Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L.
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Analysis of Extracts from Fruit of C. mas L.
2.2. Determination of Antioxidant Properties
2.3. Protein Expression
2.4. Cytotoxicity Analysis Using the Alamar Blue (AB) Assay
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Plant Material and Extraction Procedure
4.3. Chromatographic Determination of Biologically Active Compounds
4.4. Determination of RADICAL Scavenging Properties
4.4.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Radical Scavenging Assay
4.4.2. ABTS Scavenging Assay
4.5. Western Blot
4.6. Cytotoxicity Analysis
4.6.1. Cell Culture
4.6.2. Alamar Blue (AB) Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (Cornelian Cherry), an Important European and Asian Traditional Food and Medicine: Ethnomedicine, Phytochemistry and Pharmacology for Its Commercial Utilization in Drug Industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Kaba, B.; Yıkılkan, Y.; Hojjat, P.; Redha, A.A.; Koca, I. Production of Cornelian Cherry (Cornus mas L.) Pulp Powder by Foam-Mat Drying: Analysis of Physicochemical and Antioxidant Properties. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piórecki, N.; Magdalan, J.; et al. Iridoid-Loganic Acid versus Anthocyanins from the Cornus mas Fruits (Cornelian Cherry): Common and Different Effects on Diet-Induced Atherosclerosis, PPARs Expression and Inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Mokrzyńska, A.; Nizioł-Łukaszewska, Z.; Sowa, I.; Szczepanek, D.; Wójciak, M. Comparative Study of Cytotoxicity and Antioxidant, Anti-Aging and Antibacterial Properties of Unfermented and Fermented Extract of Cornus mas L. Int. J. Mol. Sci. 2023, 24, 13232. [Google Scholar] [CrossRef]
- Yilmaz, S.; Alpa, S.; Gocmen, A.Y.; Ulger, H.; Arslan, E.; Yay, A.H.; Ertekin, T.; Nisari, M.; Yalcin, B. The Investigation of the Antitumoral Effect of Cornus mas L. in Mice with Ehrlich Solid Tumor. Bratisl. Lek. Listy 2020, 121, 22–30. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Mokrzyńska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I. Evaluation of the Biological Activity of Hydrogel with Cornus mas L. Extract and Its Potential Use in Dermatology and Cosmetology. Molecules 2023, 28, 7384. [Google Scholar] [CrossRef]
- Popović, Z.; Matić, R.; Bajić-Ljubičić, J.; Tešević, V.; Bojović, S. Geographic Variability of Selected Phenolic Compounds in Fresh Berries of Two Cornus Species. Trees Struct. Funct. 2018, 32, 203–214. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis Fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tamura, T.; Nakamura, R.; Hosoe, S.; Matsubara, M.; Nagata, K.; Kodaira, H.; Uemori, T.; Takahashi, Y.; Suzuki, M.; et al. Development of a Novel Class of Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands as an Anticancer Agent with a Unique Binding Mode Based on a Non-Thiazolidinedione Scaffold. Bioorg. Med. Chem. 2019, 27, 115122. [Google Scholar] [CrossRef]
- Korbecki, J.; Bobiński, R.; Dutka, M. Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef]
- Armoni, M.; Harel, C.; Karnieli, E. Transcriptional Regulation of the GLUT4 Gene: From PPAR-Gamma and FOXO1 to FFA and Inflammation. Trends Endocrinol. Metab. 2007, 18, 100–107. [Google Scholar] [CrossRef]
- Scirpo, R.; Fiorotto, R.; Villani, A.; Amenduni, M.; Spirli, C.; Strazzabosco, M. Stimulation of Nuclear Receptor Peroxisome Proliferator-Activated Receptor-γ Limits NF-ΚB-Dependent Inflammation in Mouse Cystic Fibrosis Biliary Epithelium. Hepatology 2015, 62, 1551–1562. [Google Scholar] [CrossRef]
- Danielewski, M.; Kucharska, A.Z.; Matuszewska, A.; Rapak, A.; Gomułkiewicz, A.; Dzimira, S.; Dzięgiel, P.; Nowak, B.; Trocha, M.; Magdalan, J.; et al. Cornelian Cherry (Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-α, PPAR-γ Expression and Reduces I/M Ratio in Aorta, Increases LXR-α Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021, 13, 3621. [Google Scholar] [CrossRef]
- Danielewski, M.; Rapak, A.; Kruszyńska, A.; Małodobra-Mazur, M.; Oleszkiewicz, P.; Dzimira, S.; Kucharska, A.Z.; Słupski, W.; Matuszewska, A.; Nowak, B.; et al. Cornelian Cherry (Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int. J. Mol. Sci. 2024, 25, 1199. [Google Scholar] [CrossRef]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant Activity of Cornelian Cherry (Cornus mas L.) Fruits Extract and the in Vivo Evaluation of Its Anti-Inflammatory Effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Danielewski, M.; Gomułkiewicz, A.; Kucharska, A.Z.; Matuszewska, A.; Nowak, B.; Piórecki, N.; Trocha, M.; Szandruk-Bender, M.; Jawień, P.; Szeląg, A.; et al. Cornelian Cherry (Cornus mas L.) Iridoid and Anthocyanin-Rich Extract Reduces Various Oxidation, Inflammation, and Adhesion Markers in a Cholesterol-Rich Diet Rabbit Model. Int. J. Mol. Sci. 2023, 24, 3890. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Hatano, T.; Ogawa, N.; Kira, R.; Yasuhara, T.; Okuda, T. Tannins of Cornaceous Plants. I. Cornusiins A, B and C, Dimeric Monomeric and Trimeric Hydrolyzable Tannins from Cornus Officinalis, and Orientation of Valoneoyl Group in Related Tannins. Chem. Pharm. Bull. 1989, 37, 2083–2090. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-Quantitative Analysis of Flavonoids of Cornus mas L. (Cornaceae) Fruits. Food Chem. 2010, 119, 1257–1261. [Google Scholar] [CrossRef]
- Czerwinska, M.E.; Melzig, M.F. Cornus mas and Cornus officinalis—Analogies and Differences of Two Medicinal Plants Traditionally Used. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Perova, I.B.; Zhogova, A.A.; Polyakova, A.V.; Eller, K.L.; Ramenskaya, G.V.; Samylina, I.A. [Biologically Active Substances of Cornelian Cherry Fruits (Cornus mas L.)]. Vopr. Pitan. 2014, 83, 86–94. [Google Scholar]
- Gunduz, K.; Saracoglu, O.; Ozgen, M.; Serce, S. Antioxidant, Physical and Chemical Characteristics of Cornelian Cherry Fruits (Cornus mas L.) at Different Stages of Ripeness. Acta Sci. Pol. Hortorum Cultus 2013, 12, 59–66. [Google Scholar]
- Kazimierski, M.; Regula, J.; Molska, M. Cornelian Cherry (Cornus mas L.)—Characteristics, Nutritional and pro-Health Properties. Acta Sci. Pol. Technol. Aliment. 2019, 18, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, N.; Muhmed, S.A.; Yusoff, M.M.; Gimbun, J. Influence of Solvent Polarity and Conditions on Extraction of Antioxidant, Flavonoids and Phenolic Content from Averrhoa Bilimbi. J. Food Sci. Eng. 2014, 4, 255–260. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, E00370. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Dzydzan, O.; Brodyak, I.; Strugała-Danak, P.; Strach, A.; Kucharska, A.Z.; Gabrielska, J.; Sybirna, N. Biological Activity of Extracts of Red and Yellow Fruits of Cornus mas L.—An In Vitro Evaluation of Antioxidant Activity, Inhibitory Activity against α-Glucosidase, Acetylcholinesterase, and Binding Capacity to Human Serum Albumin. Molecules 2022, 27, 2244. [Google Scholar] [CrossRef]
- Gutiérrez, M.E.; García, A.F.; De Madariaga, M.A.; Sagrista, M.L.; Casadó, F.J.; Mora, M. Interaction of Tocopherols and Phenolic Compounds with Membrane Lipid Components: Evaluation of Their Antioxidant Activity in a Liposomal Model System. Life Sci. 2003, 72, 2337–2360. [Google Scholar] [CrossRef]
- Fadel, O.; El Kirat, K.; Morandat, S. The Natural Antioxidant Rosmarinic Acid Spontaneously Penetrates Membranes to Inhibit Lipid Peroxidation in Situ. Biochim. Biophys. Acta 2011, 1808, 2973–2980. [Google Scholar] [CrossRef]
- Szot, I.; Łysiak, G.P.; Sosnowska, B.; Chojdak-Łukasiewicz, J. Health-Promoting Properties of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits. Molecules 2024, 29, 449. [Google Scholar] [CrossRef]
- Danielewski, M.; Matuszewska, A.; Nowak, B.; Kucharska, A.Z.; Sozański, T. The Effects of Natural Iridoids and Anthocyanins on Selected Parameters of Liver and Cardiovascular System Functions. Oxid. Med. Cell Longev. 2020, 2020, 2735790. [Google Scholar] [CrossRef]
- West, B.-J. Antioxidant, Toxicity, and Iridoid Tests of Processed Cornelian Cherry Fruits. Int. J. Food Sci. Technol. 2012, 47, 1392–1397. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokol-Letowska, A.; Piórecki, N. Morfologiczna, Fizykochemiczna i Przeciwutleniająca Charakterystyka Owoców Polskich Odmian Derenia Właściwego (Cornus mas L.). Żywność Nauka Technol. Jakość 2011, 3, 78–89. [Google Scholar]
- Popović, B.M.; Štajner, D.; Slavko, K.; Sandra, B. Antioxidant Capacity of Cornelian Cherry (Cornus mas L.)—Comp. between Permanganate Reducing Antioxidant Capacity and Other Antioxidant Methods. Food Chem. 2012, 134, 734–741. [Google Scholar] [CrossRef]
- Aurori, M.; Andrei, S.; Dreanca, A.I.; Morohoschi, A.G.; Cotul, M.; Niculae, M.; Nan, M.I.; Codea, A.R.; Gal, A.F. The Nephroprotective Effect of Cornelian Cherry (Cornus mas L.) and Rowanberry (Sorbus Aucuparia L.) in Gentamicin-Induced Nephrotoxicity on Wistar Rats with Emphasis on the Evaluation of Novel Renal Biomarkers and the Antioxidant Capacity in Correlation with Nitro-Oxidative Stress. Nutrients 2023, 15, 4392. [Google Scholar] [CrossRef]
- Yarim, G.F.; Kazak, F.; Sozmen, M.; Koca, I.; Albayrak, H.; Yarim, M.; Cenesiz, S.; Ozan, E. Investigation of the Effect of Cornelian Cherry (Cornus mas L.) Fruit Extract against Cisplatin-Induced Renal Cell Injury in Vitro. Turk. J. Biochem. 2017, 42, 435–443. [Google Scholar] [CrossRef]
- Tiptiri-Kourpeti, A.; Fitsiou, E.; Spyridopoulou, K.; Vasileiadis, S.; Iliopoulos, C.; Galanis, A.; Vekiari, S.; Pappa, A.; Chlichlia, K. Evaluation of Antioxidant and Antiproliferative Properties of Cornus mas L. Fruit Juice. Antioxidants 2019, 8, 377. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.; Shin, D.W. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022, 27, 4351. [Google Scholar] [CrossRef]
- Li, S.-Y.; Susztak, K. The Role of Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (PGC-1α) in Kidney Disease. Semin. Nephrol. 2018, 38, 121–126. [Google Scholar] [CrossRef]
- Kelly, D.P. The Pleiotropic Nature of the Vascular PPAR Gene Regulatory Pathway. Circ. Res. 2001, 89, 935–937. [Google Scholar] [CrossRef]
- Armoni, M.; Kritz, N.; Harel, C.; Bar-Yoseph, F.; Chen, H.; Quon, M.J.; Karnieli, E. Peroxisome Proliferator-Activated Receptor-γ Represses GLUT4 Promoter Activity in Primary Adipocytes, and Rosiglitazone Alleviates This Effect. J. Biol. Chem. 2003, 278, 30614–30623. [Google Scholar] [CrossRef]
- Accogli, T.; Hibos, C.; Vegran, F. Canonical and Non-Canonical Functions of NLRP3. J. Adv. Res. 2023, 53, 137–151. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, T.; Wang, Z.; Yi, F.; Li, C.; Guo, W.; Xu, H.; Cui, H.; Dong, X.; Liu, J.; et al. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int. J. Biol. Sci. 2021, 17, 4047–4059. [Google Scholar] [CrossRef]
- Kuster, G.M.; Häuselmann, S.P.; Rosc-Schlüter, B.I.; Lorenz, V.; Pfister, O. Reactive Oxygen/Nitrogen Species and the Myocardial Cell Homeostasis: An Ambiguous Relationship. Antioxid. Redox Signal 2010, 13, 1899–1910. [Google Scholar] [CrossRef]
- Rutkowska, M.; Olszewska, M.A. Anti-Diabetic Potential of Polyphenol-Rich Fruits from the Maleae Tribe—A Review of In Vitro and In Vivo Animal and Human Trials. Nutrients 2023, 15, 3756. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.; Gao, Y. Extraction Optimization of Bioactive Compounds (Crocin, Geniposide and Total Phenolic Compounds) from Gardenia (Gardenia Jasminoides Ellis) Fruits with Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2009, 10, 610–615. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors Influencing the Antioxidant Activity Determined by the ABTS.+ Radical Cation Assay. Free Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- Skóra, B.; Masicz, M.; Nowak, P.; Lachowska, J.; Sołtysek, P.; Biskup, J.; Matuszewska, P.; Szychowski, K.A. Suppression of Sonic Hedgehog Pathway-Based Proliferation in Glioblastoma Cells by Small-Size Silver Nanoparticles In Vitro. Arch. Toxicol. 2023, 97, 2385–2398. [Google Scholar] [CrossRef] [PubMed]
- Skóra, B.; Matuszewska, P.; Masicz, M.; Sikora, K.; Słomczewska, M.; Sołtysek, P.; Szychowski, K.A. Crosstalk between the Aryl Hydrocarbon Receptor (AhR) and the Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) as a Key Factor in the Metabolism of Silver Nanoparticles in Neuroblastoma (SH-SY5Y) Cells In Vitro. Toxicol. Appl. Pharmacol. 2023, 458, 116339. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Page, B.; Page, M.; Noel, C. A New Fluorometric Assay for Cytotoxicity Measurements in Vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar] [CrossRef] [PubMed]
Rt (min) | Observed Ion Mass [M-H]-/(Fragments) | Δ ppm | Formula | Identified |
---|---|---|---|---|
1.59 | 191.05657 | 2.39 | C7H12O6 | Quinic acid * |
1.64 | 133.01485 | 4.50 | C4H6O5 | Malic acid * |
2.04 | 191.01997 | 1.27 | C6H8O7 | Citric acid * |
2.94 | 331.06755 (169) | 1.44 | C13H16O10 | galloyl hexoside |
3.49 | 169.01451 (125) | 1.55 | C7H6O5 | Gallic acid * |
3.89 | 361.07795 (271) | 0.87 | C14H18O11 | Galloyl-d-sedoheptulose |
6.12 | 153.01987 | 3.49 | C7H6O4 | Protocatechuic acid * |
7.63 | 311.04099 (179, 149, 135) | 0.43 | C13H12O9 | Caftaric acid * (cis/trans) |
10.10 | 783.06895 | 0.39 | C34H24O22 | Oenothein C (Tannin) |
11.50 | 375.13013 | 1.22 | C16H24O10 | Loganic acid * |
11.71 | 311.04108 (179, 149, 135) | 0.72 | C13H12O9 | Caftaric acid (cis/trans) |
12.97 | 389.14599 (195, 345) | 1.72 | C17H26O10 | Loganin |
13.71 | 353.08843 (191, 179) | 1.76 | C16H18O9 | Chlorogenic acid * |
14.21 | 491.14124 (375) | 1.24 | C20H28O14 | Loganic acid derivative |
15.89 | 449.10923 (287) | 0.66 | C21H22O11 | Aromadendrin hexoside |
16.10 | 403.12532 | 1.82 | C17H24O11 | Secoxyloganin |
16.46 | 447.09402 (285) | 1.64 | C21H20O11 | Cyanidin 3-O-galactoside * |
17.31 | 337.09214 (191, 173) | −2.22 | C16H18O8 | p-coumaroylquinic acid |
17.76 | 431.09891 (269) | 1.25 | C21H20O10 | Pelargonidin 3-O-glucoside |
18.12 | 449.10968 (287) | 1.65 | C21H22O11 | Aromadendrin hexoside |
18.91 | 337.09374 | 2.51 | C16H18O8 | p-coumaroylquinic acid |
18.81 | 403.12484 | 0.63 | C17H24O11 | Secoxyloganin |
21.27 | 449.10977 (287) | 1.85 | C21H22O11 | Aromadendrin hexoside |
26.67 | 300.99929 | 0.99 | C14H6O8 | Ellagic acid * |
27.54 | 463.08956 (301) | 2.93 | C21H20O12 | Quercetin hexoside |
27.96 | 477.06779 (301) | 0.68 | C21H18O13 | Quercetin 3-glucuronide * |
31.81 | 447.09501 (284) | 3.85 | C21H20O11 | Kaempferol 3-O-galactoside |
33.70 | 541.15619 | −0.16 | C24H30O14 | Cornuside * |
Compounds | YW [µg/mL] | YE [µg/mL] | RW [µg/mL] | RE [µg/mL] | DRW [µg/mL] | DRE [µg/mL] |
---|---|---|---|---|---|---|
Quinic acid * | 15.64 ± 1.10 a | 15.34 ± 1.34 a | 16.62 ± 1.53 a | 16.45 ± 1.50 a | 15.69 ± 1.16 a | 16.32 ± 1.01 a |
Galloyl hexoside | 6.71 ± 0.37 e | 11.93 ± 1.05 c | 9.38 ± 0.07 d | 16.77 ± 1.08 b | 11.94 ± 0.88 c | 20.69 ± 1.70 a |
Gallic acid * | 1.65 ± 0.11 b | 3.44 ± 0.23 a | 1.89 ± 0.09 b | 2.91 ± 0.11 a | 3.08 ± 0.23 a | 3.37 ± 0.22 a |
Galloyl-d-sedoheptulose | 4.96 ± 0.19 c | 10.60 ± 0.90 b | 9.92 ± 0.92 b | 17.73 ± 1.12 a | 16.99 ± 0.98 a | 19.78 ± 1.30 a |
Protocatechuic acid * | ND | ND | 0.43 ± 0.03 c | 0.54 ± 0.05 b.c | 1.09 ± 0.08 a | 0.58 ± 0.04 b |
Caftaric acid * (cis/trans) | 1.87 ± 0.16 b | 2.47 ± 0.02 a | 0.82 ± 0.04 c | 1.61 ± 0.11 b | 1.69 ± 0.13 b | 1.77 ± 0.12 b |
Loganic acid * | 49.80 ± 4.80 c | 41.09 ± 1.56 d | 47.25 ± 2.25 c | 65.23 ± 3.58 b | 68.61 ± 1.58 a.b | 72.45 ± 2.14 a |
Loganin | 0.15 ± 0.01 b | 0.14 ± 0.01 b | 0.12 ± 0.01 b | 0.32 ± 0.02 a | 0.34 ± 0.02 a | 0.33 ± 0.21 a |
Chlorogenic acid * | 0.26 ± 0.01 e | 0.56 ± 0.05 c | 0.34 ± 0.03 d | 0.94 ± 0.08 a | 0.74 ± 0.07 b | 0.75 ± 0.63 a.b |
Cyanidin 3-O-galactoside * | ND | ND | 0.94 ± 0.07 d | 2.46 ± 0.18 c | 3.90 ± 0.22 b | 5.62 ± 0.27 a |
p-coumaroylquinic acid | 0.22 ± 0.02 d | 0.48 ± 0.02 c | 0.54 ± 0.03 c | 1.21 ± 0.10 a | 0.98 ± 0.06 b | 1.02 ± 0.10 a.b |
Pelargonidin 3-O-glucoside | ND | ND | 1.47 ± 0.06 d | 5.52 ± 0.40 c | 7.67 ± 0.61 b | 10.14 ± 0.71 a |
Ellagic acid * | 0.55 ± 0.04 d | 2.63 ± 0.14 c | 0.32 ± 0.02 e | 3.64 ± 0.24 b | 3.23 ± 0.19 b | 5.46 ± 0.33 a |
Quercetin 3-glucuronide * | 2.71 ± 0.20 b | 2.98 ± 0.17 b | 1.87 ± 0.02 d | 2.35 ± 0.05 c | 4.28 ± 0.41 a | 4.42 ± 0.36 a |
Kaempferol 3-O-galactoside | ND | ND | 0.14 ± 0.09 d | 0.36 ± 0.02 c | 0.55 ± 0.04 b | 0.77 ± 0.04 a |
Cornuside * | 2.17 ± 0.18 c | 3.12 ± 0.09 a | 1.79 ± 0.09 d | 2.71 ± 0.22 b | 2.90 ± 0.14 a.b | 3.20 ± 0.13 a |
Extract type | DPPH | ABTS |
---|---|---|
IC50 ( ± SD, µg/mL) | IC50 ( ± SD, µg/mL) | |
Yellow-fruit water extract (YW) | 885.69 ± 8.98 a | 1214.17 ± 9.41 a |
Yellow-fruit ethanol extract (YE) | 645.62 ± 4.57 b | 862.73 ± 5.65 d |
Red-fruit water extract (RW) | 637.28 ± 5.83 b | 1294.24 ± 10.65 b |
Red-fruit ethanol extract (RE) | 619.76 ± 6.02 c | 653.96 ± 4.58 e |
Dark red-fruit water extract (DRW) | 782.58 ± 5.82 d | 925.54 ± 7.64 c |
Dark red-fruit ethanol extract (DRE) | 572.24 ± 3.56 e | 541.50 ± 3.97 f |
Primary Antibodies | HRP-Conjugated Antibodies | ||||
---|---|---|---|---|---|
Target (Species) | Cat. Number/Producer | Diluted | Target (Species) | Cat. Number/Producer | Diluted |
GAPDH (Mo) | AC033/ABClonal | 1:100,000 | anti-Mo-HRP-conjugated (Go) | 31460/Thermo Fisher | 1:2000 |
NF-κB (Mo) | A10609/ABClonal | 1:2000 | |||
SOD1 (Mo) | sc-101523/Santa Cruz Bt. | 1:400 | |||
NLRP3 (Rb) | PA5-79740/ThermoFisher | 1:1000 | anti-Rb-HRP-conjugated (Go) | 31430/Thermo Fisher | 1:2000 |
SRC (Rb) | A19119/ABClonal | 1:4000 | |||
GLUT4 (Rb) | A7637/ABClonal | 1:1000 | |||
PCNA (Rb) | A12427/ABClonal | 1:2000 | |||
IκBα (Rb) | A19714/ABClonal | 1:2000 | |||
PGC-1α (Rb) | A20995/ABClonal | 1:2000 | |||
PPARγ (Rb) | A11183/ABClonal | 1:1500 | |||
p-ERK1/2 (Rb) | AP0974/ABClonal | 1:1000 | |||
ERK1/2 (Rb) | A16686/ABClonal | 1:2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomianek, T.; Zagórska-Dziok, M.; Skóra, B.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I.; Szychowski, K.A. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. Int. J. Mol. Sci. 2024, 25, 5495. https://doi.org/10.3390/ijms25105495
Pomianek T, Zagórska-Dziok M, Skóra B, Ziemlewska A, Nizioł-Łukaszewska Z, Wójciak M, Sowa I, Szychowski KA. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. International Journal of Molecular Sciences. 2024; 25(10):5495. https://doi.org/10.3390/ijms25105495
Chicago/Turabian StylePomianek, Tadeusz, Martyna Zagórska-Dziok, Bartosz Skóra, Aleksandra Ziemlewska, Zofia Nizioł-Łukaszewska, Magdalena Wójciak, Ireneusz Sowa, and Konrad A. Szychowski. 2024. "Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L." International Journal of Molecular Sciences 25, no. 10: 5495. https://doi.org/10.3390/ijms25105495
APA StylePomianek, T., Zagórska-Dziok, M., Skóra, B., Ziemlewska, A., Nizioł-Łukaszewska, Z., Wójciak, M., Sowa, I., & Szychowski, K. A. (2024). Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. International Journal of Molecular Sciences, 25(10), 5495. https://doi.org/10.3390/ijms25105495