Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Identification of miRNAs Associated with Breast Cancer
2.2. Clinicopathological and Prognostic Significance of Histological Grade in the Cancer Genome Atlas (TCGA) Cohort
2.3. miRNAs Associated with Histological Grade
2.4. Clinicopathological and Prognostic Significance of miR-3677
3. Discussion
4. Materials and Methods
4.1. Discovery Cohort
4.2. TCGA Validation Cohort
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomized trials. Lancet 2015, 365, 1687–1717. [Google Scholar]
- Rakha, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Y.; Chen, H.; Liu, Y.; Tang, Q.; Liu, J.; Chen, H. Survivin, Ki-67 and tumor grade as predictors of response to docetaxel-based neoadjuvant chemotherapy in locally advanced breast cancer. Mol. Clin. Oncol. 2013, 1, 839–844. [Google Scholar] [CrossRef]
- Schwartz, A.M.; Henson, D.E.; Chen, D.; Rajamarthandan, S. Histologic grade remains a prognostic factor for breast cancer regardless of the number of positive lymph nodes and tumor size: A study of 161,708 cases of breast cancer from the SEER Program. Arch. Pathol. Lab. Med. 2014, 138, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, S.; Yamaguchi, Y.; Kurosumi, M.; Ohira, M.; Matsumoto, H.; Horiguchi, J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 2017, 62, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Henson, D.E.; Ries, L.; Freedman, L.S.; Carriaga, M. Relationship among outcome, stage of disease, and histologic grade for 22,616 cases of breast cancer. The basis for a prognostic index. Cancer 1991, 68, 2142–2149. [Google Scholar] [CrossRef]
- Rakha, E.A.; El-Sayed, M.E.; Lee, A.H.; Elston, C.W.; Grainge, M.J.; Hodi, Z.; Blamey, R.W.; Ellis, I.O. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J. Clin. Oncol. 2008, 26, 3153–3158. [Google Scholar] [CrossRef]
- Sotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B.; et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 2006, 98, 262–272. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A., Jr.; et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef]
- Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 2009, 360, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, S.; Inoue, K.; Takei, H.; Matsumoto, H.; Kurosumi, M.; Horiguchi, J.; Takeyoshi, I.; Oyama, T. ER, PgR, Ki67, p27(Kip1), and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer 2015, 15, 622. [Google Scholar] [CrossRef]
- Katayama, A.; Miligy, I.M.; Shiino, S.; Toss, M.S.; Eldib, K.; Kurozumi, S.; Quinn, C.M.; Badr, N.; Murray, C.; Provenzano, E.; et al. Predictors of pathological complete response to neoadjuvant treatment and changes to post-neoadjuvant HER2 status in HER2-positive invasive breast cancer. Mod. Pathol. 2021, 34, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Burstein, H.J.; Gnant, M.; Loibl, S.; Cameron, D.; Regan, M.M.; Denkert, C.; Poortmans, P.; Weber, W.P.; Thürlimann, B. St Gallen Consensus Conference Panelists 2023. Understanding breast cancer complexity to improve patient outcomes: The St Gallen international consensus conference for the primary therapy of individuals with early breast cancer 2023. Ann. Oncol. 2023, 34, 970–986. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Slamon, D.J.; Ro, J.; Bondarenko, I.; Im, S.A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. New Engl. J. Med. 2018, 379, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Petrakova, K.; Blackwell, K.L.; Winer, E.P.; et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol. 2019, 30, 1842. [Google Scholar] [CrossRef]
- Johnston, S.; Martin, M.; Di Leo, A.; Im, S.A.; Awada, A.; Forrester, T.; Frenzel, M.; Hardebeck, M.C.; Cox, J.; Barriga, S.; et al. MONARCH 3 final PFS: A randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; monarchE Committee Members and Investigators; et al. Abemaciclib Combined with Endocrine Therapy for the Adjuvant Treatment of HR+, HER2−, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J. Clin. Oncol. 2020, 38, 3987–3998. [Google Scholar] [CrossRef]
- Serpico, D.; Molino, L.; Di Cosimo, S. microRNAs in breast cancer development and treatment. Cancer Treat. Rev. 2014, 40, 595–604. [Google Scholar] [CrossRef]
- Kayani, M.; Kayani, M.A.; Malik, F.A.; Faryal, R. Role of miRNAs in breast cancer. Asian Pac. J. Cancer Prev. 2011, 12, 3175–3180. [Google Scholar]
- Jayasingam, S.D.; Citartan, M.; Mat Zin, A.A.; Rozhdestvensky, T.S.; Tang, T.H.; Ch’ng, E.S. An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 6994. [Google Scholar] [CrossRef] [PubMed]
- van Schooneveld, E.; Wildiers, H.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015, 17, 21. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Circulating tumor cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Vigil, I.G.; Moreno-Martínez, A.K.; Wang, J.Y.; Roehrl, M.H.A.; Barrera-Saldaña, H.A. The dawn of the liquid biopsy in the fight against cancer. Oncotarget 2018, 9, 2912–2922. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Li, Y.; Niu, Y.; Wang, L.; Chen, T.; Guo, C.; Liu, Q. Hypoxia-induced miR-3677-3p promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by suppressing SIRT5. J. Cell. Mol. Med. 2020, 24, 8718–8731. [Google Scholar] [CrossRef]
- Peng, L.N.; Deng, X.Y.; Gan, X.X.; Zhang, J.H.; Ren, G.H.; Shen, F.; Feng, J.H.; Cai, W.S.; Xu, B. Targeting of TLE3 by miR-3677 in human breast cancer promotes cell proliferation, migration, and invasion. Oncol. Lett. 2020, 19, 1409–1417. [Google Scholar] [CrossRef]
- van Agthoven, T.; Sieuwerts, A.M.; Meijer-van Gelder, M.E.; Look, M.P.; Smid, M.; Veldscholte, J.; Sleijfer, S.; Foekens, J.A.; Dorssers, L.C. Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J. Clin. Oncol. 2009, 27, 542–549. [Google Scholar] [CrossRef]
- Jangal, M.; Couture, J.P.; Bianco, S.; Magnani, L.; Mohammed, H.; Gévry, N. The transcriptional co-repressor TLE3 suppresses basal signaling on a subset of estrogen receptor α target genes. Nucleic Acids Res. 2014, 42, 11339–11348. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Hicks, D.G.; Watroba, N.L.; Murekeyisoni, C.; Hwang, H.; Khoury, T.; Beck, R.A.; Ring, B.Z.; Estopinal, N.C.; Schreeder, M.T.; et al. TLE3 as a candidate biomarker of response to taxane therapy. Breast Cancer Res. 2009, 11, R17. [Google Scholar] [CrossRef]
- Samimi, G.; Ring, B.Z.; Ross, D.T.; Seitz, R.S.; Sutherland, R.L.; O’Brien, P.M.; Hacker, N.F.; Huh, W.K. TLE3 expression is associated with sensitivity to taxane treatment in ovarian carcinoma. Cancer Epidemiol. Biomark. Prev. 2012, 21, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Honma, K.; Iwao-Koizumi, K.; Takeshita, F.; Yamamoto, Y.; Yoshida, T.; Nishio, K.; Nagahara, S.; Kato, K.; Ochiya, T. RPN2 gene confers docetaxel resistance in breast cancer. Nat. Med. 2008, 14, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Kurozumi, S.; Kijima, Y.; Idichi, T.; Shinden, Y.; Yamada, Y.; Arai, T.; Maemura, K.; Fujii, T.; Horiguchi, J.; et al. Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: Antitumor miR-204-5p targets AP1S3. J. Hum. Genet. 2018, 63, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Seki, N.; Kurozumi, S.; Shinden, Y.; Yamada, Y.; Nohata, N.; Moriya, S.; Idichi, T.; Maemura, K.; Fujii, T.; et al. RNA-sequence-based microRNA expression signature in breast cancer: Tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol. Oncol. 2020, 14, 426–446. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Bolger, A.M.; Nagel, A.; Fernie, A.R.; Lunn, J.E.; Stitt, M.; Usadel, B. RobiNA: A user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 2012, 40, W622–W627. [Google Scholar] [CrossRef]
- de Hoon, M.J.; Imoto, S.; Nolan, J.; Miyano, S. Open source clustering software. Bioinformatics 2004, 20, 1453–1454. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Paraskevopoulou, M.D.; Karagkouni, D.; Georgakilas, G.; Vergoulis, T.; Kanellos, I.; Anastasopoulos, I.L.; Maniou, S.; Karathanou, K.; Kalfakakou, D.; et al. Diana-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015, 43, D153–D159. [Google Scholar] [CrossRef]
Characteristics | n |
---|---|
Age range, years | |
24–40 | 31 |
41–59 | 212 |
60 and over | 187 |
Tumor size | |
<2.0 cm | 115 |
≥2.0 cm | 315 |
Nodal status | |
Negative | 200 |
Positive | 226 |
Unknown | 4 |
Histological grade | |
Grade 1 | 58 |
Grade 2 | 198 |
Grade 3 | 174 |
Estrogen receptor status | |
Positive | 326 |
Negative | 96 |
Unknown | 8 |
HER2 status | |
Positive | 69 |
Negative | 298 |
Unknown | 63 |
Upregulated miRNAs | logFC | FDR | Downregulated miRNAs | logFC | FDR |
---|---|---|---|---|---|
hsamir210 | 1.09 | 1.74 × 10−29 | hsamir483 | −1.35 | 7.91 × 10−22 |
hsamir301b | 1.56 | 1.25 × 10−22 | hsamir195 | −0.81 | 1.60 × 10−11 |
hsamir455 | 0.98 | 2.80 × 10−19 | hsamir101 | −0.74 | 1.21 × 10−10 |
hsamir301a | 0.88 | 2.94 × 10−19 | hsamir10b | −0.91 | 2.15 × 10−10 |
hsamir130b | 0.85 | 6.90 × 10−13 | hsamir139 | −0.69 | 5.26 × 10−9 |
hsamir142 | 0.67 | 8.42 × 10−9 | hsamir99a | −0.61 | 7.09 × 10−9 |
hsamir1307 | 0.59 | 2.75 × 10−8 | hsalet7c | −0.51 | 1.37 × 10−7 |
hsamir345 | 0.66 | 8.95 × 10−8 | hsamir100 | −0.57 | 4.59 × 10−6 |
hsamir454 | 0.55 | 8.95 × 10−8 | hsamir143 | −0.50 | 1.23 × 10−5 |
hsamir500a | 0.61 | 1.30 × 10−7 | hsamir377 | −0.54 | 0.00027 |
hsamir93 | 0.57 | 6.01 × 10−7 | hsamir125b2 | −0.26 | 0.00069 |
hsamir155 | 0.55 | 2.59 × 10−6 | hsamir152 | −0.42 | 0.0010 |
hsamir4326 | 0.53 | 2.92 × 10−6 | hsamir655 | −0.46 | 0.0081 |
hsamir324 | 0.54 | 4.89 × 10−6 | hsamir133a1 | −0.47 | 0.0094 |
hsamir1301 | 0.49 | 1.32 × 10−5 | hsamir497 | −0.34 | 0.0098 |
hsamir766 | 0.53 | 6.16 × 10−5 | hsamir299 | −0.35 | 0.019 |
hsamir421 | 0.62 | 0.00013 | hsamir144 | −0.16 | 0.020 |
hsamir181b1 | 0.36 | 0.0016 | hsamir26a-1 | −0.37 | 0.047 |
hsamir3677 | 0.34 | 0.0050 | |||
hsamir671 | 0.34 | 0.0073 | |||
hsamir33b | 0.24 | 0.0084 | |||
hsamir15b | 0.30 | 0.0085 | |||
hsamir146b | 0.28 | 0.012 | |||
hsamir582 | 0.25 | 0.014 | |||
hsamir615 | 0.15 | 0.035 |
Factors | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
miR-3677 expression | Low | Reference | Reference | ||||
High | 2.20 | 1.28–3.76 | 0.0042 | 2.45 | 1.28–4.69 | 0.0068 | |
Tumor size | pT1 | Reference | Reference | ||||
pT2–pT4 | 1.49 | 0.85–2.64 | 0.17 | 0.92 | 0.49–1.72 | 0.80 | |
Nodal status | Negative | Reference | Reference | ||||
Positive | 2.33 | 1.34–4.04 | 0.0026 | 2.42 | 1.28–4.59 | 0.0068 | |
ER | Negative | Reference | Reference | ||||
Positive | 0.47 | 0.28–0.81 | 0.0060 | 0.55 | 0.30–1.01 | 0.055 | |
HER2 | Negative | Reference | Reference | ||||
Positive | 2.29 | 1.27–4.13 | 0.0062 | 1.30 | 0.67–2.53 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurozumi, S.; Seki, N.; Narusawa, E.; Honda, C.; Tokuda, S.; Nakazawa, Y.; Yokobori, T.; Katayama, A.; Mongan, N.P.; Rakha, E.A.; et al. Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer. Int. J. Mol. Sci. 2024, 25, 35. https://doi.org/10.3390/ijms25010035
Kurozumi S, Seki N, Narusawa E, Honda C, Tokuda S, Nakazawa Y, Yokobori T, Katayama A, Mongan NP, Rakha EA, et al. Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer. International Journal of Molecular Sciences. 2024; 25(1):35. https://doi.org/10.3390/ijms25010035
Chicago/Turabian StyleKurozumi, Sasagu, Naohiko Seki, Eriko Narusawa, Chikako Honda, Shoko Tokuda, Yuko Nakazawa, Takehiko Yokobori, Ayaka Katayama, Nigel P. Mongan, Emad A. Rakha, and et al. 2024. "Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer" International Journal of Molecular Sciences 25, no. 1: 35. https://doi.org/10.3390/ijms25010035