Regulation and Response Mechanism of Acute Low-Salinity Stress during Larval Stages in Macrobrachium rosenbergii Based on Multi-Omics Analysis
Abstract
1. Introduction
2. Results
2.1. Changes in Biochemical Parameters
2.2. Transcriptome Analysis of Differentially Expressed Genes (DEGs)
2.3. Expression Validation of Selected DEGs
2.4. Proteomic Analysis
2.5. Metabolome Analysis
2.6. Multi-Omics Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Animals and Experiments Design
4.2. Biochemical Parameters Measurement
4.3. RNA-Seq Library and Data Analysis
4.4. Detection of Differentially Enriched Genes by qRT-PCR
4.5. Proteome Sequencing and Analysis
4.6. Metabolomics
4.7. Statiscical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.Y.; Hou, J.L.; Liu, H.J.; Zhu, H.Y.; Xu, G.C.; Xu, J. Adaptive evolution of low-salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus. Mar. Biol. 2020, 167, 90. [Google Scholar] [CrossRef]
- Norstog, J.L.; McCormick, S.D.; Kelly, J.T. Metabolic costs associated with seawater acclimation in a euryhaline teleost, the fourspine stickleback (Apeltes quadracus). Comp. Biochem. Phys. B 2022, 262, 110780. [Google Scholar] [CrossRef] [PubMed]
- Srisuk, C.; Choolert, C.; Bendena, W.G.; Longyant, S.; Sithigorngul, P.; Chaivisuthangkura, P. Molecular isolation and expression analysis of hemocyanin isoform 2 of Macrobrachium rosenbergii. J. Aquat. Anim. Health 2022, 34, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Ying, N.; Wang, Y.; Song, X.; Qin, B.; Wu, Y.; Yang, L.; Fang, W. Transcriptome analysis of Macrobrachium rosenbergii: Identification of precocious puberty and slow-growing information. J. Invertebr. Pathol. 2022, 190, 107752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Wei, J.; Hong, K.; Zhou, Q.; Liu, X.; Hong, X.; Li, W.; Liu, C.; Zhu, X.; et al. Multi-effects of acute salinity stress on osmoregulation, physiological metabolism, antioxidant capacity, immunity, and apoptosis in Macrobrachium rosenbergii. Antioxidants 2023, 12, 1836. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, J.; Hong, K.; Zhou, N.; Liu, X.; Hong, X.; Li, W.; Zhao, J.; Chen, C.; Wu, L.; et al. Transcriptome analysis reveals the molecular response to salinity challenge in larvae of the giant freshwater prawn Macrobrachium rosenbergii. Front. Physiol. 2022, 13, 885035. [Google Scholar] [CrossRef]
- Wilder, M.N.; Do, T.T.; Atmomarsono, M.; Tran, T.T.; Truong, Q.P.; Yang, W.J. Characterization of Na/K-ATPase in Macrobrachium rosenbergii and the effects of changing salinity on enzymatic activity. Comp. Biochem. Phys. A 2000, 125, 377–388. [Google Scholar] [CrossRef]
- Intanai, I.; Taylor, E.W.; Whiteley, N.M. Effects of salinity on rates of protein synthesis and oxygen uptake in the post-larvae and juveniles of the tropical prawn Macrobrachium rosenbergii (de Man). Comp. Biochem. Phys. A 2009, 152, 372–378. [Google Scholar] [CrossRef]
- Kasan, N.A.; Ikhwanuddin, M.; Manan, H.; Zakaria, N.S.; Kamaruzzan, A.S.; Rahim, A.I.A.; Ishak, A.N. Assessment on water quality parameter and nutrients level of nyatuh river in relations with Macrobrachium Rosenbergii prawn populations. Trop. Life Sci. Res. 2023, 34, 51–66. [Google Scholar]
- Barman, H.K.; Patra, S.K.; Das, V.; Mohapatra, S.D.; Jayasankar, P.; Mohapatra, C.; Mohanta, R.; Panda, R.P.; Rath, S.N. Identification and characterization of differentially expressed transcripts in the gills of freshwater prawn (Macrobrachium rosenbergii) under salt stress. Sci. World J. 2012, 2012, 149361. [Google Scholar] [CrossRef]
- Fabri, L.M.; Moraes, C.M.; Costa, M.I.C.; Garçon, D.P.; Fontes, C.F.L.; Pinto, M.R.; McNamara, J.C.; Leone, F.A. Salinity-dependent modulation by protein kinases and the FXYD2 peptide of gill (Na+, K+)-ATPase activity in the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). BBA-Biomembr. 2022, 1864, 183982. [Google Scholar] [CrossRef]
- Knysh, K.M.; Courtenay, S.C.; Grove, C.M.; van den Heuvel, M.R. The differential effects of salinity level on chlorpyrifos and imidacloprid toxicity to an estuarine amphipod. Bull. Environ. Contam. Toxicol. 2021, 106, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Athamena, A.; Brichon, G.; Trajkovic-Bodennec, S.; Péqueux, A.; Chapelle, S.; Bodennec, J.; Zwingelstein, G. Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J. Comp. Physiol. B 2011, 181, 731–740. [Google Scholar] [CrossRef]
- Mabidi, A.; Bird, M.S.; Perissinotto, R. Increasing salinity drastically reduces hatching success of crustaceans from depression wetlands of the semi-arid Eastern Cape Karoo region, South Africa. Sci. Rep. 2018, 8, 5983. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, J.; Shen, Y.; Bi, Y.; Hou, W.; Pan, G.; Wu, X. Transcriptional responses to low-salinity stress in the gills of adult female Portunus trituberculatus. Comp. Biochem. Phys. D 2019, 29, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Derby, A.P.; Huff Hartz, K.E.; Fuller, N.W.; Landrum, P.F.; Reeve, J.D.; Poynton, H.C.; Connon, R.E.; Lydy, M.J. Effects of temperature and salinity on bioconcentration and toxicokinetics of permethrin in pyrethroid-resistant Hyalella azteca. Chemosphere 2022, 299, 134393. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Pan, L.; Ren, Q.; Wang, L.; Miao, J. Effect of salinity on regulation mechanism of neuroendocrine-immunoregulatory network in Litopenaeus vannamei. Fish. Shellfish. Immunol. 2016, 49, 396–406. [Google Scholar] [CrossRef]
- Kim, B.M.; Lee, Y.; Hwang, J.Y.; Kim, Y.K.; Kim, T.W.; Kim, I.N.; Kang, S.; Kim, J.H.; Rhee, J.S. Physiological and molecular responses of the Antarctic harpacticoid copepod Tigriopus kingsejongensis to salinity fluctuations—A multigenerational study. Environ. Res. 2022, 204, 112075. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Whiteley, N.M.; Bailey, A.M.; Graham, H.; Hop, H.; Rastrick, S.P.S. Contrasting responses to salinity and future ocean acidification in arctic populations of the amphipod Gammarus setosus. Mar. Environ. Res. 2020, 162, 105176. [Google Scholar] [CrossRef]
- Nikapitiya, C.; Kim, W.S.; Park, K.; Kim, J.; Lee, M.; Kwak, I. Chitinase gene responses and tissue sensitivity in an intertidal mud crab (Macrophthalmus japonicus) following low or high salinity stress. Cell Stress. Chaperon. 2015, 20, 517–526. [Google Scholar] [CrossRef]
- Ikerd, J.L.; Burnett, K.G.; Burnett, L.E. Effects of salinity on the accumulation of hemocyte aggregates and bacteria in the gills of Callinectes sapidus, the Atlantic blue crab, injected with Vibrio campbellii. Comp. Biochem. Phys. A 2015, 183, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Kreitmaier, P.; Katsoula, G.; Zeggini, E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 2023, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhao, Q.; Wang, X.; Zhou, H.; Hu, J.; Gu, L.; Hu, Y.; Zeng, F.; Zhao, F.; Yue, C.; et al. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J. Autoimmun. 2022, 133, 102916. [Google Scholar] [CrossRef] [PubMed]
- Chong, D.; Jones, N.C.; Schittenhelm, R.B.; Anderson, A.; Casillas-Espinosa, P.M. Multi-omics integration and epilepsy: Towards a better understanding of biological mechanisms. Prog. Neurobiol. 2023, 227, 102480. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.F.; Surdez, D.; Faehling, T.; Ehlers, A.C.; Marchetto, A.; Grossetête, S.; Volckmann, R.; Zwijnenburg, D.A.; Gerke, J.S.; Zaidi, S.; et al. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep. 2022, 41, 111761. [Google Scholar] [CrossRef] [PubMed]
- Liew, H.J.; Rahmah, S.; Tang, P.W.; Waiho, K.; Fazhan, H.; Rasdi, N.W.; Hamin, S.I.A.; Mazelan, S.; Muda, S.; Lim, L.S.; et al. Low water pH depressed growth and early development of giant freshwater prawn Macrobrachium rosenbergii larvae. Heliyon 2022, 8, e09989. [Google Scholar] [CrossRef] [PubMed]
- Colakoglu, H.E.; Yazlik, M.O.; Kaya, U.; Colakoglu, E.C.; Kurt, S.; Oz, B.; Bayramoglu, R.; Vural, M.R.; Kuplulu, S. MDA and GSH-Px activity in transition dairy cows under seasonal variations and their relationship with reproductive performance. J. Vet. Res. 2017, 61, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, G.A.; Ives, S.J.; Narkowicz, C.; Jones, G. Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: A case-control study. Clin. Rheumatol. 2012, 31, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Pan, X.; Yang, J.; Li, S.; Shao, L.; Zhang, X.; Liu, B.; Li, J. Dietary Iodine Affected the GSH-Px to regulate the thyroid hormones in thyroid gland of rex rabbits. Biol. Trace Elem. Res. 2018, 181, 251–257. [Google Scholar] [CrossRef]
- Seymen, O.; Seven, A.; Candan, G.; Yigit, G.; Hatemi, S.; Hatemi, H. The effect of iron supplementation on GSH levels, GSH-Px, and SOD activities of erythrocytes in L-thyroxine administration. Acta Med. Okayama 1997, 51, 129–133. [Google Scholar]
- Yang, J.R.; Fu, Z.Y.; Yu, G.; Ma, Z.H.; Wang, X.M. Combined Effects of Temperature and Salinity on Antioxidants in the Immune System of the Pearl Oyster Pinctada fucata. Fishes 2022, 7, 260. [Google Scholar] [CrossRef]
- Miao, L.; St Clair, D.K. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef]
- Omar, B.A.; Flores, S.C.; McCord, J.M. Superoxide dismutase: Pharmacological developments and applications. Adv. Pharmacol. 1992, 23, 109–161. [Google Scholar] [PubMed]
- Zweier, J.L.; Hemann, C.; Kundu, T.; Ewees, M.G.; Khaleel, S.A.; Samouilov, A.; Ilangovan, G.; El-Mahdy, M.A. Cytoglobin has potent superoxide dismutase function. Proc. Natl. Acad. Sci. USA 2021, 118, e2105053118. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhou, Y.; Zhu, X.; Tang, H.; Zhang, X. Enterobacter cloacae: A probable etiological agent associated with slow growth in the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 2020, 530, 735826. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Z.; Yuan, D.; Zhou, Y.; Cao, J.; Zhang, H.; da Silva Vaz, I.; Zhou, J. The ecdysteroid receptor regulates salivary gland degeneration through apoptosis in Rhipicephalus haemaphysaloides. Parasit. Vectors 2021, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Lee, C.Y.; Watson, R.D. Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comp. Biochem. Phys. A 2009, 152, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.L.; Mykles, D.L. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis. Comp. Biochem. Phys. A 2017, 203, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Durica, D.S. Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol. Cell Endocrinol. 2013, 365, 249–259. [Google Scholar] [CrossRef]
- Tarrant, A.M.; Behrendt, L.; Stegeman, J.J.; Verslycke, T. Ecdysteroid receptor from the American lobster Homarus americanus: EcR/RXR isoform cloning and ligand-binding properties. Gen. Comp. Endocrinol. 2011, 173, 346–355. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Zheng, X.; Zheng, Z.; Yao, D.; Zhang, Y.; Aweya, J.J. The juvenile hormone epoxide hydrolase homolog in Penaeus vannamei plays immune-related functions. Dev. Comp. Immunol. 2022, 132, 104410. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.J.; Yoo, J.W.; Lee, K.W.; Won, E.J.; Lee, Y.M. Microplastics disrupt energy metabolism in the brackish water flea Diaphanosoma celebensis. Comp. Biochem. Phys. C 2023, 271, 109680. [Google Scholar] [CrossRef] [PubMed]
- Sainath, S.B.; Swetha, C.H.; Reddy, P.S. What do we (need to) know about the melatonin in crustaceans? J. Exp. Zool. A Ecol. Genet. Physiol. 2013, 319, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Dal Pont, G.; Po, B.; Wang, J.; Wood, C.M. How the green crab Carcinus maenas copes physiologically with a range of salinities. J. Comp. Physiol. B 2022, 192, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Forward, R.B. Larval biology of the crab Rhithropanopeus harrisii (Gould): A synthesis. Biol. Bull. 2009, 216, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.W.; Chang, C.C.; Cheng, W. Tyramine’s modulation of immune resistance functions in Litopenaeus vannamei and its signal pathway. Dev. Comp. Immunol. 2019, 95, 68–76. [Google Scholar] [CrossRef]
- Martinez, G.P.; Zabaleta, M.E.; Di Giulio, C.; Charris, J.E.; Mijares, M.R. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr. Pharm. Des. 2020, 26, 4467–4485. [Google Scholar] [CrossRef] [PubMed]
- Senylimaz-Tiebe, D.; Pfaff, D.H.; Virtue, S.; Schwarz, K.V.; Fleming, T.; Altamura, S.; Muckenthaler, M.U.; Okun, J.G.; Vidal-Puig, A.; Nawroth, P.; et al. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun. 2018, 9, 3129. [Google Scholar] [CrossRef] [PubMed]
- Yalameha, B.; Nejabati, H.R.; Nouri, M. Cardioprotective potential of vanillic acid. Clin. Exp. Pharmacol. Phys. 2022, 50, 193–204. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Zhang, X.; Gao, G.; Niu, M.; Wang, H.; Chen, L.; Wang, C.; Mu, C.; Wang, F. Metabolic Response in the Gill of Portunus trituberculatus Under Short-Term Low Salinity Stress Based on GC-MS Technique. Front. Mar. Sci. 2022, 9, 881016. [Google Scholar] [CrossRef]
- Zhan, F.; Zhou, S.; Shi, F.; Li, Q.; Lin, L.; Qin, Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. Fish. Shellfish. Immunol. 2023, 139, 108927. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Reimer, N.; Ulrich, H.; Busch, H.; Kock-Schoppenhauer, A.K.; Ingenerf, J. openEHR Mapper—A tool to fuse clinical and genomic data using the openEHR standard. Stud. Health Technol. Inform. 2021, 278, 86–93. [Google Scholar]
Gene | Primers |
---|---|
β-actin | F: CGACGGTCAGGTCATCACCA |
R: ACGTCGCACTTCATGATGGA | |
MIH | F: CCAGACAACGCAAGGGATCT |
R: TCGTCGCATACCCTGACAAC | |
RXR | F: GCGAGAAGCGGTCCAGGAGG |
R: GGTGGGGTCTGAGTTGAGTTCTGC | |
JHEH | F: CTTCCTGAGAGCAAGTGCCAAA |
R: AGGCTTCGTCAACAATGGCAAA | |
EcR | F: AAGAGCCGCATAAAGTGGAGAAGC |
R: AGGTCGGTCAGGATGTTCAGGAG | |
Caspase3 | F: CGGATTCAAACGCGATGACC |
R: GACGACAACGTGGTCTGACT | |
Caspase8 | F: GCGAAAGAACTACTCGGCCG |
R: AGCAGCAGCCAGGAACTTGT | |
Cyt-c | F: TGGGTGACGTAGAAAAGGGC |
R: TGCCTTGTTAGCGTCAGTGT | |
P53 | F: CCCTCGTCATCAGTTGCCAG |
R: TGAAGGAGTTGCTGGGGTTAC | |
NF-κB | F: AGATGCCGAGGAGGTATGGA |
R: GCGTCGTTGAAATGCGATGT | |
Bok | F: TCAGTACTTCAAATGCTAGTGCTG |
R: CGTCATAAACCGTCCCTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, B.; Shen, P.; Cheng, H.; Fan, Y.; Gao, Q. Regulation and Response Mechanism of Acute Low-Salinity Stress during Larval Stages in Macrobrachium rosenbergii Based on Multi-Omics Analysis. Int. J. Mol. Sci. 2024, 25, 6809. https://doi.org/10.3390/ijms25126809
Li X, Xu B, Shen P, Cheng H, Fan Y, Gao Q. Regulation and Response Mechanism of Acute Low-Salinity Stress during Larval Stages in Macrobrachium rosenbergii Based on Multi-Omics Analysis. International Journal of Molecular Sciences. 2024; 25(12):6809. https://doi.org/10.3390/ijms25126809
Chicago/Turabian StyleLi, Xilian, Binpeng Xu, Peijing Shen, Haihua Cheng, Yunpeng Fan, and Qiang Gao. 2024. "Regulation and Response Mechanism of Acute Low-Salinity Stress during Larval Stages in Macrobrachium rosenbergii Based on Multi-Omics Analysis" International Journal of Molecular Sciences 25, no. 12: 6809. https://doi.org/10.3390/ijms25126809
APA StyleLi, X., Xu, B., Shen, P., Cheng, H., Fan, Y., & Gao, Q. (2024). Regulation and Response Mechanism of Acute Low-Salinity Stress during Larval Stages in Macrobrachium rosenbergii Based on Multi-Omics Analysis. International Journal of Molecular Sciences, 25(12), 6809. https://doi.org/10.3390/ijms25126809