Gender-Related Aspects in Osteoarthritis Development and Progression: A Review
Abstract
:1. Introduction
2. Search Methods
3. Results
3.1. Hormone-Determined Interactions
3.1.1. Dehydroepiandrosterone (DHEA)
3.1.2. Testosterone
3.1.3. Dihydrotestosterone (DHT)
3.1.4. Estrogens and Progesterone
3.2. Molecular-Based Interactions
3.2.1. Molecular Fundamentals in Pain Perception
3.2.2. Biomarkers and Molecular Involvement in Disease Progression
3.3. Anatomical & Biomechanical Cues
3.3.1. Anatomical Cues
Parameter | Sex | Contribution to OA Development | |
---|---|---|---|
Women | Men | ||
Knee | |||
medial-lateral/anterior-posterior (ML/AP) aspect ratio (joint size) | smaller [71,72,73,74] | greater [71,72,73,74] | no correlation reported |
anterior condyles | less prominent [71] | more prominent [71] | no correlation reported [71] |
no gender difference [75,76] | - | ||
Q angle | greater [71] | smaller [71] | increased biomechanical stress in females [84] |
no gender difference [75] | - | ||
normalized contact area | larger [36] | smaller [36] | poorer joint congruence in females [36] |
congruity index | lower [36] | higher [36] | poorer joint congruence in females [36] |
femoral neck | shorter [78] | longer [78] | no correlation reported |
femoral shaft | thinner [78] | thicker [78] | no correlation reported |
femoral offset | lower [78] | higher [78] | no correlation reported |
femoral head diameter | smaller [79] | larger [79] | no correlation reported |
acetabular inclination | increased [79] | decreased [79] | no correlation reported |
femoral neck anteversion | increased [79] | decreased [79] | poorer joint congruence in females [80] |
acetabular anteversion | increased [79] | decreased [79] | poorer joint congruence in females [80] |
cervicodiaphyseal (CCD) angle or neck-shaft angle | lower [78] | higher [78] | stronger association with subsequent OA development in females [83] |
no correlation reported [82] | |||
no gender difference [79] | - |
3.3.2. Biomechanical Cues
4. Discussion and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAMTS | a disintegrin and metalloproteinase with thrombospondin motifs |
AR | androgen receptor |
BMI | body mass index |
CCD | cervicodiaphyseal |
CPCs | chondrogenic progenitor cells |
CTX-II | C-telopeptides of type II collagen |
DHEA | dehydroepiandrosterone |
DHEAS | dehydroepiandrosterone sulfate |
DHT | dihydrotestosterone |
ER | estrogen receptor |
KAM | knee adduction moment |
ML/AP | medial-lateral/anterior-posterior ratio |
MMPs | matrix metalloproteinases |
OA | osteoarthritis |
PR | progesterone receptor |
SSM | statistical shape modelling |
TIMP | tissue inhibitor of metalloproteinase |
VAS | Visual Analogue Scale |
WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
References
- Hao, H.Q.; Zhang, J.F.; He, Q.Q.; Wang, Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2019, 27, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Liem, Y.; Judge, A.; Kirwan, J.; Ourradi, K.; Li, Y.; Sharif, M. Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis. Sci. Rep. 2020, 10, 11328. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.H.; Rat, A.C.; Sellam, J.; Michel, M.; Eschard, J.P.; Guillemin, F.; Jolly, D.; Fautrel, B. Economic impact of lower-limb osteoarthritis worldwide: A systematic review of cost-of-illness studies. Osteoarthr. Cartil. 2016, 24, 1500–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Nazemi, M.; Jonkers, I.; Geris, L. Use of Computational Modeling to Study Joint Degeneration: A Review. Front. Bioeng. Biotechnol. 2020, 8, 93. [Google Scholar] [CrossRef]
- Jamshidi, A. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat. Rev. Rheumatol. 2019, 15, 49–60. [Google Scholar] [CrossRef]
- Contartese, D.; Tschon, M.; De Mattei, M.; Fini, M. Sex specific determinants in osteoarthritis: A systematic review of preclinical studies. Int. J. Mol. Sci. 2020, 21, 3696. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Belluzzi, E.; Macchi, V.; Fontanella, C.G.; Carniel, E.L.; Olivotto, E.; Filardo, G.; Sarasin, G.; Porzionato, A.; Granzotto, M.; Pozzuoli, A.; et al. Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 6016. [Google Scholar] [CrossRef]
- Englund, M.; Guermazi, A.; Lohmander, S.L. The role of the meniscus in knee osteoarthritis: A cause or consequence? Radiol. Clin. N. Am. 2009, 47, 703–712. [Google Scholar] [CrossRef]
- Pan, Q.; O’Connor, M.I.; Coutts, R.D.; Hyzy, S.L.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. Characterization of osteoarthritic human knees indicates potential sex differences. Biol. Sex Differ. 2016, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sandhar, S.; Smith, T.O.; Toor, K.; Howe, F.; Sofat, N. Risk factors for pain and functional impairment in people with knee and hip osteoarthritis: A systematic review and meta-analysis. BMJ Open 2020, 10, e038720. [Google Scholar] [CrossRef] [PubMed]
- Vina, E.R.; Kwoh, C.K. Epidemiology of Osteoarthritis: Literature Update. Curr. Opin. Rheumatol. 2018, 30, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-S.; Qu, Z.; Yu, D.-Q.; Wang, W.; Yan, S.; Huang, H.-F. Sex Steroids and Osteoarthritis: A Mendelian Randomization Study. Front. Endocrinol. 2021, 12, 683226. [Google Scholar] [CrossRef]
- Tschon, M.; Contartese, D.; Pagani, S.; Borsari, V.; Fini, M. Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data. J. Clin. Med. 2021, 10, 3178. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Z. Males and Females Have Distinct Molecular Events in the Articular Cartilage during Knee Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 7876. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Tang, L.P.; Xiong, Y.; Chen, W.P.; Zhou, X.D.; Ding, Q.H.; Wu, L.D. A possible mechanism in DHEA-mediated protection against osteoarthritis. Steroids 2014, 89, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.L.; Blanchet, T.J.; Peluso, D.; Hopkins, B.; Morris, E.A.; Glasson, S.S. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthr. Cartil. 2007, 15, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Koelling, S.; Miosge, N. Sex differences of chondrogenic progenitor cells in late stages of osteoarthritis. Arthritis Rheum. 2010, 62, 1077–1087. [Google Scholar] [CrossRef]
- Ushiyama, T.; Ueyama, H.; Inoue, K.; Ohkubo, I.; Hukuda, S. Expression of genes for estrogen receptors α and β in human articular chondrocytes. Osteoarthr. Cartil. 1999, 7, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.P.; Chen, W.P.; Feng, J.; Zhao, J.; Shi, Z.L.; Huang, K.; Wu, L.-D. Variation patterns of two degradation enzyme systems in articular cartilage in different stages of osteoarthritis: Regulation by dehydroepiandrosterone. Clin. Chim. Acta 2009, 408, 1–7. [Google Scholar] [CrossRef]
- Huang, K.; Bao, J.P.; Jennings, G.J.; Wu, L.D. The disease-modifying effect of dehydroepiandrosterone in different stages of experimentally induced osteoarthritis: A histomorphometric study. BMC Musculoskelet. Disord. 2015, 16, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Tang, L.; Xiong, Y.; Zhou, X.; Wu, L. The chondroprotective effects of dehydroepiandrosterone probably exerted by its conversion to estradiol. J. Steroid Biochem. Mol. Biol. 2013, 134, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Ahn, H.J.; Kim, E.M.; Kim, H.J.; Seong, S.C.; Lee, I.B.; Lee, M.C. Effects of dehydroepiandrosterone on articular cartilage during the development of osteoarthritis. Arthritis Rheum. 2004, 50, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.D.; Yu, H.C.; Xiong, Y.; Feng, J. Effect of dehydroepiandrosterone on cartilage and synovium of knee joints with osteoarthritis in rabbits. Rheumatol. Int. 2006, 27, 79–85. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, C.; Zhang, X.W.; Bao, J.P.; Wu, L.D. Effect of dehydroepiandrosterone on aggrecanase expression in articular cartilage in a rabbit model of osteoarthritis. Mol. Biol. Rep. 2011, 38, 3569–3572. [Google Scholar] [CrossRef]
- Cicuttini, F.M.; Wluka, A.; Bailey, M.; O’Sullivan, R.; Poon, C.; Yeung, S.; Ebeling, P.R. Factors affecting knee cartilage volume in healthy men. Rheumatology 2003, 42, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Hanna, F.; Ebeling, P.R.; Wang, Y.; O’Sullivan, R.; Davis, S.; Wluka, A.E.; Cicuttini, F.M. Factors influencing longitudinal change in knee cartilage volume measured from magnetic resonance imaging in healthy men. Ann. Rheum. Dis. 2005, 64, 1038–1042. [Google Scholar] [CrossRef] [Green Version]
- Hanna, F.S.; Bell, R.J.; Cicuttini, F.M.; Davison, S.L.; Wluka, A.E.; Davis, S.R. The Relationship between Endogenous Testosterone, Preandrogens, and Sex Hormone Binding Globulin and Knee Joint Structure in Women at Midlife. Semin. Arthritis Rheum. 2007, 37, 56–62. [Google Scholar] [CrossRef]
- Jin, X.; Wang, B.H.; Wang, X.; Antony, B.; Zhu, Z.; Han, W.; Cicuttini, F.; Wluka, A.E.; Winzenberg, T.; Blizzard, L.; et al. Associations between endogenous sex hormones and MRI structural changes in patients with symptomatic knee osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1100–1106. [Google Scholar] [CrossRef] [Green Version]
- De Kruijf, M.; Stolk, L.; Zillikens, M.C.; De Rijke, Y.B.; Bierma-Zeinstra, S.M.A.; Hofman, A.; Huygen, F.J.P.M.; Uitterlinden, A.G.; Van Meurs, J.B.J. Lower sex hormone levels are associated with more chronic musculoskeletal pain in community-dwelling elderly women. Pain 2016, 157, 1425–1431. [Google Scholar] [CrossRef]
- Freystaetter, G.; Fischer, K.; Orav, E.J.; Egli, A.; Theiler, R.; Münzer, T.; Felson, D.T.; Bischoff-Ferrari, H.A. Total serum testosterone and WOMAC pain and function among older men and women with severe knee OA. Arthritis Care Res. 2019, 72, 1511–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvet, J.; Orellana, C.; Albiñana Giménez, N.; Berenguer-Llergo, A.; Caixàs, A.; García-Manrique, M.; Galisteo Lencastre, C.; Navarro, N.; Larrosa, M.; Gratacós, J. Differential involvement of synovial adipokines in pain and physical function in female patients with knee osteoarthritis. A cross-sectional study. Osteoarthr. Cartil. 2018, 26, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perruccio, A.V.; Mahomed, N.N.; Chandran, V.; Gandhi, R. Plasma adipokine levels and their association with overall burden of painful joints among individuals with hip and knee osteoarthritis. J. Rheumatol. 2014, 41, 334–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, F.S.; Teichtahl, A.J.; Wluka, A.E.; Wang, Y.; Urquhart, D.M.; English, D.R.; Giles, G.G.; Cicuttini, F.M. Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: A gender study of adults without clinical knee osteoarthritis. Menopause 2009, 16, 666–670. [Google Scholar] [CrossRef]
- Wise, B.L.; Niu, J.; Zhang, Y.; Liu, F.; Pang, J.; Lynch, J.A.; Lane, N.E. Bone shape mediates the relationship between sex and incident knee osteoarthritis. BMC Musculoskelet. Disord. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Tummala, S.; Schiphof, D.; Byrjalsen, I.; Dam, E.B. Gender Differences in Knee Joint Congruity Quantified from MRI: A Validation Study with Data from Center for Clinical and Basic Research and Osteoarthritis Initiative. Cartilage 2018, 9, 38–45. [Google Scholar] [CrossRef]
- Kerrigan, D.C.; Todd, M.K.; Della Croce, U. Gender differences in joint biomechanics during walking: Normative study in young adults. Am. J. Phys. Med. Rehabil. 1998, 77, 2–7. [Google Scholar] [CrossRef]
- Sims, E.L.; Carland, J.M.; Keefe, F.J.; Kraus, V.B.; Guilak, F.; Schmitt, D. Sex differences in biomechanics associated with knee osteoarthritis. J. Women Aging 2009, 21, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ro, D.H.; Lee, D.Y.; Moon, G.; Lee, S.; Seo, S.G.; Kim, S.H.; Park, I.W.; Lee, M.C. Sex differences in knee joint loading: Cross-sectional study in geriatric population. J. Orthop. Res. 2017, 35, 1283–1289. [Google Scholar] [CrossRef]
- Kumar, D.; Souza, R.B.; Subburaj, K.; MacLeod, T.D.; Singh, J.; Calixto, N.E.; Nardo, L.; Link, T.M.; Li, X.; Lane, N.E.; et al. Are There Sex Differences in Knee Cartilage Composition and Walking Mechanics in Healthy and Osteoarthritis Populations? Clin. Orthop. 2015, 473, 2548–2558. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zheng, Z.L.; Lv, J.; Hao, R.Z.; Yang, Y.P.; Zhang, Y.Z. Relationships between Morphological Changes of Lower Limbs and Gender During Medial Compartment Knee Osteoarthritis. Orthop. Surg. 2019, 11, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Slemenda, C.; Heilman, D.K.; Brandt, K.D.; Katz, B.P.; Mazzuca, S.A.; Braunstein, E.M.; Byrd, D. Reduced Quadriceps Strength Relative to body Weight A Risk Factor for Knee Osteoarthritis in Women? Arthritls Rheum. 1998, 41, 1951–1959. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Tabassi, N.C.B.; Sondergaard, L.V.; Andersen, T.L.; Dagnaes-Hansen, F.; Garnero, P.; Kassem, M.; Delaissé, J.M. The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover. Arthritis Res. Ther. 2009, 11, R9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christgau, S.; Tankó, L.B.; Cloos, P.A.C.; Mouritzen, U.; Christiansen, C.; Delaissé, J.M.; Høegh-Andersen, P. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause 2004, 11, 508–518. [Google Scholar] [CrossRef]
- Rutkowski, K.; Sowa, P.; Rutkowska-Talipska, J.; Kuryliszyn-Moskal, A.; Rutkowski, R. Dehydroepiandrosterone (DHEA): Hypes and hopes. Drugs 2014, 74, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Maggi, S.; Noale, M.; Trevisan, C.; De Rui, M.; Bolzetta, F.; Zambon, S.; Sartori, L.; Musacchio, E.; Perissinotto, E.; et al. Serum dehydroepiandrosterone sulfate and osteoarthritis in older people: The Pro.V.A. study. Clin. Rheumatol. 2016, 35, 2609–2614. [Google Scholar] [CrossRef]
- Huang, K.; Wu, L.D. Suppression of aggrecanase: A novel protective mechanism of dehydroepiandrosterone in osteoarthritis? Mol. Biol. Rep. 2010, 37, 1241–1245. [Google Scholar] [CrossRef]
- Perini, I.; Elia, I.; Nigro, A.L.; Ronzoni, F.; Berardi, E.; Grosemans, H.; Fukada, S.-I.; Sampaolesi, M. Myogenic induction of adult and pluripotent stem cells using recombinant proteins. Biochem. Biophys. Res. Commun. 2015, 464, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Giarratana, N.; Conti, F.; La Rovere, R.; Gijsbers, R.; Carai, P.; Duelen, R.; Vervliet, T.; Bultynck, G.; Ronzoni, F.; Piciotti, R.; et al. MICAL2 is essential for myogenic lineage commitment. Cell Death Dis. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Agosti, E.; De Feudis, M.; Angelino, E.; Belli, R.; Teixeira, M.A.; Zaggia, I.; Tamiso, E.; Raiteri, T.; Scircoli, A.; Ronzoni, F.L.; et al. Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging 2020, 12, 13939–13957. [Google Scholar] [CrossRef]
- Roman-Blas, J.A.; Castañeda, S.; Largo, R.; Herrero-Beaumont, G. Osteoarthritis associated with estrogen deficiency. Arthritis Res. Ther. 2009, 11, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravn, P.; Warming, L.; Christgau, S.; Christiansen, C. The effect on cartilage of different forms of application of postmenopausal estrogen therapy: Comparison of oral and transdermal therapy. Bone 2004, 35, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, W.; Haitel, A.; Holzer, G.; Huber, J.C.; Kolbus, A.; Tschugguel, W. Estrogen Receptor-β Is the Predominant Estrogen Receptor Subtype in Normal Human Synovia. J. Soc. Gynecol. Investig. 2006, 13, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Schicht, M.; Ernst, J.; Nielitz, A.; Fester, L.; Tsokos, M.; Guddat, S.S.; Bräuer, L.; Bechmann, J.; Delank, K.S.; Wohlrab, D.; et al. Articular cartilage chondrocytes express aromatase and use enzymes involved in estrogen metabolism. Arthritis Res. Ther. 2014, 16, R93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalvilla, A.; Gomez, R.; Lugo, L.; Lopez-Oliva, F.; Largo, R.; Herrero-Beaumont, G. Aromatase expression in human chondrocytes: An induction due to culture. Maturitas 2016, 85, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Jia, J.; Kot, A.; Liu, X.; Liu, L.; Jiang, M.; Lane, N.E.; Wise, B.L.; Yao, W. Selective inhibition of progesterone receptor in osteochondral progenitor cells, but not in mature chondrocytes, modulated subchondral bone structures. Bone 2020, 132, 115196. [Google Scholar] [CrossRef]
- Unruh, A.M. Gender variations in clinical pain experience. Pain 1996, 65, 123–167. [Google Scholar] [CrossRef]
- A Systematic Literature Review of 10 Years of Research on Sex/Gender and Pain Perception—Part 2: Do Biopsychosocial Factors Alter Pain Sensitivity Differently in Women and Men?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/22236999/ (accessed on 11 December 2021).
- Kim, J.-R.; Kim, H.A. Molecular Mechanisms of Sex-Related Differences in Arthritis and Associated Pain. Int. J. Mol. Sci. 2020, 21, 7938. [Google Scholar] [CrossRef]
- Tsuda, M.; Shigemoto-Mogami, Y.; Koizumi, S.; Mizokoshi, A.; Kohsaka, S.; Salter, M.W.; Inoue, K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424, 778–783. [Google Scholar] [CrossRef]
- Morales-Medina, J.C.; Flores, G.; Vallelunga, A.; Griffiths, N.H.; Iannitti, T. Cerebrolysin improves peripheral inflammatory pain: Sex differences in two models of acute and chronic mechanical hypersensitivity. Drug Dev. Res. 2019, 80, 513–518. [Google Scholar] [CrossRef]
- Park, I.Y.; Cho, N.H.; Lim, S.H.; Kim, H.A. Gender-specific associations between fat mass, metabolic syndrome and musculoskeletal pain in community residents: A three-year longitudinal study. PLoS ONE 2018, 13, e0200138. [Google Scholar] [CrossRef]
- De Hooge, A.S.K.; van de Loo, F.A.J.; Bennink, M.B.; Arntz, O.J.; de Hooge, P.; van den Berg, W.B. Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthr. Cartil. 2005, 13, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, T.; Alvarez-Garcia, O.; Mokuda, S.; Nagira, K.; Olmer, M.; Gamini, R.; Miyata, K.; Akasaki, Y.; Su, A.I.; Asahara, H.; et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl. Med. 2018, 10, eaan0746. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.I.; Choi, S.; Matsuzaki, T.; Alvarez-Garcia, O.; Olmer, M.; Grogan, S.P.; D’Lima, D.D.; Lotz, M.K. FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis. Proc. Natl. Acad. Sci. USA 2020, 117, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Yang, W.; Feng, D.; Jin, X.; Ma, Z.; Qian, Z.; Xie, T.; Li, H.; Liu, J.; Wang, R.; et al. Cartilage-Specific Autophagy Deficiency Promotes ER Stress and Impairs Chondrogenesis in PERK-ATF4-CHOP-Dependent Manner. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, I.; Nakayamada, S.; Nakano, K.; Yamagata, K.; Sakata, K.; Yamaoka, K.; Tanaka, Y. Induction of Regulatory T Cells and Its Regulation with Insulin-like Growth Factor/Insulin-like Growth Factor Binding Protein-4 by Human Mesenchymal Stem Cells. J. Immunol. 2017, 199, 1616–1625. [Google Scholar] [CrossRef] [Green Version]
- Domené, S.; Domené, H.M. The role of acid-labile subunit (ALS) in the modulation of GH-IGF-I action. Mol. Cell. Endocrinol. 2020, 518, 111006. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Wang, C.; Wan, S.; Yao, Z.; Zhang, Y.; Liu, J.; Zhang, C. Identification of Diagnostic Biomarkers of Osteoarthritis Based on Multi-Chip Integrated Analysis and Machine Learning. DNA Cell Biol. 2020. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Z. Cartilage Targets of Knee Osteoarthritis Shared by Both Genders. Int. J. Mol. Sci. 2021, 22, 569. [Google Scholar] [CrossRef]
- Conley, S.; Rosenberg, A.; Crowninshield, R. The female knee: Anatomic variations. J. Am. Acad. Orthop. Surg. 2007, 15. [Google Scholar] [CrossRef]
- Lonner, J.H.; Jasko, J.G.; Thomas, B.S. Anthropomorphic differences between the distal femora of men and women. Clin. Orthop. Relat. Res. 2008, 466, 2724–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellemans, J.; Carpentier, K.; Vandenneucker, H.; Vanlauwe, J.; Victor, J. The john insall award: Both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin. Orthop. Relat. Res. 2010, 468, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dargel, J.; Michael, J.W.P.; Feiser, J.; Ivo, R.; Koebke, J. Human Knee Joint Anatomy Revisited: Morphometry in the Light of Sex-Specific Total Knee Arthroplasty. J. Arthroplast. 2011, 26, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.C.; Arendt, E.A.; Dye, S.F.; Fredericson, M.; Grelsamer, R.P.; Leadbetter, W.B.; Post, W.R.; Teitge, R.A. The female knee: Anatomic variations and the female-specific total knee design. Clin. Orthop. 2008, 466, 3059–3065. [Google Scholar] [CrossRef] [Green Version]
- Thomas Fehring, R.K.; Odiini, S.M.; Hughes, J.; Springer, B.D.; Beaver, W.B., Jr. Differences between the Sexes in the Anatomy of the Anterior Condyle of the Knee. JBJS 2009, 91, 2335–2341. [Google Scholar] [CrossRef]
- Grelsamer, R.P.; Dubey, A.; Weinstein, C.H. Men and women have similar Q angles: A clinical and trigonometric evaluation. J. Bone Joint Surg. 2005, 87, 1498–1501. [Google Scholar] [CrossRef]
- Traina, F.; De Clerico, M.; Biondi, F.; Pilla, F.; Tassinari, E.; Toni, A. Sex differences in hip morphology: Is stem modularity effective for total hip replacement? J. Bone Jt. Surg.-Ser. A 2009, 91, 121–128. [Google Scholar] [CrossRef]
- Nakahara, I.; Takao, M.; Sakai, T.; Nishii, T.; Yoshikawa, H.; Sugano, N. Gender differences in 3D morphology and bony impingement of human hips. J. Orthop. Res. 2011, 29, 333–339. [Google Scholar] [CrossRef]
- Reikeråls, O.; Bjerkreim, I.; Kolbenstvedt, A. Anteversion of the acetabulum and femoral neck in normals and in patients with osteoarthritis of the hip. Acta Orthop. 1983, 54, 18–23. [Google Scholar] [CrossRef]
- Baker-Lepain, J.C.; Lane, N.E. Relationship between joint shape and the development of osteoarthritis. Curr. Opin. Rheumatol. 2010, 22, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Reikerås, O.; Høiseth, A. Femoral neck angles in osteoarthritis of the hip. Acta Orthop. 1982, 53, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Courtney, P.; Doherty, S.; Jenkins, W.; Maciewicz, R.A.; Muir, K.; Zhang, W. Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: A case-control study. Arthritis Rheum. 2008, 58, 3172–3182. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, R.R.; Allouh, M.Z.; Abu-El-rub, E. Measurement of the quadriceps(Q)angle with respect to various body parameters in young Arab population. PLoS ONE 2019, 14, e0218387. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Bowles, K.A.; Wang, Y.; Cicuttini, F.; Davies-Tuck, M.; Hinman, R.S. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann. Rheum. Dis. 2011, 70, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Tanamas, S.; Hanna, F.S.; Cicuttini, F.M.; Wluka, A.E.; Berry, P.; Urquhart, D.M. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Care Res. 2009, 61, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, G.M.; Van Tol, A.W.; Bergink, A.P.; Belo, J.N.; Bernsen, R.M.D.; Reijman, M.; Pols, H.A.P.; Bierma-Zeinstra, S.M.A. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Song, J.; Dunlop, D.; Felson, D.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.V.; Hietpas, J.; Lynch, J.; et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 1940–1945. [Google Scholar] [CrossRef]
- Sharma, L. The role of varus and valgus alignment in knee osteoarthritis. Arthritis Rheum. 2007, 56, 1044–1047. [Google Scholar] [CrossRef]
- Nam, Y.-S.; Lee, G.; Yun, J.M.; Cho, B. Testosterone Replacement, Muscle Strength, and Physical Function. World J. Mens Health 2018, 36, 110. [Google Scholar] [CrossRef]
- Sipilä, S. Body composition and muscle performance during menopause and hormone replacement therapy. J. Endocrinol. Investig. 2003, 26, 893–901. [Google Scholar] [CrossRef]
- Weitzmann, M.N.; Pacifici, R. Estrogen deficiency and bone loss: An inflammatory tale. J. Clin. Investig. 2006, 116, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardcastle, S.A.; Dieppe, P.; Gregson, C.L.; Smith, G.D.; Tobias, J.H. Osteoarthritis and bone mineral density: Are strong bones bad for joints? BoneKEy Rep. 2015, 4, 624. [Google Scholar] [CrossRef] [Green Version]
- Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Makarczyk, M.J.; Gao, Q.; He, Y.; Li, Z.; Gold, M.S.; Hochberg, M.C.; Bunnell, B.A.; Tuan, R.S.; Goodman, S.B.; Lin, H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng. Part C Methods 2021, 27, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; van Spil, W.E.; Budd, E.; Uzieliene, I.; Bernotiene, E.; Bay-Jensen, A.-C.; Larkin, J.; Levesque, M.C.; Gualillo, O.; Henrotin, Y. Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: Biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr. Opin. Rheumatol. 2019, 31, 80–89. [Google Scholar] [CrossRef]
- Im, G.-I.; Moon, J.-Y. Emerging Concepts of Endotypes/Phenotypes in Regenerative Medicine for Osteoarthritis. Tissue Eng. Regen. Med. 2021. [Google Scholar] [CrossRef]
- Freitag, J.; Bates, D.; Boyd, R.; Shah, K.; Barnard, A.; Huguenin, L.; Tenen, A. Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy—A review. BMC Musculoskelet. Disord. 2016, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.A.; Charlton, J.M.; Esculier, J.-F. Osteoarthritis year in review 2019: Mechanics. Osteoarthr. Cartil. 2020, 28, 267–274. [Google Scholar] [CrossRef]
- Cho, Y.; Jeong, S.; Kim, H.; Kang, D.; Lee, J.; Kang, S.-B.; Kim, J.-H. Disease-modifying therapeutic strategies in osteoarthritis: Current status and future directions. Exp. Mol. Med. 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
Study | Cells | Gender | Supplements | Assessment Targets | Assessment Methods | Major Findings |
---|---|---|---|---|---|---|
W. Li et al. [16] | Rabbit chondrocytes | F | A: DHEA B: DHEA + letrozole C: DHEA + fulvestrant D: DHEA + letrozole + fulvestrant | MMP-3, MMP-13, and TIMP-1 mRNA and protein levels | qPCR ELISA | The effects of DHEA are attenuated by the aromatase inhibitor letrozole and the estrogen receptor inhibitor fulvestrant The effects of DHEA may be mediated by its conversion to estradiol |
Ma et al. [17] | Mouse chondrocytes | M and F | A: IL-1α + DHT B: IL-1α + E2 | GAG | dimethylmethylene blue assay | Neither E2 nor DHT supplementation to male or female cartilage impacts the IL-1α-induced GAG release |
Koelling & Miosge [18] | Human CPCs | M and F | A: Testosterone B: E2 | Sox9 Runx2 | ECLIA microarray analysis RT-PCR IHC Western blot | Physiologic concentrations of testosterone in men and premenopausal concentrations of estrogen in women have a positive effect on the chondrogenic potential of CPCs in vitro |
Ushiyama et al. [19] | Human chondrocytes | M and F | N/A | ERα ERβ | RT-PCR | ER is expressed both in hip and knee chondrocytes, both in men and women, both in healthy and OA patients Expression levels of both genes are significantly higher in men than in women |
Ref | Sample Size/Model | Gender | OA Modelling | Assessment | Follow-Up | Major Findings |
---|---|---|---|---|---|---|
Bao et al. [20] | n = 108/rabbit n = 54: DHEA n = 54: control | M | ACLT | Histologic evaluation Gene expression | 6, 9, and 12 weeks |
|
Huang et al. [21] | n = 30/rabbit n = 10: sham operation n = 15: DHEA n = 15: placebo | M | ACLT | Histologic evaluation | 9 and 16 weeks |
|
W. Li et al. [22] | n = 42/rabbit n = 12: sacrificed while the OA model establishment n = 6: DHEA n = 6: DHEA + letrozole n = 6: DHEA + fulvestrant n = 6: DHEA + letrozole + fulvestrant n = 6: DMSO (control) | N/A | ACLT | Histologic evaluation Gene expression | 9 and 12 weeks |
|
Jo et al. [23] | n = 22/rabbit n = 22: DHEA (right knee) n = 22: control (left knee) | N/A | ACLT | Histologic evaluation Gene expression | 9 weeks | DHEA treatment delayed cartilage degeneration for up to 9 weeks: IL-1β MMP-1 MMP-3 TIMP-1 |
Wu et al. [24] | n = 40/rabbit n = 20: DHEA n = 20: control | N/A | ACLT | Histologic evaluation Gene expression | 11 weeks | DHEA treatment delayed cartilage degeneration for up to 11 weeks: IL-1β (in the synovium, but not in the cartilage) MMP-3 TIMP-1 |
Huang et al. [25] | n = 10/rabbit n = 10: DHEA (one knee) n = 10: control (another knee) | M | ACLT | Gene expression | 9 weeks | Aggrecanases TIMP-3 |
Ma et al. [17] | n = 139/mouse | M (intact and ORX) F (intact and OVX) | MMD | Histologic evaluation | 8 weeks |
|
Study | Sample Size/Gender | Healthy/OA | Assessment | Follow-Up (N/A in Cross-Sectional Studies) | Major Findings |
---|---|---|---|---|---|
Cicuttini et al. [26] | n = 45 (males) | healthy | Relationship between sex hormones levels and the tibial cartilage volume | N/A | Positive association of the serum testosterone level with total tibial cartilage and medial tibial cartilage volume |
F. Hanna et al. [27] | n = 28 (males) | healthy | The factors determining cartilage loss | 2 years | Positive association of the serum testosterone level with the tibial cartilage loss |
F. S. Hanna et al. [28] | n = 139 (females) | healthy | Relationship between serum testosterone, preandrogens and SHBG levels, and the knee structure | N/A | Positive association between SHBG levels and patella bone volume |
Jin et al. [29] | n = 200 males: 107 females: 93 | OA | Relationship between endogenous sex hormones levels, the knee structure, and pain | 2 years | Positive association of low serum endogenous estradiol, progesterone, and testosterone levels with increased knee effusion-synovitis in women |
de Kruijf et al. [30] | n = 9811 males: 4266 females: 5545 | healthy and OA | Relationship between sex hormone levels and chronic pain | 5.6 ± 2.3 years | Positive association of low sex hormone levels and chronic musculoskeletal pain in women |
Freystaetter et al. [31] | n = 272 males: 127 females: 145 | OA | Relationship between testosterone level, knee pain, and function | N/A | Negative correlation of testosterone levels and pain in men and women Negative correlation of testosterone levels and disability in women |
Calvet et al. [32] | n = 115 (females) | OA | Relationship between synovial fluid adipokines, pain, and function | N/A | Positive association of adiponectin and pain Positive association of resistin and disability Negative correlation of visfatin and disability |
Perruccio et al. [33] | n = 87 males: 33 females: 45 | OA | Relationship between plasma adipokine levels and pain | N/A | Positive association of leptin and adiponectin levels with pain in women Positive association of low adipsin levels with pain in women Negative correlation of resistin and pain in men |
C. Li & Zheng [15] | n = 38 males: 22 females: 16 | healthy and OA | Transcriptome dataset | N/A | Cartilage has different gene expression between males and females, even in healthy joints |
F. S. Hanna et al. [34] | n = 271 males: 102 females: 169 | healthy | Longitudinal gender differences in knee cartilage in a cohort of healthy adults | 2.3 years | Greater annual percentage of total tibial cartilage volume loss in women Increased risk of tibiofemoral cartilage defects progression in women |
Wise et al. [35] | n = 608 males: 229 females: 379 | healthy and OA | Relationship between bone shape and OA incidence in men and women | N/A | Bone shape variations, namely the relative elevation and angle of the condyles to the shaft, can mitigate the risk of incident OA in women. |
Tummala et al. [36] | n = 1595 males: 662 females: 933 | healthy and OA | Gender differences in contact area and congruity index in the medial tibiofemoral joint | N/A | Higher normalized contact area and poorer congruence in women |
Kerrigan et al. [37] | n = 99 males: 50 females: 49 | healthy | Gender differences in joint biomechanics during walking | N/A | Increased hip flexion and reduced knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee pre-swing in women |
Sims et al. [38] | n = 56 males: 26 females: 30 | OA | Gender differences in joint biomechanics during walking in OA patients | N/A | Lower knee adduction moment and higher stride frequency in women |
Ro et al. [39] | n = 84 males: 42 females: 42 | healthy | Gender differences in joint biomechanics during walking in geriatric population | N/A | Higher peak KAM in women Increased mechanical loading on the knee associated with narrow step width and wide pelvis in women |
Kumar et al. [40] | n = 76 males: 38 females: 38 | healthy and OA | Gender differences in the knee cartilage composition and joint biomechanics in healthy and osteoarthritis populations | N/A | Higher lateral articular cartilage T1q and patellofemoral T1q in OA women Lower varus during walking in women Lower static varus and peak adduction moment in the second half of stance in middle-aged women Higher knee flexion moment in young women |
Lu et al. [41] | n = 883 males: 199 females: 684 | OA | Gender differences in the dynamic changes of lower limbs morphology in OA patients | 1 month | Dynamic deformation of lower extremities and degeneration of articular cartilage in women, but not in men |
Slemenda et al. [42] | n = 342 males: 164 females: 178 | healthy and OA | Relationship between baseline lower extremity muscle weakness and incident radiographic knee OA | 31.3 ± 10.0 months | Reduced quadriceps strength relative to body weight may be a risk factor for knee OA in women |
DHEA |
|
Estrogens | |
Progesterone |
|
Testosterone |
Parameter | Sex | Contribution to OA Development | |
---|---|---|---|
Women | Men | ||
Knee | |||
knee extension before initial contact | reduced [37] | increased [37] | greater mechanical work in joints; therefore, more intense cartilage wear in females [37,71] |
knee flexion moment in pre-swing | increased [37] | reduced [37] | |
peak mechanical joint power absorption at the knee pre-swing | increased [37] | reduced [37] | |
knee adduction moment (KAM) | lower [38] | higher [38] | no correlation reported |
no gender difference in the first peak (KAM), second peak KAM lower in women [40] | no correlation reported | ||
higher [39] | lower [39] | greater knee medial compartment load in females [39] | |
hip flexion | increased [37] | decreased [37] | greater mechanical work in joints; therefore, more intense cartilage wear in females [37,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peshkova, M.; Lychagin, A.; Lipina, M.; Di Matteo, B.; Anzillotti, G.; Ronzoni, F.; Kosheleva, N.; Shpichka, A.; Royuk, V.; Fomin, V.; et al. Gender-Related Aspects in Osteoarthritis Development and Progression: A Review. Int. J. Mol. Sci. 2022, 23, 2767. https://doi.org/10.3390/ijms23052767
Peshkova M, Lychagin A, Lipina M, Di Matteo B, Anzillotti G, Ronzoni F, Kosheleva N, Shpichka A, Royuk V, Fomin V, et al. Gender-Related Aspects in Osteoarthritis Development and Progression: A Review. International Journal of Molecular Sciences. 2022; 23(5):2767. https://doi.org/10.3390/ijms23052767
Chicago/Turabian StylePeshkova, Maria, Alexey Lychagin, Marina Lipina, Berardo Di Matteo, Giuseppe Anzillotti, Flavio Ronzoni, Nastasia Kosheleva, Anastasia Shpichka, Valeriy Royuk, Victor Fomin, and et al. 2022. "Gender-Related Aspects in Osteoarthritis Development and Progression: A Review" International Journal of Molecular Sciences 23, no. 5: 2767. https://doi.org/10.3390/ijms23052767
APA StylePeshkova, M., Lychagin, A., Lipina, M., Di Matteo, B., Anzillotti, G., Ronzoni, F., Kosheleva, N., Shpichka, A., Royuk, V., Fomin, V., Kalinsky, E., Timashev, P., & Kon, E. (2022). Gender-Related Aspects in Osteoarthritis Development and Progression: A Review. International Journal of Molecular Sciences, 23(5), 2767. https://doi.org/10.3390/ijms23052767