A Novel Morphine Drinking Model of Opioid Dependence in Rats
Abstract
:1. Introduction
2. Results
2.1. Morphine Oral Consumption
2.2. Orally Consumed Morphine Was Pharmacologically Relevant
2.3. Brain Changes in Rats That Voluntarily Consumed Morphine
3. Discussion
Conclusions
4. Materials and Methods
4.1. Animals
4.2. Voluntary Morphine Consumption Test: Free-Choice Drinking Paradigm
4.3. Plasma Morphine Determination
4.4. Evaluation of Morphine-Induced Analgesia
4.5. Evaluation of Morphine-Induced Locomotor Activity
4.6. Induction of Withdrawal Syndrome
4.7. Evaluation of Morphine-Induced Neuroinflammation
4.8. Evaluation of Morphine-Induced Oxidative Stress
4.9. Determination of mRNA Levels of Morphine Receptor and Accessory Proteins
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosten, T.R.; George, T.P. The neurobiology of opioid dependence: Implications for treatment. Sci. Pract. Perspect. 2002, 1, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth, P.; Scholl, L.; Rudd, R.A.; Bacon, S. Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants—United States, 2015-2016. MMWR. Morb. Mortal. Wkly Rep. 2018, 67, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.; Leung, J.; Larney, S.; Colledge, S.; Hickman, M.; Rehm, J.; Giovino, G.A.; West, R.; Hall, W.; Griffiths, P.; et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction 2018, 113, 1905–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, T.; Tadrous, M.; Mamdani, M.M.; Paterson, J.M.; Juurlink, D.N. The Burden of Opioid-Related Mortality in the United States. JAMA Netw. Open 2018, 1, e180217. [Google Scholar] [CrossRef]
- McCabe, S.E.; Cranford, J.A.; Boyd, C.J.; Teter, C.J. Motives, diversion and routes of administration associated with nonmedical use of prescription opioids. Addict. Behav. 2007, 32, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Kirsh, K.; Peppin, J.; Coleman, J. Characterization of prescription opioid abuse in the United States: Focus on route of administration. J. Pain Palliat. Care Pharmacother. 2012, 26, 348–361. [Google Scholar] [CrossRef]
- Garcia Pardo, M.P.; Roger Sanchez, C.; De la Rubia Orti, J.E.; Aguilar Calpe, M.A. Animal models of drug addiction. Adicciones 2017, 29, 278–292. [Google Scholar] [CrossRef]
- Nieto, S.J.; Grodin, E.N.; Aguirre, C.G.; Izquierdo, A.; Ray, L.A. Translational opportunities in animal and human models to study alcohol use disorder. Transl. Psychiatry 2021, 11, 496. [Google Scholar] [CrossRef]
- Horowitz, G.P.; Whitney, G.; Smith, J.C.; Stephan, F.K. Morphine ingestion: Genetic control in mice. Psychopharmacology 1977, 52, 119–122. [Google Scholar] [CrossRef]
- Forgie, M.L.; Beyerstein, B.L.; Alexander, B.K. Contributions of taste factors and gender to opioid preference in C57BL and DBA mice. Psychopharmacology 1988, 95, 237–244. [Google Scholar] [CrossRef]
- Ferraro, T.N.; Golden, G.T.; Smith, G.G.; Martin, J.F.; Schwebel, C.L.; Doyle, G.A.; Buono, R.J.; Berrettini, W.H. Confirmation of a major QTL influencing oral morphine intake in C57 and DBA mice using reciprocal congenic strains. Neuropsychopharmacology 2005, 30, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Nikfar, S.; Habibi, L. Saccharin effects on morphine-induced antinociception in the mouse formalin test. Pharmacol. Res. 2000, 42, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Hoebel, B.G.; Avena, N.M.; Bocarsly, M.E.; Rada, P. Natural addiction: A behavioral and circuit model based on sugar addiction in rats. J. Addict. Med. 2009, 3, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binsack, R.; Zheng, M.-l.; Zhang, Z.-s.; Yang, L.; Zhu, Y.-p. Chronic morphine drinking establishes morphine tolerance, but not addiction in Wistar rats. J. Zhejiang Univ. Sci. B 2006, 7, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Grim, T.W.; Park, S.J.; Schmid, C.L.; Laprairie, R.B.; Cameron, M.; Bohn, L.M. The effect of quinine in two bottle choice procedures in C57BL6 mice: Opioid preference, somatic withdrawal, and pharmacokinetic outcomes. Drug Alcohol Depend. 2018, 191, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Lush, I.E. The genetics of tasting in mice. III. Quinine. Genet. Res. 1984, 44, 151–160. [Google Scholar] [CrossRef]
- Myers, K.P.; Sclafani, A. Development of learned flavor preferences. Dev. Psychobiol. 2006, 48, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P. The effects of mere exposure on liking for edible substances. Appetite 1982, 3, 283–290. [Google Scholar] [CrossRef]
- London, R.M.; Snowdon, C.T.; Smithana, J.M. Early experience with sour and bitter solutions increases subsequent ingestion. Physiol. Behav. 1979, 22, 1149–1155. [Google Scholar] [CrossRef]
- Harvey-Lewis, C.; Franklin, K.B. The effect of acute morphine on delay discounting in dependent and non-dependent rats. Psychopharmacology 2015, 232, 885–895. [Google Scholar] [CrossRef]
- Gellert, V.F.; Holtzman, S.G. Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J. Pharmacol. Exp. Ther. 1978, 205, 536–546. [Google Scholar] [PubMed]
- Wallace, V.C.; Segerdahl, A.R.; Blackbeard, J.; Pheby, T.; Rice, A.S. Anxiety-like behaviour is attenuated by gabapentin, morphine and diazepam in a rodent model of HIV anti-retroviral-associated neuropathic pain. Neurosci. Lett. 2008, 448, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezquer, F.; Morales, P.; Quintanilla, M.E.; Santapau, D.; Lespay-Rebolledo, C.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y. Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci. Rep. 2018, 8, 4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezquer, F.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Lespay-Rebolledo, C.; Herrera-Marschitz, M.; Israel, Y. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats. Addict. Biol. 2019, 24, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senese, N.B.; Kandasamy, R.; Kochan, K.E.; Traynor, J.R. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front. Mol. Neurosci. 2020, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traynor, J. mu-Opioid receptors and regulators of G protein signaling (RGS) proteins: From a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 2012, 121, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderson, H.L.; Robbins, T.W.; Everitt, B.J. Heroin self-administration under a second-order schedule of reinforcement: Acquisition and maintenance of heroin-seeking behaviour in rats. Psychopharmacology 2000, 153, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Venniro, M.; Shaham, Y. An operant social self-administration and choice model in rats. Nat. Protoc. 2020, 15, 1542–1559. [Google Scholar] [CrossRef]
- Taylor, W.R.J.; White, N.J. Antimalarial drug toxicity. Drug Saf. 2004, 27, 25–61. [Google Scholar] [CrossRef] [PubMed]
- Carnicella, S.; Ron, D.; Barak, S. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol 2014, 48, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Flores-Bastías, O.; Gómez, G.I.; Orellana, J.A.; Karahanian, E. Activation of melanocortin-4 receptor by a synthetic agonist inhibits ethanol-induced neuroinflammation in rats. Curr. Pharm. Des. 2019, 25, 4799–4805. [Google Scholar] [CrossRef] [PubMed]
- Chartoff, E.H.; Connery, H.S. It’s MORe exciting than mu: Crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front. Pharmacology 2014, 5, 116. [Google Scholar] [CrossRef] [Green Version]
- Enga, R.M.; Jackson, A.; Damaj, M.I.; Beardsley, P.M. Oxycodone physical dependence and its oral self-administration in C57BL/6J mice. Eur. J. Pharmacol. 2016, 789, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, S.M.; Healy, A.F.; Coelho, M.A.; Brown, C.N.; Kippin, T.E.; Szumlinski, K.K. Variability in prescription opioid intake and reinforcement amongst 129 substrains. Genes Brain Behav. 2017, 16, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Fulenwider, H.D.; Nennig, S.E.; Hafeez, H.; Price, M.E.; Baruffaldi, F.; Pravetoni, M.; Cheng, K.; Rice, K.C.; Manvich, D.F.; Schank, J.R. Sex differences in oral oxycodone self-administration and stress-primed reinstatement in rats. Addict. Biol. 2020, 25, e12822. [Google Scholar] [CrossRef] [PubMed]
- Garzón, J.; Rodríguez-Muñoz, M.; López-Fando, A.; Sánchez-Blázquez, P. The RGSZ2 protein exists in a complex with μ-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 2005, 30, 1632–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, G.A.; Schwebel, C.L.; Ruiz, S.E.; Chou, A.D.; Lai, A.T.; Wang, M.-J.; Smith, G.G.; Buono, R.J.; Berrettini, W.H.; Ferraro, T.N. Analysis of candidate genes for morphine preference quantitative trait locus Mop2. Neuroscience 2014, 277, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.-S.; Geng, W.-S.; Wang, Z.-Q.; Jia, J.-J. Morphine addiction and oxidative stress: The potential effects of thioredoxin-1. Front. Pharmacol. 2020, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Loram, L.C.; Ramos, K.; de Jesus, A.J.; Thomas, J.; Cheng, K.; Reddy, A.; Somogyi, A.A.; Hutchinson, M.R.; Watkins, L.R. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Nat. Acad. Sci. USA 2012, 109, 6325–6330. [Google Scholar] [CrossRef] [Green Version]
- Eidson, L.N.; Inoue, K.; Young, L.J.; Tansey, M.G.; Murphy, A.Z. Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling. Neuropsychopharmacology 2017, 42, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.R.; Lewis, S.S.; Coats, B.D.; Skyba, D.A.; Crysdale, N.Y.; Berkelhammer, D.L.; Brzeski, A.; Northcutt, A.; Vietz, C.M.; Judd, C.M. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav. Immun. 2009, 23, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katebi, S.-N.; Torkaman-Boutorabi, A.; Vousooghi, N.; Riahi, E.; Haghparast, A. Systemic administration of N-acetylcysteine during the extinction period and on the reinstatement day decreased the maintenance of morphine rewarding properties in the rats. Behav. Brain Res. 2021, 413, 113451. [Google Scholar] [CrossRef] [PubMed]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.K.; Coambs, R.B.; Hadaway, P.F. The effect of housing and gender on morphine self-administration in rats. Psychopharmacology 1978, 58, 175–179. [Google Scholar] [CrossRef]
- Cicero, T.J.; Aylward, S.C.; Meyer, E.R. Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol. Biochem. Behav. 2003, 74, 541–549. [Google Scholar] [CrossRef]
- Mohammadian, J.; Najafi, M.; Miladi-Gorji, H. Effect of enriched environment during adolescence on spatial learning and memory, and voluntary consumption of morphine in maternally separated rats in adulthood. Dev. Psychobiol. 2019, 61, 615–625. [Google Scholar] [CrossRef]
- De Gregorio, C.; Contador, D.; Diaz, D.; Carcamo, C.; Santapau, D.; Lobos-Gonzalez, L.; Acosta, C.; Campero, M.; Carpio, D.; Gabriele, C.; et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res. Ther. 2020, 11, 168. [Google Scholar] [CrossRef]
- Israel, Y.; Quintanilla, M.E.; Ezquer, F.; Morales, P.; Santapau, D.; Berrios-Carcamo, P.; Ezquer, M.; Olivares, B.; Herrera-Marschitz, M. Aspirin and N-acetylcysteine co-administration markedly inhibit chronic ethanol intake and block relapse binge drinking: Role of neuroinflammation-oxidative stress self-perpetuation. Addict. Biol. 2021, 26, e12853. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berríos-Cárcamo, P.; Quezada, M.; Santapau, D.; Morales, P.; Olivares, B.; Ponce, C.; Ávila, A.; De Gregorio, C.; Ezquer, M.; Quintanilla, M.E.; et al. A Novel Morphine Drinking Model of Opioid Dependence in Rats. Int. J. Mol. Sci. 2022, 23, 3874. https://doi.org/10.3390/ijms23073874
Berríos-Cárcamo P, Quezada M, Santapau D, Morales P, Olivares B, Ponce C, Ávila A, De Gregorio C, Ezquer M, Quintanilla ME, et al. A Novel Morphine Drinking Model of Opioid Dependence in Rats. International Journal of Molecular Sciences. 2022; 23(7):3874. https://doi.org/10.3390/ijms23073874
Chicago/Turabian StyleBerríos-Cárcamo, Pablo, Mauricio Quezada, Daniela Santapau, Paola Morales, Belén Olivares, Carolina Ponce, Alba Ávila, Cristian De Gregorio, Marcelo Ezquer, María Elena Quintanilla, and et al. 2022. "A Novel Morphine Drinking Model of Opioid Dependence in Rats" International Journal of Molecular Sciences 23, no. 7: 3874. https://doi.org/10.3390/ijms23073874
APA StyleBerríos-Cárcamo, P., Quezada, M., Santapau, D., Morales, P., Olivares, B., Ponce, C., Ávila, A., De Gregorio, C., Ezquer, M., Quintanilla, M. E., Herrera-Marschitz, M., Israel, Y., & Ezquer, F. (2022). A Novel Morphine Drinking Model of Opioid Dependence in Rats. International Journal of Molecular Sciences, 23(7), 3874. https://doi.org/10.3390/ijms23073874