White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies
Abstract
:1. Introduction
2. Results
2.1. Demographic, Clinical, and Stimulation Characteristics of Included Studies
2.2. Investigating the Role of WM Alterations in DBS Therapeutic Effect Using Tractography
2.3. WM Tracts Mediating the Effects of Subgenual Cingulate Cortex DBS on TRD
2.4. WM Tracts Mediating the Effects of Medial Forebrain Bundle DBS on TRD
2.5. WM Tracts Mediating the Effects of DBS on Other Regions in Patients with TRD
3. Discussion
4. Materials and Methods
4.1. Article Selection
4.2. Data Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupfer, D.J.; Frank, E.; Phillips, M.L. Major Depressive Disorder: New Clinical, Neurobiological, and Treatment Perspectives. Lancet 2012, 379, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shan, W. Pharmacological and Non-Pharmacological Treatments for Major Depressive Disorder in Adults: A Systematic Review and Network Meta-Analysis. Psychiatry Res. 2019, 281, 112595. [Google Scholar] [CrossRef] [PubMed]
- Conway, C.R.; George, M.S.; Sackeim, H.A. Toward an Evidence-Based, Operational Definition of Treatment-Resistant Depression: When Enough Is Enough. JAMA Psychiatry 2017, 74, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Amital, D.; Fostick, L.; Silberman, A.; Beckman, M.; Spivak, B. Serious Life Events among Resistant and Non-Resistant MDD Patients. J. Affect. Disord. 2008, 110, 260–264. [Google Scholar] [CrossRef]
- Fogelson, D.L.; Leuchter, A. Defining Treatment-Resistant Depression. JAMA Psychiatry 2017, 74, 758–759. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Mulsant, B.H.; Blumberger, D.M.; Karp, J.F.; Newcomer, J.W.; Anderson, S.J.; Dew, M.A.; Butters, M.A.; Stack, J.A.; Begley, A.E.; et al. Efficacy, Safety, and Tolerability of Augmentation Pharmacotherapy with Aripiprazole for Treatment-Resistant Depression in Late Life: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2015, 386, 2404–2412. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, N.A.; Joseph, B.; Pahwa, M.; Kumar, R.; Resendez, M.G.; Prokop, L.J.; Veldic, M.; Seshadri, A.; Biernacka, J.M.; Frye, M.A.; et al. Augmentation Strategies for Treatment Resistant Major Depression: A Systematic Review and Network Meta-Analysis. J. Affect. Disord. 2022, 302, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Morgan, C.; Curran, V.; Nutt, D.; Schlag, A.; McShane, R. Ketamine Treatment for Depression: Opportunities for Clinical Innovation and Ethical Foresight. Lancet Psychiatry 2017, 4, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Marangell, L.B.; Martinez, M.; Jurdi, R.A.; Zboyan, H. Neurostimulation Therapies in Depression: A Review of New Modalities. Acta Psychiatr. Scand. 2007, 116, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, M.P.; Fenoy, A.J.; Carvalho, A.F.; Soares, J.C.; Quevedo, J. Deep Brain Stimulation for Treatment-Resistant Depression: An Integrative Review of Preclinical and Clinical Findings and Translational Implications. Mol. Psychiatry 2018, 23, 1094–1112. [Google Scholar] [CrossRef]
- Lee, D.J.; Lozano, C.S.; Dallapiazza, R.F.; Lozano, A.M. Current and Future Directions of Deep Brain Stimulation for Neurological and Psychiatric Disorders. J. Neurosurg. 2019, 131, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Bora, E.; Fornito, A.; Pantelis, C.; Yücel, M. Gray Matter Abnormalities in Major Depressive Disorder: A Meta-Analysis of Voxel Based Morphometry Studies. J. Affect. Disord. 2012, 138, 9–18. [Google Scholar] [CrossRef]
- Miller, C.H.; Hamilton, J.P.; Sacchet, M.D.; Gotlib, I.H. Meta-Analysis of Functional Neuroimaging of Major Depressive Disorder in Youth. JAMA Psychiatry 2015, 72, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Cattarinussi, G.; Delvecchio, G.; Maggioni, E.; Bressi, C.; Brambilla, P. Ultra-High Field Imaging in Major Depressive Disorder: A Review of Structural and Functional Studies. J. Affect. Disord. 2021, 290, 65–73. [Google Scholar] [CrossRef]
- Drobisz, D.; Damborská, A. Deep Brain Stimulation Targets for Treating Depression. Behav. Brain Res. 2019, 359, 266–273. [Google Scholar] [CrossRef]
- Sun, Y.; Giacobbe, P.; Tang, C.W.; Barr, M.S.; Rajji, T.; Kennedy, S.H.; Fitzgerald, P.B.; Lozano, A.M.; Wong, W.; Daskalakis, Z.J. Deep Brain Stimulation Modulates Gamma Oscillations and Theta-Gamma Coupling in Treatment Resistant Depression. Brain Stimul. 2015, 8, 1033–1042. [Google Scholar] [CrossRef]
- Figee, M.; Luigjes, J.; Smolders, R.; Valencia-Alfonso, C.E.; van Wingen, G.; de Kwaasteniet, B.; Mantione, M.; Ooms, P.; de Koning, P.; Vulink, N.; et al. Deep Brain Stimulation Restores Frontostriatal Network Activity in Obsessive-Compulsive Disorder. Nat. Neurosci. 2013, 16, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Fenoy, A.J.; Schulz, P.; Selvaraj, S.; Burrows, C.; Spiker, D.; Cao, B.; Zunta-Soares, G.; Gajwani, P.; Quevedo, J.; Soares, J. Deep Brain Stimulation of the Medial Forebrain Bundle: Distinctive Responses in Resistant Depression. J. Affect. Disord. 2016, 203, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Bewernick, B.H.; Kayser, S.; Kilian, H.; Boström, J.; Greschus, S.; Hurlemann, R.; Klein, M.E.; Spanier, S.; Sajonz, B.; et al. Superolateral Medial Forebrain Bundle Deep Brain Stimulation in Major Depression: A Gateway Trial. Neuropsychopharmacology 2019, 44, 1224–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebrand, L.C.; Natarajan, S.J.; Caan, M.W.A.; Schuurman, P.R.; van den Munckhof, P.; de Kwaasteniet, B.; Luigjes, J.; Bergfeld, I.O.; Denys, D.; van Wingen, G.A. Distance to White Matter Trajectories Is Associated with Treatment Response to Internal Capsule Deep Brain Stimulation in Treatment-Refractory Depression. Neuroimage Clin. 2020, 28, 102363. [Google Scholar] [CrossRef]
- Sexton, C.E.; Mackay, C.E.; Ebmeier, K.P. A Systematic Review of Diffusion Tensor Imaging Studies in Affective Disorders. Biol. Psychiatry 2009, 66, 814–823. [Google Scholar] [CrossRef]
- Accolla, E.A.; Aust, S.; Merkl, A.; Schneider, G.H.; Kühn, A.A.; Bajbouj, M.; Draganski, B. Deep Brain Stimulation of the Posterior Gyrus Rectus Region for Treatment Resistant Depression. J. Affect. Disord. 2016, 194, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Fenoy, A.J.; Schulz, P.E.; Selvaraj, S.; Burrows, C.L.; Zunta-Soares, G.; Durkin, K.; Zanotti-Fregonara, P.; Quevedo, J.; Soares, J.C. A Longitudinal Study on Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression. Transl. Psychiatry 2018, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Assaf, Y.; Pasternak, O. Diffusion Tensor Imaging (DTI)-Based White Matter Mapping in Brain Research: A Review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- O’Donnell, L.J.; Westin, C.F. An Introduction to Diffusion Tensor Image Analysis. Neurosurg. Clin. N. Am. 2011, 22, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Aung, W.Y.; Mar, S.; Benzinger, T.L. Diffusion Tensor MRI as a Biomarker in Axonal and Myelin Damage. Imaging Med. 2013, 5, 427–440. [Google Scholar] [CrossRef]
- Klok, M.P.C.; van Eijndhoven, P.F.; Argyelan, M.; Schene, A.H.; Tendolkar, I. Structural Brain Characteristics in Treatment-Resistant Depression: Review of Magnetic Resonance Imaging Studies. BJPsych Open 2019, 5, E76. [Google Scholar] [CrossRef] [Green Version]
- Tsolaki, E.; Espinoza, R.; Pouratian, N. Using Probabilistic Tractography to Target the Subcallosal Cingulate Cortex in Patients with Treatment Resistant Depression. Psychiatry Res. Neuroimaging 2017, 261, 72–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coenen, V.A.; Schlaepfer, T.E.; Bewernick, B.; Kilian, H.; Kaller, C.P.; Urbach, H.; Li, M.; Reisert, M. Frontal White Matter Architecture Predicts Efficacy of Deep Brain Stimulation in Major Depression. Transl. Psychiatry 2019, 9, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva-Posse, P.; Inman, C.S.; Choi, K.S.; Crowell, A.L.; Gross, R.E.; Hamann, S.; Mayberg, H.S. Autonomic Arousal Elicited by Subcallosal Cingulate Stimulation Is Explained by White Matter Connectivity. Brain Stimul. 2019, 12, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.L.; Johnson, K.A.; Butson, C.R.; Lebel, C.; Gobbi, D.; Ramasubbu, R.; Kiss, Z.H.T. Tract-Based Analysis of Target Engagement by Subcallosal Cingulate Deep Brain Stimulation for Treatment Resistant Depression. Brain Stimul. 2020, 13, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, B.; Choi, K.S.; Gunalan, K.; Rajendra, J.; Mayberg, H.S.; McIntyre, C.C. Quantifying the Axonal Pathways Directly Stimulated in Therapeutic Subcallosal Cingulate Deep Brain Stimulation. Hum. Brain Mapp. 2019, 40, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Riva-Posse, P.; Choi, K.S.; Holtzheimer, P.E.; McIntyre, C.C.; Gross, R.E.; Chaturvedi, A.; Crowell, A.L.; Garlow, S.J.; Rajendra, J.K.; Mayberg, H.S. Defining Critical White Matter Pathways Mediating Successful Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Depression. Biol. Psychiatry 2014, 76, 963–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lujan, J.L.; Chaturvedi, A.; Malone, D.A.; Rezai, A.R.; Machado, A.G.; Mcintyre, C.C. Axonal Pathways Linked to Therapeutic and Nontherapeutic Outcomes during Psychiatric Deep Brain Stimulation. Hum. Brain Mapp. 2012, 33, 958–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, S.A.; Asberg, M. A New Depression Scale Designed to Be Sensitive to Change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric Properties of the Beck Depression Inventory: Twenty-Five Years of Evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Aas, I.M. Global Assessment of Functioning (GAF): Properties and Frontier of Current Knowledge. Ann. Gen. Psychiatry 2010, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaluez, M.; Tir, M.; Krystkowiak, P.; Aubignat, M.; Lefranc, M. Selection of Deep Brain Stimulation Contacts Using Volume of Tissue Activated Software Following Subthalamic Nucleus Stimulation. J. Neurosurg. 2021, 135, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Luján, J.L.; McIntyre, C.C. Artificial Neural Network Based Characterization of the Volume of Tissue Activated during Deep Brain Stimulation. J. Neural. Eng. 2013, 10, 056023. [Google Scholar] [CrossRef]
- Carmichael, S.T.; Price, J.L. Limbic Connections of the Orbital and Medial Prefrontal Cortex in Macaque Monkeys. J. Comp. Neurol. 1995, 363, 615–641. [Google Scholar] [CrossRef]
- Heilbronner, S.R.; Haber, S.N. Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders. J. Neurosci. 2014, 34, 10041–10054. [Google Scholar] [CrossRef] [Green Version]
- Vogt, B.A.; Pandya, D.N. Cingulate Cortex of the Rhesus Monkey: II. Cortical Afferents. J. Comp. Neurol. 1987, 262, 271–289. [Google Scholar] [CrossRef]
- Freedman, L.J.; Insel, T.R.; Smith, Y. Subcortical Projections of Area 25 (Subgenual Cortex) of the Macaque Monkey. J. Comp. Neurol. 2000, 421, 172–188. [Google Scholar] [CrossRef]
- Videbech, P.; Ravnkilde, B.; Pedersen, A.R.; Egander, A.; Landbo, B.; Rasmussen, N.A.; Andersen, F.; Stødkilde-Jørgensen, H.; Gjedde, A.; Rosenberg, R. The Danish PET/Depression Project: PET Findings in Patients with Major Depression. Psychol. Med. 2001, 31, 1147–1158. [Google Scholar] [CrossRef]
- Smith, R.; Fadok, R.A.; Purcell, M.; Liu, S.; Stonnington, C.; Spetzler, R.F.; Baxter, L.C. Localizing Sadness Activation within the Subgenual Cingulate in Individuals: A Novel Functional MRI Paradigm for Detecting Individual Differences in the Neural Circuitry Underlying Depression. Brain Imaging Behav. 2011, 5, 229–239. [Google Scholar] [CrossRef]
- Parent, A.; Hazrati, L.N. Functional Anatomy of the Basal Ganglia. II. The Place of Subthalamic Nucleus and External Pallidium in Basal Ganglia Circuitry. Brain Res. Rev. 1995, 20, 128–154. [Google Scholar] [CrossRef] [PubMed]
- Le Gros Clark, W.E. The Termination of Ascending Tracts in the Thalamus of the Macaque Monkey. J. Anat. 1936, 71, 7–40. [Google Scholar] [PubMed]
- Lammel, S.; Lim, B.K.; Malenka, R.C. Reward and Aversion in a Heterogeneous Midbrain Dopamine System. Neuropharmacology 2014, 76, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; et al. Dopamine Neurons Modulate Neural Encoding and Expression of Depression-Related Behaviour. Nature 2013, 493, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, M.T.; Das, S.; Fibiger, H.C. Cortical Regulation of Subcortical Dopamine Release: Mediation via the Ventral Tegmental Area. J. Neurochem. 1995, 65, 1407–1410. [Google Scholar] [CrossRef]
- Koshiyama, D.; Fukunaga, M.; Okada, N.; Morita, K.; Nemoto, K.; Usui, K.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Kudo, N.; et al. White Matter Microstructural Alterations across Four Major Psychiatric Disorders: Mega-Analysis Study in 2937 Individuals. Mol. Psychiatry 2020, 25, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Riva-Posse, P.; Gross, R.E.; Mayberg, H.S. Mapping the “Depression Switch” during Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation. JAMA Neurol. 2015, 72, 1252–1260. [Google Scholar] [CrossRef] [Green Version]
- Medford, N.; Critchley, H.D. Conjoint Activity of Anterior Insular and Anterior Cingulate Cortex: Awareness and Response. Brain Struct. Funct. 2010, 214, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and Emotional Influences in Anterior Cingulate Cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, D.; Wang, Y.; Wang, Y.; Ou, S. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study. Front. Neuroanat. 2016, 10, 84. [Google Scholar] [CrossRef]
- Jones, D.K.; Christiansen, K.F.; Chapman, R.J.; Aggleton, J.P. Distinct Subdivisions of the Cingulum Bundle Revealed by Diffusion MRI Fibre Tracking: Implications for Neuropsychological Investigations. Neuropsychologia 2013, 51, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, J.D.; Christmas, D.; Eljamel, M.S.; Matthews, K. Anterior Cingulotomy for Major Depression: Clinical Outcome and Relationship to Lesion Characteristics. Biol. Psychiatry 2008, 63, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.D.; Kudra, K.; Zhao, Z.; Steffens, D.C.; Macfall, J.R. Cingulum Bundle White Matter Lesions Influence Antidepressant Response in Late-Life Depression: A Pilot Study. J. Affect. Disord. 2014, 162, 8–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, L.M.; Barba, A.; Campbell, M.; Lamar, M.; Shankman, S.A.; Leow, A.D.; Ajilore, O.; Langenecker, S.A. Shared White Matter Alterations across Emotional Disorders: A Voxel-Based Meta-Analysis of Fractional Anisotropy. Neuroimage Clin. 2016, 12, 1022–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catani, M.; Thiebaut de Schotten, M. A Diffusion Tensor Imaging Tractography Atlas for Virtual in Vivo Dissections. Cortex 2008, 44, 1105–1132. [Google Scholar] [CrossRef]
- Von der Heide, R.J.; Skipper, L.M.; Klobusicky, E.; Olson, I.R. Dissecting the Uncinate Fasciculus: Disorders, Controversies and a Hypothesis. Brain 2013, 136, 1692–1707. [Google Scholar] [CrossRef] [Green Version]
- Gaffan, D.; Wilson, C.R.E. Medial Temporal and Prefrontal Function: Recent Behavioural Disconnection Studies in the Macaque Monkey. Cortex 2008, 44, 928–935. [Google Scholar] [CrossRef]
- Cullen, K.R.; Klimes-Dougan, B.; Muetzel, R.; Mueller, B.A.; Camchong, J.; Houri, A.; Kurma, S.; Lim, K.O. Altered White Matter Microstructure in Adolescents with Major Depression: A Preliminary Study. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 173. [Google Scholar] [CrossRef] [Green Version]
- Van Velzen, L.S.; Kelly, S.; Isaev, D.; Aleman, A.; Aftanas, L.I.; Bauer, J.; Baune, B.T.; Brak, I.V.; Carballedo, A.; Connolly, C.G.; et al. White Matter Disturbances in Major Depressive Disorder: A Coordinated Analysis across 20 International Cohorts in the ENIGMA MDD Working Group. Mol. Psychiatry 2020, 25, 1511–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
Study | MRI (Tesla/b-Value) | Method of Analysis for DTI | DBS Location | DBS Stimulation Parameter | Key Findings |
---|---|---|---|---|---|
[38] | 3/1000 | Streamline tractography (a 60 × 60 × 60 mm ROI encompassing all sites of therapeutic stimulation) Electric field finite element Axonal activation model | VC/VS | 4–7 V, 60–210 μs, 100–130 Hz | Active pathways common to 75% of responder patients: five pathways passed through the ventral anterior internal capsule and coursed lateral and medial to the VS or dorsal and lateral to the NA. Active pathways common to 75% of non-responder patients: one pathway was adjacent to the ventromedial surface of the dorsal striatum and followed a general trajectory. |
[37] | 3/1000 | Activation volume probabilistic tractography (seed: VAT) | SCC | 6–10 mA, 91 μs, 130 Hz | 6-month and 2-year responders: three bilateral WM pathways were common to responders: (1) bilateral FM and medial aspect of the UF connecting the activation volume to the medial frontal cortex; (2) the CB connecting the activation volume to the rostral and dorsal ACC and MCC; (3) short descending midline fibers connecting the activation volume to subcortical nuclei including the NA, caudate, putamen, and anterior thalamus. 6-month and 2-year non-responders: lacked the connections mentioned above, with shared tracts failing to reach the frontal poles and body of the CB and with fewer connections to subcortical areas. |
[26] | 3/1000 | Whole-brain unconstrained probabilistic tractography | Posterior gyrus rectus | 90 μs, 130 Hz, 5 V | The probability of projections reaching medial PFC through the FM and NA, or anterior caudate through the UF, was higher in the responder patient than in the average non-responder. Conversely, lower connectivity probability was found for tracts reaching the ACC and MCC through the CB in the responder patient. |
[22] | 3/1000 | Probabilistic tractography (seed: VAT) | Medial forebrain bundle | 125 Hz, 75 μs, 2–3 mA | The three responder patients have strong connectivity between the target location of the active electrode contact points and the medial PFC. The non-responder patient has limited, sparse connectivity between the seed region and the PFC on planning images. |
[32] | 3/1000 | Seed-to-target probabilistic tractography (seed: VAT, target: bilateral medial PFC via FM and UF, ipsilateral ventral striatum and ACC) | SCC | 8 mA, 130 Hz, 91 μs | The structural connectivity of estimated VAT in the responder demonstrated connectivity with all four targets, whereas in the non-responder, there was <1% probability of connectivity (i.e., number of streamlines per seed voxel) with the ventral striatum. |
[27] | 3/1000 | Probabilistic tractography (seed: VAT) | Medial forebrain bundle | 125 Hz, 75 μs, 2–3 mA | At 1-year follow-up: all but the non-responder had strong connectivity between the target location of the active contact and the OFC. The non-responder patient had limited, sparse connectivity between the seed region and the PFC. |
[33] | 3/1000 | slMFB-based volume analysis Whole-brain volume analysis Tractography of slMFB | slMFB | 1–3 mA, 130 Hz, 60 μs | No significant relationships between microstructural measures of slMFB and treatment response were found. Positive relationship between treatment response and enlargement of SM in left frontopolar slMFB terminals. This enlargement was confined to WM and not to associated cortical regions. |
[36] | 3/1000 | Seed-to-target probabilistic tractography (streamlines from tractography were used to approximate the trajectories and locations of axons within WM pathways of interest surrounding the SCC region; seeds: FM, CB, UF, and frontal pole) | SCC | 4 V, 60–90 μs, 130 Hz | Activated axons within WM pathways of interest: DBS directly activated both CBs in every subject except one patient, where only the right CB was activated. FM was also activated in most patients. Compared to FM and CB, the two other pathways were activated to a much lesser degree. Correlations of axonal responses with clinical outcomes: four regressors (FM, left CB, right CB, and right FP) explained 99% of the variation in the patient’s time to stable response. Activation of the right CB, alone explained 84% of the variance in time to stable response, and the addition of FM, left CB, and right FP did not contribute significant information to the linear model. |
[34] | 3/1000 | Seed-to-target probabilistic tractography between patient-specific VAT and pre-defined target (seed: MCC, medial frontal, amygdala, caudate, putamen, thalamus, NA, OFC, raphe nuclei, and VTA bilaterally) | SCC | 6 mA, 130 Hz, 90 μs | Greater the structural connectivity between the SCC VAT and the MCC, the more the heart rate increased for specific stimulation trials. No significant relationship was found between the estimated structural connectivity of the SCC VAT to any other potential connected targets and the change in heart rate. |
[35] | 3/1000 | Whole-brain probabilistic tractography (seed: VAT) Bundle-specific tractography analysis (tract of interest: CB, UF, FM, and frontostriatal projections) | SCC | 90–450 μs, 130 Hz, 4–8 V | Whole-brain probabilistic tractography: The common tract map showed that all responders shared tracts projecting to the medial frontal pole and the temporal lobe. Non-responders showed a more limited tract profile, with projections more confined to the local area and lacking the lateral projections to the medial frontal and temporal lobes. Projections to the striatum were limited in both groups but were more prominent in the non-responders. The cingulum bundle was not identified in the common tract map of either responders or non-responders. Bundle-specific tractography analysis: At 6 months: responders had significantly more VAT overlap with the CB than non-responders. Responders and non-responders did not significantly differ in VAT overlap with the FM, the UF, or the frontostriatal projections. At 1 year: responders had significantly less VAT overlap with the FM tract compared to non-responders. Responders and non-responders did not significantly differ in VAT overlap with the CB, the UF, or the frontostriatal projections. |
[24] | 3/600 | Probabilistic tractography (seed: VTA for slMFB and anterior thalamus for ATR) | Ventral anterior limb of the internal capsule | 3.5–7.3 V, 60–120 μs, 130–190 Hz | Tracts of interest (slMFB and ATR) were reconstructed for all patients. There was a significant relationship between the average distance between tracts of interest and DBS contacts and percentage response. The VAT analysis showed that only 35 out of 56 (62.5%) bundles (2 bundles by 2 hemispheres by 14 patients) were located within the VAT. More specifically, the ATR was in VAT range in both hemispheres for 9 patients (11 left, 10 right), whereas the VAT covered the slMFB in both hemispheres in only 2 patients (5 left, 9 right). The average distance of both tracts to the VAT was significantly associated with the percentage change in HDRS. |
Author Year | TRD Patients (M/F) | Diagnosis | Age (Years) | Age of Onset (Years) | Duration of Current MDE (Months) | Medications | Assessment Tool (Baseline Score) | Duration of Follow-Up | Clinical Outcomes |
---|---|---|---|---|---|---|---|---|---|
[38] | 7 (2/5) | NR | 42.42 (13.28) | NR | NR | NR | HDRS 32.0 (4.08) MADRS 30.42 (4.50) GAF 45.14 (2.60) | 26.42 (9.79) months | HDRS, MADRS, and GAF improvements from baseline: 66.8% (43.7%), 78.5% (34.3%), and 34.8% (20.7%). Five remitters and two non-responders. |
[37] | 17 (7/10) | 10 MDD, 7 BD | 42.0 (8.9) | 19.9 (7.8) | 64.1 (53.7) | NR | HDRS 23.9 (0.7) BDI 38.4 (2.1) GAF 33.9 (1.7) | 6 months and 2 years | 6-month: 7 responders and 10 non-responders 2-year: 13 responders and 2 non-responders |
[26] | 5 (4/1) | 5 MDD | 45.2 (14.4) | 25.0 (8.83) | NR | 3 AP, 3 AD, 1 MS, 2 anxiolytics | HDRS 28.6 (3.13) BDI 41.0 (10.36) | 3 and 6 months | One responder and four non-responders |
[22] | 4 (2/2) | 4 MDD | 46.3 (8.9) | 16.5 (3.4) | 6.3 (2.1) | Medicated | HDRS 39.8 (2.2) MADRS 34 (2.9) | 1 week and 6 months | Three responders at week 1 and two responders at month 6 |
[32] | 2 | NR | NR | NR | NR | NR | MADRS | NR | One responder and one non-responder |
[27] | 6 (2/4) | 6 MDD | 50.2 (10.2) | 15.2 (6.3) | 5.7 (2.1) | Medicated | HDRS 39.5 (1.8) MADRS 35 (2.8) | 1 week, 6 months, 1 year | Three responders at week 1 and four responders at 1 year |
[33] | 24 | NR | NR | NR | NR | NR | MADRS | 6 months and 1 year | NR |
[36] | 6 (2/4) | 6 MDD | 54.1 (8.9) | 25.83 (7.16) | 48.0 (44.25) | Medicated | HDRS 21.58 (1.80) | 1 year | All were responders, with time to stable response being 98.66 (68.67) days |
[34] | 9 (2/7) | 9 MDD | 46.2 (8.29) | 21.11 (11.61) | 36.67 (20.0) | NR | HDRS 22.53 (2.78) | NR | NR |
[35] | 19 (10/9) | 19 MDD | Responders: 42.2 (15.4) Non-responders: 50.2 (13.4) | NR | Responders: 19.3 (23.3) Non-responders: 33.0 (20.1) | NR | HDRS Responders: 23.2 (2.82) Non-responders: 24.1 (4.9) | 6 months and 1 year | 6 months: 9 responders and 10 non-responders 1 year: 9 responders and 10 non-responders |
[24] | 14 | 14 MDD | 18–65 | NR | NR | NR | HDRS | 416 (154) days | The treatment response was, on average, 7.4 points (-33%) on the HDRS, with seven responders |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattarinussi, G.; Moghaddam, H.S.; Aarabi, M.H.; Squarcina, L.; Sambataro, F.; Brambilla, P.; Delvecchio, G. White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies. Int. J. Mol. Sci. 2022, 23, 15379. https://doi.org/10.3390/ijms232315379
Cattarinussi G, Moghaddam HS, Aarabi MH, Squarcina L, Sambataro F, Brambilla P, Delvecchio G. White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies. International Journal of Molecular Sciences. 2022; 23(23):15379. https://doi.org/10.3390/ijms232315379
Chicago/Turabian StyleCattarinussi, Giulia, Hossein Sanjari Moghaddam, Mohammad Hadi Aarabi, Letizia Squarcina, Fabio Sambataro, Paolo Brambilla, and Giuseppe Delvecchio. 2022. "White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies" International Journal of Molecular Sciences 23, no. 23: 15379. https://doi.org/10.3390/ijms232315379
APA StyleCattarinussi, G., Moghaddam, H. S., Aarabi, M. H., Squarcina, L., Sambataro, F., Brambilla, P., & Delvecchio, G. (2022). White Matter Microstructure Associated with the Antidepressant Effects of Deep Brain Stimulation in Treatment-Resistant Depression: A Review of Diffusion Tensor Imaging Studies. International Journal of Molecular Sciences, 23(23), 15379. https://doi.org/10.3390/ijms232315379