Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters
2.2. The Cytotoxic Effect of Macrocycles 3–6 on Human Cell Lines
2.3. The Hemolytic Activity of Macrocycles 3–6
2.4. Plasma Clotting Assessment
2.5. Platelet Aggregation Test
2.6. The Study of the Interaction of Macrocycles 3–6 with Bovine Serum Albumin
2.6.1. The Study of Macrocycle–BSA Interactions by Fluorimetry
2.6.2. Effect of Macrocycles 3–6 on BSA Conformation
2.6.3. The Study of BSA–Macrocycle Solutions by Dynamic Light Scattering Method
3. Materials and Methods
3.1. General Procedure for the Synthesis of Compounds 3 and 4
3.2. General Procedure for the Synthesis of Compounds 5 and 6
3.3. Hemolytic Activity Assay
3.4. Cytotoxic Effect Assay
3.5. Antiaggregant and Anticoagulant Activities Assay
3.6. Determination of Cac Values of Compounds 3–6 by Fluorimetry Method with Pyrene Probe
3.7. Investigation of Compounds 3–6—BSA Interaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, A.; Wheate, N.J. Macrocycles as drug-enhancing excipients in pharmaceutical formulations. J. Incl. Phenom. Macrocycl. Chem. 2021, 100, 55–69. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Brüßler, J.; Alawak, M.; El-Sayed, M.M.H.; Bakowsky, U.; Shoeib, T. Chemotherapy based on supramolecular chemistry: A promising strategy in cancer therapy. Pharmaceutics 2019, 11, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Chen, X. Host–guest chemistry in supramolecular theranostics. Theranostics 2019, 9, 3041–3074. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, H.; Zheng, B.; Huang, F. Combating antibiotic resistance: Current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant 2021, 7, 100066. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, X.; Wei, J.; Lu, S.; Bardelang, D.; Wang, R. Recent advances in supramolecular antidotes. Theranostics 2021, 11, 1513–1526. [Google Scholar] [CrossRef]
- Sowa, A.; Voskuhl, J. Host-guest complexes—Boosting the performance of photosensitizers. Int. J. Pharm. 2020, 586, 119595. [Google Scholar] [CrossRef]
- Geng, W.-C.; Huang, Q.; Xu, Z.; Wang, R.; Guo, D.-S. Gene delivery based on macrocyclic amphiphiles. Theranostics 2019, 9, 3094–3106. [Google Scholar] [CrossRef]
- Tauran, Y.; Coleman, A.W.; Perret, F.; Kim, B. Cellular and in vivo biological activities of the calix[n]arenes. Curr. Org. Chem. 2015, 19, 2250–2270. [Google Scholar] [CrossRef]
- Fan, X.; Guo, X. Development of calixarene-based drug nanocarriers. J. Mol. Liq. 2021, 325, 115246. [Google Scholar] [CrossRef]
- Razuvayeva, Y.; Kashapov, R.; Zakharova, L. Calixarene-based pure and mixed assemblies for biomedical applications. Supramol. Chem. 2020, 32, 178–206. [Google Scholar] [CrossRef]
- Sobczynski, D.J.; Fish, M.B.; Fromen, C.A.; Carasco-Teja, M.; Coleman, R.M.; Eniola-Adefeso, O. Drug carrier interaction with blood: A critical aspect for high-efficient vascular-targeted drug delivery systems. Ther. Deliv. 2015, 6, 915–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Harpe, K.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.D.; Rousseau, C.F.; Zanella-Cléon, I.; Becchi, M.; Coleman, A.W. Mass spectrometric determination of association constants of bovine serum albumin (BSA) with para-sulphonato-calix[n]arene derivatives. J. Incl. Phenom. Macrocycl. Chem. 2006, 54, 53–59. [Google Scholar] [CrossRef]
- Solanki, R.; Rostamabadi, H.; Patel, S.; Jafari, S.M. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int. J. Biol. Macromol. 2021, 15, 528–540. [Google Scholar] [CrossRef]
- Memmi, L.; Lazar, A.; Brioude, A.; Ball, V.; Coleman, A.W. Protein–calixarene interactions: Complexation of bovine serum albumin by sulfonatocalix[n]arenes. Chem. Commun. 2001, 2474–2475. [Google Scholar] [CrossRef] [PubMed]
- Ukhatskaya, E.V.; Kurkov, S.V.; Rodik, R.V.; Kalchenko, V.I.; Matthews, S.E.; Jansook, P.; Loftsson, T. Surface activity and self-aggregation ability of three cationic quaternized aminocalix[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 473–483. [Google Scholar] [CrossRef]
- Morozova, J.E.; Syakaev, V.V.; Kazakova, E.K.; Shalaeva, Y.V.; Nizameev, I.R.; Kadirov, M.K.; Voloshina, A.D.; Zobov, V.V.; Konovalov, A.I. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: Construction of nano-aggregates. Soft Matter. 2016, 12, 5590–5599. [Google Scholar] [CrossRef] [Green Version]
- Morozova, J.E.; Myaldzina, C.R.; Voloshina, A.D.; Lyubina, A.P.; Amerhanova, S.K.; Syakaev, V.V.; Kazakova, E.K.; Ziganshina, A.Y.; Antipin, I.S. Calixresorcine cavitands bearing lipophilic cationic fragments in the construction of mitochondrial-targeting supramolecular nanoparticles. Colloids Surf. A 2022, 642, 128622. [Google Scholar] [CrossRef]
- Kashapov, R.R.; Razuvayeva, Y.S.; Ziganshina, A.Y.; Mukhitova, R.K.; Sapunova, A.S.; Voloshina, A.D.; Nizameev, I.R.; Kadirov, M.K.; Zakharova, L.Y. Design of N-methyl-D-glucamine-based resorcin[4]arene nanoparticles for enhanced apoptosis effects. Mol. Pharm. 2020, 17, 40–49. [Google Scholar] [CrossRef]
- Shumatbaeva, A.M.; Morozova, J.E.; Syakaev, V.V.; Zakharychev, D.V.; Sapunova, A.S.; Voloshina, A.D.; Bekmuratova, F.A.; Babaev, V.M.; Antipin, I.S. A novel salt-responsive hydrogel on the base of calixresorcinarene–mPEG amide conjugate. Colloids Surf. A 2021, 611, 125814. [Google Scholar] [CrossRef]
- Shumatbaeva, A.M.; Morozova, J.E.; Syakaev, V.V.; Shalaeva, Y.V.; Sapunova, A.S.; Voloshina, A.D.; Gubaidullin, A.T.; Bazanova, O.B.; Babaev, V.M.; Nizameev, I.R.; et al. The pH-responsive calix[4]resorcinarene-mPEG conjugates bearing acylhydrazone bonds: Synthesis and study of the potential as supramolecular drug delivery systems. Colloids Surf. A 2020, 589, 124453. [Google Scholar] [CrossRef]
- Shumatbaeva, A.M.; Morozova, J.E.; Shalaeva, Y.V.; Gubaidullin, A.T.; Saifina, A.F.; Syakaev, V.V.; Bazanova, O.B.; Sapunova, A.S.; Voloshina, A.D.; Nizameev, I.R.; et al. The novel calix[4]resorcinarene-PEG conjugate: Synthesis, self-association and encapsulation properties. Colloids Surf. A 2019, 570, 182–190. [Google Scholar] [CrossRef]
- Ermakova, A.M.; Morozova, J.E.; Shalaeva, Y.V.; Syakaev, V.V.; Gubaidullin, A.T.; Voloshina, A.D.; Zobov, V.V.; Nizameev, I.R.; Bazanova, O.B.; Antipin, I.S.; et al. Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein J. Nanotechnol. 2018, 9, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Syakaev, V.V.; Morozova, J.E.; Bogdanov, A.V.; Shalaeva, Y.V.; Ermakova, A.M.; Voloshina, A.D.; Zobov, V.V.; Nizameev, I.R.; Kadirov, M.K.; Mironov, V.F.; et al. Solubilization of azo-dye-modified isatin derivative by amphiphilic carboxyresorcinarenes: The effect of macrocycle structure on the supramolecular association. Colloids Surf. A 2018, 553, 368–377. [Google Scholar] [CrossRef]
- Silva, E.D.; Ficheux, D.; Coleman, A.W. Anti-thrombotic activity of water-soluble calix[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 52, 201–206. [Google Scholar] [CrossRef]
- Rekkab, S.; Lahouel, M.; Hadda, T.B.; Félix, C.; Kabouche, Z. Design, synthesis and anticoagulant activity of new flexible calix[8]arene sulfonic acids. Comptes Rendus Chim. 2013, 16, 672–678. [Google Scholar] [CrossRef]
- Jebors, S.; Fache, F.; Balme, S.; Devoge, F.; Monachino, M.; Cecillon, S.; Coleman, A.W. Designer amphiphiles based on para-acyl-calix[8]arenes. Org. Biomol. Chem. 2008, 6, 319–329. [Google Scholar] [CrossRef]
- Lugovskoy, E.V.; Gritsenko, P.G.; Koshel, T.A.; Koliesnik, I.O.; Cherenok, S.O.; Kalchenko, O.I.; Kalchenko, V.I.; Komisarenko, S.V. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011, 278, 1244–1251. [Google Scholar] [CrossRef]
- Chernyshenko, V.O.; Korolova, D.S.; Dosenko, V.E.; Pashevin, D.O.; Kalchenko, V.I.; Pirogova, L.V.; Chernyshenko, T.M.; Lugovska, O.E.; Kravchenko, N.A.; Makogonenko, Y.M.; et al. Calix[4]arene C-145 effects on plasma haemostasis. Pharm. Anal. Acta 2015, 6, 1000406. [Google Scholar] [CrossRef]
- Yakimova, L.; Kunafina, A.; Mostovaya, O.; Padnya, P.; Mukhametzyanov, T.; Voloshina, A.; Petrov, K.; Boldyrev, A.; Stoikov, I. Albumin/thiacalix[4]arene nanoparticles as potential therapeutic systems: Role of the macrocycle for stabilization of monomeric protein and self-assembly with ciprofloxacin. Int. J. Mol. Sci. 2022, 23, 10040. [Google Scholar] [CrossRef]
- Shalaeva, Y.V.; Morozova, J.E.; Shumatbaeva, A.M.; Nizameev, I.R.; Kadirov, M.K.; Antipin, I.S. Binding of L-tryptophan and bovine serum albumin by novel gold nanoparticles capped with amphiphilic sulfonatomethylated calixresorcinarenes. J. Mol. Liq. 2019, 286, 110879. [Google Scholar] [CrossRef]
- Burilov, V.; Mironova, D.A.; Ibragimova, R.R.; Solovieva, S.E.; Antipin, I.S. Interactions of new bis-ammonium thiacalix[4]arene derivatives in 1,3-alternate stereoisomeric form with bovine serum albumin. BioNanoSci 2016, 6, 427–430. [Google Scholar] [CrossRef]
- Dell’Orco, D.; Lundqvist, M.; Oslakovic, C.; Cedervall, T.; Linse, S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 2010, 5, 10949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikkhah, S.J.; Vandichel, M. Modeling polyzwitterion-based drug delivery platforms: A perspective of the current state-of-the-art and beyond. ACS Eng. Au 2022, 2, 274–294. [Google Scholar] [CrossRef]
- Lee, H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics 2020, 12, 533. [Google Scholar] [CrossRef]
- Syakaev, V.V.; Kazakova, E.K.; Morozova, J.E.; Shalaeva, Y.V.; Latypov, S.K.; Konovalov, A.I. Guest controlled aggregation of amphiphilic sulfonatomethylated calix[4]resorcinarenes in aqueous solutions. J. Colloid Interface Sci. 2012, 370, 19–26. [Google Scholar] [CrossRef]
- Mironova, D.A.; Muslinkina, L.A.; Syakaev, V.V.; Morozova, J.E.; Yanilkin, V.V.; Konovalov, A.I.; Kazakova, E.K. Crystal violet dye in complexes with amphiphilic anionic calix[4]resorcinarenes: Binding by aggregates and individual molecules. J. Colloid Interface Sci. 2013, 407, 148–154. [Google Scholar] [CrossRef]
- Erfani, A.; Seaberg, J.; Aichele, C.P.; Ramsey, J.D. Interactions between biomolecules and zwitterionic moieties: A review. Biomacromolecules 2020, 21, 2557–2573. [Google Scholar] [CrossRef]
- Guo, S.; Shi, Y.; Liang, Y.; Liu, L.; Sun, K.; Li, Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J. Pharm. Sci. 2021, 16, 551–576. [Google Scholar] [CrossRef]
- Simak, J.; De Paoli, S. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. WIREs Nanomed. Nanobiothechnol. 2017, 9, 1448. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B.; Stochmal, A.; Oleszek, W. Anti-platelet effects of different phenolic compounds from Yucca schidigera Roezl. Bark. Platelets 2002, 13, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Born, G.V.R. Quantitative investigation into the aggregation of blood platelets. J. Physiol. 1962, 162, 67–68. [Google Scholar]
- Mishra, V.; Heath, R.J. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. Int. J. Mol. Sci. 2021, 22, 8411. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 71–72. [Google Scholar]
- Bi, S.; Sun, Y.; Qiao, C.; Zhang, H.; Liu, C. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study. J. Lumin. 2009, 129, 541–547. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies. J. Phys. Chem. B 2010, 114, 5625–5631. [Google Scholar] [CrossRef]
- Hu, Y.J.; Ou-Yang, Y.; Dai, C.M.; Liu, Y.; Xiao, X.H. Binding of berberine to bovine serum albumin: Spectroscopic approach. Mol. Biol. Rep. 2010, 37, 3827–3832. [Google Scholar] [CrossRef]
- Ware, W.R. Oxygen quenching of fluorescence in solution: An experimental study of diffusion process. J. Phys. Chem. 1962, 66, 455–458. [Google Scholar] [CrossRef]
- Khaibrakhmanova, D.; Nikiforova, A.; Sedov, I. Binding constants of substituted benzoic acids with bovine serum albumin. Pharmaceuticals 2020, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Gao, S.; Holkar, A.; Srivastava, S. Protein–polyelectrolyte complexes and micellar assemblies. Polymers 2019, 11, 1097. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Faizullin, D.A.; Zuev, Y.F.; Nizameev, I.R.; Kadirov, M.K.; Kuznetsov, D.M.; Zakharova, L.Y. Interaction of bovine serum albumin with cationic imidazolium-containing amphiphiles bearing urethane fragment: Effect of hydrophobic tail length. J. Mol. Liq. 2020, 307, 113001. [Google Scholar] [CrossRef]
- Greenfield, N. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Tunstad, L.M.; Tucker, J.A.; Dalcanale, E.; Weiser, J.; Bryant, J.A.; Sherman, J.C.; Helgeson, R.C.; Knobler, C.B.; Cram, D.C. Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. J. Org. Chem. 1989, 54, 1305–1312. [Google Scholar] [CrossRef]
- Mironov, A.N. (Ed.) Handbook for Preclinical Drug Trials; Grif i K: Moscow, Russia, 2012; Volume 1, 944p. (In Russian) [Google Scholar]
- Aguiar, J.; Carpena, P.; Molina-Bolívar, J.A.; Ruiz, C.C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
Macrocycle | IC50 (µM) | HC50 (µM) | |
---|---|---|---|
Chang Liver | M-HeLa | ||
3 | 688 | 1244 | >5000 |
4 | 1219 | 2166 | >5000 |
5 | 6000 | 4600 | >5000 |
6 | 3200 | 2400 | >5000 |
Macrocycle | APTT, % of Control | Maximum Amplitude, % of Control | Aggregation Rate, % of Control | Time to Reach of Maximum Amplitude, % of Control |
---|---|---|---|---|
3 | +4.9 (3.7–5.6) | −15.7 (13.7–18.9) * | −3.8 (2.7–5.9) # | +6.3 (4.6–9.7) * |
4 | +6.2 (5.7–7.8) | −16.9 (15.3–20.7) * | −9.4 (8.2–11.9) * | +9.4 (7.3–12.7) * |
5 | +8.4 (7.5–10.2) | −13.4 (11.9–14.5) * | −2.3 (1.7–4.2) # | +6.7 (4.3–8.5) * |
6 | +3.1 (2.7–6.5) | −9.8 (7.6–11.9) * | −14.5 (10.4–17.3) * | +13.7 (8.9–15.2) * |
Heparin | +20.3 (19.7–21.4) ** | - | - | - |
Acetylsalicylic acid | - | −13.7 (10.8–16.4) * | −10.5 (7.6–12.3) * | +10.5 (8.7–13.4) * |
System | T, K | KSV 10−3, L mol−1 | kq 10−12, L mol−1 s−1 | lgKas | n | ΔH°, kJ mol−1 | ΔS°, J mol−1 | ΔG°, kJ mol−1 |
---|---|---|---|---|---|---|---|---|
3 + BSA | 293 | 15.1 | 1.51 | 6.42 | 1.6 | −182.841 | −500.8 | −36.1 |
303 | 13.4 | 1.34 | 5.39 | 1.3 | ||||
308 | 12.8 | 1.28 | 4.83 | 1.0 | ||||
4 + BSA | 293 | 11.8 | 1.18 | 4.83 | 1.2 | −107.3 | −274.3 | −27.0 |
303 | 11.4 | 1.14 | 4.08 | 1.0 | −24.2 | |||
308 | 8.7 | 0.87 | 3.93 | 1.0 | −22.8 | |||
5 + BSA | 293 | 5.9 | 0.59 | 4.19 | 1.1 | −59.0 | −121.2 | −23.5 |
303 | 5.6 | 0.56 | 3.83 | 1.0 | −22.3 | |||
308 | 5.5 | 0.55 | 3.62 | 1.0 | −21.7 | |||
6 + BSA | 293 | 6.1 | 0.61 | 3.90 | 1.1 | −37.0 | −51.5 | −21.9 |
303 | 4.2 | 0.42 | 3.68 | 1.1 | −21.4 | |||
308 | 1.7 | 0.17 | 3.58 | 1.1 | −21.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, J.E.; Gilmullina, Z.R.; Voloshina, A.D.; Lyubina, A.P.; Amerhanova, S.K.; Syakaev, V.V.; Babaeva, O.B.; Ziganshina, A.Y.; Mukhametzyanov, T.A.; Samorodov, A.V.; et al. Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. Int. J. Mol. Sci. 2022, 23, 15298. https://doi.org/10.3390/ijms232315298
Morozova JE, Gilmullina ZR, Voloshina AD, Lyubina AP, Amerhanova SK, Syakaev VV, Babaeva OB, Ziganshina AY, Mukhametzyanov TA, Samorodov AV, et al. Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. International Journal of Molecular Sciences. 2022; 23(23):15298. https://doi.org/10.3390/ijms232315298
Chicago/Turabian StyleMorozova, Julia E., Zuchra R. Gilmullina, Alexandra D. Voloshina, Anna P. Lyubina, Syumbelya K. Amerhanova, Victor V. Syakaev, Olga B. Babaeva, Albina Y. Ziganshina, Timur A. Mukhametzyanov, Aleksandr V. Samorodov, and et al. 2022. "Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities" International Journal of Molecular Sciences 23, no. 23: 15298. https://doi.org/10.3390/ijms232315298
APA StyleMorozova, J. E., Gilmullina, Z. R., Voloshina, A. D., Lyubina, A. P., Amerhanova, S. K., Syakaev, V. V., Babaeva, O. B., Ziganshina, A. Y., Mukhametzyanov, T. A., Samorodov, A. V., Galagudza, M. M., & Antipin, I. S. (2022). Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. International Journal of Molecular Sciences, 23(23), 15298. https://doi.org/10.3390/ijms232315298