Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Photocatalytic Efficiency
2.3. Possible Photocatalytic Mechanism
3. Experimental
3.1. Materials
3.2. In Situ Synthesis of BiOX/PU-SF Composite Films
3.3. Characterization
3.4. Evaluation of Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Zhang, C.; Ge-Zhang, S.; Wang, Y.; Mu, H. A Wooden Carbon-Based Photocatalyst for Water Treatment. Int. J. Mol. Sci. 2024, 25, 4743. [Google Scholar] [CrossRef] [PubMed]
- Haounati, R.; Alakhras, F.; Ouachtak, H.; Saleh, T.A.; Al-Mazaideh, G.; Alhajri, E.; Jada, A.; Hafid, N.; Addi, A.A. Synthesized of zeolite@Ag2O nanocomposite as superb stability photocatalysis toward hazardous rhodamine B dye from water. Arab. J. Sci. Eng. 2023, 48, 169–179. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, L.; Qiu, J.; Song, J.; Zou, L.; Teng, Y.; Zong, Y.; Yu, H. Using NH2-MIL-125(Ti) for efficient removal of Cr(VI) and RhB from aqueous solutions: Competitive and cooperative behavior in the binary system. J. Environ. Sci. 2024, 136, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Unnarkat, A.; Patel, F.; Shah, M.; Shah, P. A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process Saf. Environ. 2022, 161, 703–722. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A.; Alhaddad, M. A novel design of porous Cr2O3@ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: A case study of ciprofloxacin. Sep. Purif. Technol. 2021, 266, 118588. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Wang, Q.; Hao, W.; Zhai, X.; Fei, X.; Huang, X.; Bi, Y. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction. Appl. Catal. B-Environ. 2021, 299, 120679. [Google Scholar] [CrossRef]
- Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E.A.; Li, P.; Li, C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem. 2020, 132, 6652–6657. [Google Scholar] [CrossRef]
- Talreja, N.; Afreen, S.; Ashfaq, M.; Chauhan, D.; Mera, A.C.; Rodríguez, C.A.; Mangalaraja, R.V. Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria. Chemosphere 2021, 280, 130803. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Li, Y.; Yang, X.; Zhao, L.; Peng, J. Boosting Photocatalytic Performance of ZnO Nanowires via Building Heterojunction with g-C3N4. Molecules 2023, 28, 5563. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2105635. [Google Scholar] [CrossRef]
- Zou, M.; Tan, C.; Zhang, Y.; Hu, J.; Ma, Z.; Yuan, Z.; Zhang, L.; Wu, M.; Zhou, H. Exploring the potential of flexible CdS/ZnO/Polyurethane nanocomposite membrane for wastewater remediation. J. Environ. Chem. Eng. 2023, 11, 110135. [Google Scholar] [CrossRef]
- Abad, S.N.K.; Mozammel, M.; Moghaddam, J.; Mostafaei, A.; Chmielus, M. Highly porous, flexible and robust cellulose acetate/Au/ZnO as a hybrid photocatalyst. Appl. Surf. Sci. 2020, 526, 146237. [Google Scholar] [CrossRef]
- Li, J.; Gan, L.; Liu, Y.; Mateti, S.; Lei, W.; Chen, Y.; Yang, J. Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. Eur. Polym. J. 2018, 104, 57–63. [Google Scholar] [CrossRef]
- Zhou, R.; Song, H.; Zu, D.; Pan, S.; Wang, Y.; Wang, F.; Li, Z.; Shen, Y.; Li, C. Self-floating Ti3C2 MXene-coated polyurethane sponge with excellent photothermal conversion performance for peroxydisulfate activation and clean water production. Sep. Purif. Technol. 2022, 282, 119990. [Google Scholar] [CrossRef]
- Luong, N.D.; Lee, Y.; Nam, J.D. Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur. Polym. J. 2008, 44, 3116–3121. [Google Scholar] [CrossRef]
- Prajzler, V.; Arif, S.; Min, K.; Kim, S.; Nekvindova, P. All-polymer silk-fibroin optical planar waveguides. Opt. Mater. 2021, 114, 110932. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, B.K.; Lee, J.; Joong, O.K.; Kim, B.S.; Park, C.H.; Kim, C.S. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Mater. Sci. Eng. C 2019, 102, 511–523. [Google Scholar] [CrossRef]
- Singh, R.; Sinha, M.K.; Purkait, M.K. Stimuli responsive mixed matrix polysulfone ultrafiltration membrane for humic acid and photocatalytic dye removal applications. Sep. Purif. Technol. 2020, 250, 117247. [Google Scholar] [CrossRef]
- Zhou, Z.; Peng, X.; Zhong, L.; Wu, L.; Cao, X.; Sun, R.C. Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohyd. Polym. 2016, 136, 322–328. [Google Scholar] [CrossRef]
- Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl. Catal. B-Environ. 2020, 274, 119063. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, M.; Sun, W.; Meng, X.; Huang, X.; Li, Z. Nitrogen-doped graphyne/BiOBr nanocomposites: In-situ sonochemical synthesis and boosted photocatalytic performance. Sep. Purif. Technol. 2022, 301, 122062. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 2016, 291, 39–46. [Google Scholar] [CrossRef]
- Reizabal, A.; Costa, C.M.; Pérez-Álvarez, L.; Vilas-Vilela, J.L.; Lanceros-Méndez, S. Silk fibroin as sustainable advanced material: Material properties and characteristics, processing, and applications. Adv. Funct. Mater. 2023, 33, 2210764. [Google Scholar] [CrossRef]
- Naeem, H.; Tofil, H.M.; Soliman, M.; Hai, A.; Zaidi, S.H.H.; Kizilbash, N.; Alruwaili, D.; Ajmal, M.; Siddiq, M. Reduced graphene oxide-zinc sulfide nanocomposite decorated with silver nanoparticles for wastewater treatment by adsorption, photocatalysis and antimicrobial action. Molecules 2023, 28, 926. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, R.; Xiong, M.; Yuan, Q.; He, J.; Jia, J.; Yao, M.; Luo, S.; Au, C.; Yin, S.F. Room-Temperature Synthesis of Flower-Like BiOX (X Cl, Br, I) Hierarchical Structures and Their Visible-Light Photocatalytic Activity. Inorg. Chem. 2013, 52, 11118–11125. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J. Chem. 2015, 39, 2146–2154. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, T.; Ma, K.; Cai, X.; Zhou, Y.; Wang, Y. Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization. J. Mater. Chem. 2011, 21, 7705–7713. [Google Scholar] [CrossRef]
- Sionkowska, A.; Planecka, A. The influence of UV radiation on silk fibroin. Polym. Degrad. Stabil. 2011, 96, 523–528. [Google Scholar] [CrossRef]
- Hao, L.; Luan, J. The Fabrication and Property Characterization of a Ho2YSbO7/Bi2MoO6 Heterojunction Photocatalyst and the Application of the Photodegradation of Diuron under Visible Light Irradiation. Int. J. Mol. Sci. 2024, 25, 4418. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Niu, C.G.; Huang, D.W.; Zhang, H.; Zeng, G.M. Ag/AgCl nanoparticles-modified CdSnO3·3H2O nanocubes photocatalyst for the degradation of methyl orange and antibiotics under visible light irradiation. J. Colloid. Interf. Sci. 2017, 505, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yuan, W.; Liu, X.; Yan, Y.; Liu, H.; Li, L.; Zhao, F.; Zhou, J. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. J. Colloid. Interf. Sci. 2020, 569, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.M.; Li, G.S.; Wen, X.; Fan, C.M.; Liu, J.X.; Zhang, X.C.; Rui, L.I. Effect of calcination temperature on microstructure and photocatalytic activity of BiOX (X = Cl, Br). T. Nonferr. Metal. Soc. 2020, 30, 765–773. [Google Scholar] [CrossRef]
- Jia, M.; Hu, X.; Wang, S.; Huang, Y.; Song, L. Photocatalytic properties of hierarchical BiOXs obtained via an ethanol-assisted solvothermal process. J. Environ. Sci. 2015, 35, 172–180. [Google Scholar] [CrossRef]
- Yang, J.; Xie, T.; Zhu, Q.; Wang, J.; Xu, L.; Liu, C. Boosting the photocatalytic activity of BiOX under solar light via selective crystal facet growth. J. Mater. Chem. C 2020, 7, 2579–2588. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Dong, F. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature. Ind. Eng. Chem. Res. 2013, 52, 6740–6746. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Shen, X.; Duoerkun, G.; Zhu, B.; Zhang, L.; Li, M.; Chen, Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem. Eng. J. 2020, 386, 124010. [Google Scholar] [CrossRef]
- Shi, P.; Goh, J.C. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int. J. Pharmaceut. 2011, 420, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Xu, J.; Jian, J.; Meng, L.; Deng, P.; Yan, J.; Yuan, Z.; Zhang, Y.; Zhou, H. In Situ Decoration of Bi2S3 Nanosheets on Zinc Oxide/Cellulose Acetate Composite Films for Photodegradation of Dyes under Visible Light Irradiation. Molecules 2023, 28, 6882. [Google Scholar] [CrossRef]
- Xu, J.; Jian, J.; Dan, Y.; Song, J.; Meng, L.; Deng, P.; Sun, W.; Zhang, Y.; Xiong, J.; Yuan, Z.; et al. Durable and recyclable BiOBr/silk fibroin-cellulose acetate composite film for efficient photodegradation of dyes under visible light irradiation. Front. Chem. Sci. Eng. 2023, 17, 1765–1775. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, K. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism. Appl. Surf. Sci. 2018, 437, 51–61. [Google Scholar] [CrossRef]
- Guo, J.; Ma, D.; Sun, F.; Zhuang, G.; Wang, Q.; Al-Enizi, A.M.; Ma, S. Substituent engineering in g-C3N4/COF heterojunctions for rapid charge separation and high photo-redox activity. Sci. China Chem. 2022, 65, 1704–1709. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Tang, L.; Feng, C.; Zhu, X.; Yi, Y.; Ren, X. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chem. Eng. J. 2022, 430, 132669. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Jian, J.; Yang, D.; Dan, Y.; Sun, W.; Ai, Q.; Zhang, Y.; Zhou, H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int. J. Mol. Sci. 2024, 25, 6653. https://doi.org/10.3390/ijms25126653
Meng L, Jian J, Yang D, Dan Y, Sun W, Ai Q, Zhang Y, Zhou H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. International Journal of Molecular Sciences. 2024; 25(12):6653. https://doi.org/10.3390/ijms25126653
Chicago/Turabian StyleMeng, Lingxi, Jian Jian, Dexing Yang, Yixiao Dan, Weijie Sun, Qiuhong Ai, Yusheng Zhang, and Hu Zhou. 2024. "Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye" International Journal of Molecular Sciences 25, no. 12: 6653. https://doi.org/10.3390/ijms25126653
APA StyleMeng, L., Jian, J., Yang, D., Dan, Y., Sun, W., Ai, Q., Zhang, Y., & Zhou, H. (2024). Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein–Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. International Journal of Molecular Sciences, 25(12), 6653. https://doi.org/10.3390/ijms25126653