Niazmand, S.; Rezaee, S.A.; Soukhtanloo, M. Cardioprotective effects of Fenugreek (Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats. J. Cardiovasc. Thorac. Res. 2021, 13, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Navarrete, M.; Pérez-Rubio, K.G.; Escobedo-Gutiérrez, M.d.J. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals 2023, 16, 515. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials. Nutr. J. 2014, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.L.; Elugbaju, C.; Al-Anbaki, M.; Lown, M.; Graz, B. Effectiveness of Medicinal Plants for Glycaemic Control in Type 2 Diabetes: An Overview of Meta-Analyses of Clinical Trials. Front. Pharmacol. 2021, 12, 777561. [Google Scholar] [CrossRef] [PubMed]
- Kassaian, N.; Azadbakht, L.; Forghani, B.; Amini, M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int. J. Vitam. Nutr. Res. 2009, 79, 34–39. [Google Scholar] [CrossRef]
- Kim, J.; Noh, W.; Kim, A.; Choi, Y.; Kim, Y.S. The Effect of Fenugreek in Type 2 Diabetes and Prediabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Mol. Sci. 2023, 24, 13999. [Google Scholar] [CrossRef]
- Pickering, E.; Steels, E.; Rao, A.; Steadman, K.J. An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics 2022, 14, 2453. [Google Scholar] [CrossRef]
- Abdel-Barry, J.A.; Al-Hakiem, M.H. Acute intraperitoneal and oral toxicity of the leaf glycosidic extract of Trigonella foenum-graecum in mice. J. Ethnopharmacol. 2000, 70, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Kassem, A.; Al-Aghbari, A.; AL-Habori, M.; Al-Mamary, M. Evaluation of the potential antifertility effect of fenugreek seeds in male and female rabbits. Contraception 2006, 73, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Kandhare, A.D.; Thakurdesaj, P.; Wangikar, P.; Bodhankar, A. A systematic literature review of fenugreek seed toxicity by using ToxRTool: Evidence from preclinical and clinical studies. Heliyon 2019, 5, e01536. [Google Scholar] [CrossRef] [PubMed]
- Faeste, C.K.; Namork, E.; Lindvik, H. Allergenicity and antigenicity of fenugreek (Trigonella foenum-graecum) proteins in foods. J. Allergy Clin. Immunol. 2009, 123, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Faisal, Z.; Irfan, R.; Akram, N.; Manzoor, H.M.I.; Aabdi, M.A.; Anwar, M.J.; Khawar, S.; Saif, A.; Shah, Y.A.; Afzaal, M. The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Sci. Nutr. 2024, 12, 2294–2310. [Google Scholar] [CrossRef] [PubMed]
- Trask, L.E.; Chaidarun, S.S.; Platt, D.; Parkin, C.G. Treatment with novel galactomannan derivative reduces 2-hour postprandial glucose excursions in individuals with type 2 diabetes treated with oral medications and/or insulin. J. Diabetes Sci. Technol. 2014, 8, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Avalos-Soriano, A.; De la Cruz-Cordero, R.; Rosado, J.L.; Garcia-Gasca, T. 4-Hydroxyisoleucine from Fenugreek (Trigonella foenum-graecum): Effects on Insulin Resistance Associated with Obesity. Molecules 2016, 21, 1596. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Keller, A.J.; Richard, A.J.; Fernandez-Kim, S.O.; Ribnicky, D.M.; Salbaum, J.M.; Newman, S.; Carmouche, R.; Stephens, J.M. Fenugreek Counters the Effects of High Fat Diet on Gut Microbiota in Mice: Links to Metabolic Benefit. Sci. Rep. 2020, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.A.; Richard, A.J.; Salbaum, J.M.; Newman, S.; Carmouche, R.; Webb, S.; Bruce-Keller, A.J.; Stephens, J.M.; Campagna, S.R. Cross-Omics Analysis of Fenugreek Supplementation Reveals Beneficial Effects Are Caused by Gut Microbiome Changes Not Mammalian Host Physiology. Int. J. Mol. Sci. 2022, 23, 3654. [Google Scholar] [CrossRef]
- Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 2017, 33, 194–201. [Google Scholar] [CrossRef]
- Man, S.; Xie, L.; Liu, X.; Wang, G.; Liu, C.; Gao, W. Diosgenin relieves oxaliplatin-induced pain by affecting TLR4/NF-κB inflammatory signaling and the gut microbiota. Food Funct. 2023, 14, 516–524. [Google Scholar] [CrossRef]
- Song, C.; Ma, Y.; Wang, Y.; Li, P.; Chen, Y.; Liu, H.; Zhang, Z. Diosgenin reduces bone loss through the regulation of gut microbiota in ovariectomized rats. Gene 2023, 869, 147383. [Google Scholar] [CrossRef]
- Anwar, S.; Bhandari, U.; Panda, B.P.; Dubey, K.; Khan, W.; Ahmad, S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J Pharm. Biomed. Anal. 2018, 159, 100–112. [Google Scholar] [CrossRef]
- Shtriker, M.G.; Hahn, M.; Taieb, E.; Nyska, A.; Moallem, U.; Tirosh, O.; Madar, Z. Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition 2018, 46, 134–142.e3. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nasr, H.; Bouzidi, A.; Gharbi, A.; Hammamy, S.; Zeghal, K. Some biological effects of Trigonella foenum- graecom L in healthy men. Endocrinol. Metab. Int. J. 2018, 6, 440–443. [Google Scholar] [CrossRef]
- King, K.; Lin, N.P.; Cheng, Y.H.; Chen, G.H.; Chein, R.J. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed. J. Biol. Chem. 2015, 290, 26235–26248. [Google Scholar] [CrossRef]
- Shabil, M.; Bushi, G.; Bodige, P.K.; Maradi, P.S.; Patra, B.P.; Padhi, B.K.; Khubchandani, J. Effect of Fenugreek on Hyperglycemia: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 248. [Google Scholar] [CrossRef] [PubMed]
- Bordia, A.; Verma, S.K.; Srivastava, K.C. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot. Essent. Fat. Acids 1997, 56, 379–384. [Google Scholar] [CrossRef]
- Syvänne, M.; Taskinen, M.R. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997, 350 (Suppl. 1), SI20–SI23. [Google Scholar] [CrossRef]
- Sheweita, S.A.; ElHady, S.A.; Hammoda, H.M. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities. J. Ethnopharmacol. 2020, 256, 112821. [Google Scholar] [CrossRef]
- Zameer, S.; Najmi, A.K.; Vohora, D.; Akhtar, M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr. Neurosci. 2018, 21, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacology 2015, 4, 27–30. [Google Scholar]
- Mehrzadi, S.; Mirzaei, R.; Heydari, M.; Sasani, M.; Yaqoobvand, B.; Huseini, H.F. Efficacy and Safety of a Traditional Herbal Combination in Patients with Type II Diabetes Mellitus: A Randomized Controlled Trial. J. Diet. Suppl. 2021, 18, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Arab, A.; Hajianfar, H.; Talaei, B.; Miraghajani, M.; Babajafari, S.; Marx, W.; Tavakoly, R. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: A parallel randomized clinical trial. Complement. Ther. Med. 2020, 49, 102315. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Navarro del Hierro, J.; Reglero, G.; Martin, D. Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods. 2020, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- Sheethal, S.; Ratheesh, M.; Jose, S.P.; Asha, S.; Krishnakumar, I.M.; Sandya, S.; Girishkumar, B.; Grace, J. Anti-Ulcerative Effect of Curcumin-Galactomannoside Complex on Acetic Acid-Induced Experimental Model by Inhibiting Inflammation and Oxidative Stress. Inflammation 2020, 43, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, I.M.; Abhilash, R.; Dinesh, K.; Ramadasan, K.; Balu, M. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef]
- Wei, M.; Li, G.; Xie, H.; Yang, W.; Xu, H.; Han, S.; Wang, J.; Meng, Y.; Xu, Q.; Li, Y.; et al. Sustainable production of 4-hydroxyisoleucine with minimised carbon loss by simultaneously utilising glucose and xylose in engineered Escherichia coli. Bioresour. Technol. 2022, 354, 127196. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.P.; Cormier, J. Potential interaction between warfarin and boldo-fenugreek. Pharmacotherapy 2001, 21, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Farmer, R.E.; Eastwood, S.V.; Chaturvedi, N.; Douglas, I.; Smeeth, L. Ethnic disparities in initiation and intensification of diabetes treatment in adults with type 2 diabetes in the UK, 1990-2017: A cohort study. PLoS Med. 2020, 17, e1003106. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, A.; Galla, C.; Thummisetti, S.; Marikanty, R.K.; Palanisamy, U.D.; Rao, P.V. Role of Fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord. 2015, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Deng, J.; He, J.; Yin, L.; You, R.; Zhang, L.; Shen, J.; Han, Z.; Xie, F.; He, J.; et al. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J. Cell. Mol. Med. 2023, 27, 1959–1974. [Google Scholar] [CrossRef]
- Tiwari, P.C.; Pal, R.; Chaudhary, M.J.; Nath, R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev. Res. 2023, 84, 1652–1663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haxhiraj, M.; White, K.; Terry, C. The Role of Fenugreek in the Management of Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 6987. https://doi.org/10.3390/ijms25136987
Haxhiraj M, White K, Terry C. The Role of Fenugreek in the Management of Type 2 Diabetes. International Journal of Molecular Sciences. 2024; 25(13):6987. https://doi.org/10.3390/ijms25136987
Chicago/Turabian StyleHaxhiraj, Melina, Kenneth White, and Cassandra Terry. 2024. "The Role of Fenugreek in the Management of Type 2 Diabetes" International Journal of Molecular Sciences 25, no. 13: 6987. https://doi.org/10.3390/ijms25136987