Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Bioactive Compounds
2.2. Assessment of Antioxidant Activity
2.3. Cytotoxicity Assessment
2.4. Transepidermal Water Loss (TEWL), Skin Hydration, and Skin pH Measurements
3. Materials and Methods
3.1. Plant Material and Fermentation Procedure
3.2. Determination of Biologically Active Compounds
3.3. Determination of Antioxidant Properties
3.3.1. DPPH Radical Scavenging Assay
3.3.2. ABTS• + Scavenging Assay
3.3.3. Detection of Intracellular Levels of Reactive Oxygen Species (ROS)
3.4. Cytotoxicity Anlysis
3.4.1. Cell Culture
3.4.2. Alamar Blue Assay
3.4.3. Neutral Red Uptake Assay
3.5. Transepidermal Water Loss (TEWL), Skin Hydration, and Skin pH Measurements
3.6. Preparation of the Model Skin Tonics
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani, A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021, 26, 6338. [Google Scholar] [CrossRef]
- Majchrzak, W.; Motyl, I.; Śmigielski, K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022, 27, 4845. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int. J. Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Bujak, T.; Wójciak, M.; Sowa, I. Evaluation of Cosmetic and Dermatological Properties of Kombucha-Fermented Berry Leaf Extracts Considered to Be By-Products. Molecules 2022, 27, 2345. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Z.; Urek, R.O. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J. Biosci. Bioeng. 2015, 120, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Ashigai, H.; Komano, Y.; Wang, G.; Kawachi, Y.; Sunaga, K.; Yamamoto, R.; Takata, R.; Miyake, M.; Yanai, T. Effect of administrating polysaccharide from black currant (Ribes nigrum L.) on atopic dermatitis in NC/Nga mice. Biosci. Microbiota Food Health 2018, 37, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; El Omari, N.; EL Hachlafi, N.; El Jemly, M.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Mrabti, H.N.; Khouchlaa, A.; et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022, 27, 3286. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.G.R.; Gasga, V.M.Z.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Burgos, J.A.S. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res. Int. 2020, 140, 109854. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Gülçin, I.; Topal, F.; Çakmakçı, R.; Bilsel, M.; Goren, A.C.; Erdogan, U. Pomological Features, Nutritional Quality, Polyphenol Content Analysis, and Antioxidant Properties of Domesticated and 3 Wild Ecotype Forms of Raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, C585–C593. [Google Scholar] [CrossRef] [PubMed]
- Määttä, K.; Kamal-Eldin, A.; Törrönen, R. Phenolic Compounds in Berries of Black, Red, Green, and White Currants (Ribes sp.). Antioxidants Redox Signal. 2001, 3, 981–993. [Google Scholar] [CrossRef]
- Gülmez, G.; Şen, A.; Şekerler, T.; Algül, F.K.; Çilingir-Kaya, T.; Şener, A. The antioxidant, anti-inflammatory, and antiplatelet effects of Ribes rubrum L. fruit extract in the diabetic rats. J. Food Biochem. 2022, 46, e14124. [Google Scholar] [CrossRef] [PubMed]
- Couto, J.; Figueirinha, A.; Batista, M.T.; Paranhos, A.; Nunes, C.; Gonçalves, L.M.; Marto, J.; Fitas, M.; Pinto, P.; Ribeiro, H.M.; et al. Fragaria vesca L. Extract: A Promising Cosmetic Ingredient with Antioxidant Properties. Antioxidants 2020, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.-W.; Cheng, Y.-C.; Hung, Y.-C.; Lee, C.-H.; Fang, J.-Y.; Li, W.-T.; Wu, Y.-R.; Pan, T.-L. Red Raspberry Extract Protects the Skin against UVB-Induced Damage with Antioxidative and Anti-inflammatory Properties. Oxid. Med. Cell. Longev. 2019, 2019, 9529676. [Google Scholar] [CrossRef] [Green Version]
- Yoseph, C.; Avanti, C.; Hadiwidjaja, M.; Briliani, K. The Importance of Fermented Active for Anti Aging incosmetics Product. Pharmacogn. Phytochem. 2021, 9, 485–493. [Google Scholar] [CrossRef]
- Gledovic, A.; Lezaic, A.J.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. Nanomaterials 2021, 11, 217. [Google Scholar] [CrossRef]
- Del Rosso, J.Q.; Cash, K. Topical corticosteroid application and the structural and functional integrity of the epidermal barrier. J. Clin. Aesthet. Dermatol. 2013, 6, 20–27. [Google Scholar]
- Chaves-Silva, S.; dos Santos, A.L.; Chalfun-Júnior, A.; Zhao, J.; Peres, L.E.; Benedito, V.A. Understanding the genetic regulation of anthocyanin biosynthesis in plants—Tools for breeding purple varieties of fruits and vegetables. Phytochemistry 2018, 153, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun. 2020, 11, 4265. [Google Scholar] [CrossRef]
- Sinha, S.; Lin, G.; Ferenczi, K. The Skin Microbiome and the Gut-Skin Axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef]
- O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The Gut-Skin Axis in Health and Disease: A Paradigm with Therapeutic Implications. BioEssays 2016, 38, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.L.; Chandra, S.; Shih, D.Q. Skin Manifestations of Inflammatory Bowel Disease. Front. Physiol. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szajdek, A.; Borowska, E.J. Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Ivanišová, E.; Blašková, M.; Terentjeva, M.; Grygorieva, O.; Vergun, O.; Brindza, J.; Kačániová, M. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products. Acta Sci. Pol. Technol. Aliment. 2020, 19, 195–205. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.-P.; Taillandier, P.; Beaufort, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef] [PubMed]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Wang, S.Y.; HsinShan, L. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Aburjai, T.; Natsheh, F.M. Plants Used in Cosmetics. Phyther. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and Biology of Ageing. Insight Rev. Artic. 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and Antiproliferative Activities of Strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Harangozo, Ľ.; Kántor, A.; Kačániová, M. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J. Food Sci. Technol. 2020, 57, 1840–1846. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Gutowska, I.; Antoniewicz, J.; Janda, K. Evaluation of Fluoride and Selected Chemical Parameters in Kombucha Derived from White, Green, Black and Red Tea. Biol. Trace Elem. Res. 2021, 199, 3547–3552. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Liou, S.-S.; Tzeng, T.-F.; Lee, S.-L.; Liu, I.-M. Effect of Topical Application of Chlorogenic Acid on Excision Wound Healing in Rats. Planta Med. 2013, 79, 616–621. [Google Scholar] [CrossRef]
- Lee, K.-H.; Do, H.-K.; Kim, D.-Y.; Kim, W. Impact of chlorogenic acid on modulation of significant genes in dermal fibroblasts and epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2021, 583, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Moh, S.H.; Son, D.H.; You, S.; Kinyua, A.W.; Ko, C.M.; Song, M.; Yeo, J.; Choi, Y.-H.; Kim, K.W. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions. Molecules 2016, 21, 899. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Nie, Y.; Zheng, X.-Q.; Lu, J.-L.; Liang, Y.-R.; Ye, J.-H. Ultraviolet B (UVB) Photosensitivities of Tea Catechins and the Relevant Chemical Conversions. Molecules 2016, 21, 1345. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Arct, J.; Bielenda, B.; Oborska, A.; Pytkowska, K. The Tea and Its Cosmetic Application. J. Appl. Cosmetol. 2003, 21, 117–127. [Google Scholar]
- Tanigawa, T.; Kanazawa, S.; Ichibori, R.; Fujiwara, T.; Magome, T.; Shingaki, K.; Miyata, S.; Hata, Y.; Tomita, K.; Matsuda, K.; et al. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement. Altern. Med. 2014, 14, 133. [Google Scholar] [CrossRef] [Green Version]
- Agnieszka, G.; Katarzyna, B.; Michał, B.; Izabela, D.; Elżbieta, S. Differences in rutin effect on membrane phospholipids in skin fibroblasts irradiated with UVA and UVB. Free Radic. Biol. Med. 2018, 124, 568. [Google Scholar] [CrossRef]
- Gęgotek, A.; Bielawska, K.; Biernacki, M.; Dobrzyńska, I.; Skrzydlewska, E. Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation. Redox Biol. 2017, 12, 733–744. [Google Scholar] [CrossRef]
- Lephart, E.D. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev. 2016, 31, 36–54. [Google Scholar] [CrossRef]
- Rittié, L.; Fisher, G.J. Natural and Sun-Induced Aging of Human Skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef]
- Song, Y.-R.; Shin, N.-S.; Baik, S.-H. Physicochemical and functional characteristics of a novel fermented pepper (Capsiccum annuum L.) leaves-based beverage using lactic acid bacteria. Food Sci. Biotechnol. 2014, 23, 187–194. [Google Scholar] [CrossRef]
- Leyden, J.J.; Rawlings, A.V. Skin Moisturization, 1st ed.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC−DAD−ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef] [PubMed]
- Tito, A.; Bimonte, M.; Carola, A.; De Lucia, A.; Barbulova, A.; Tortora, A.; Colucci, G.; Apone, F. An oil-soluble extract of Rubus idaeus cells enhances hydration and water homeostasis in skin cells. Int. J. Cosmet. Sci. 2015, 37, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Barbulova, A.; Tito, A.; Carola, A.; Bimonte, M.; De Laurentiis, F. Raspberry Stem Cell Extract to Protect Skin from Inflammation and Oxidative Stress. Cosmet. Toilet. 2010, 125, 38–47. [Google Scholar]
- Furuichi, Y.; Matsui, T.; Amagai, M. Real Time 3D in Vivo PH Imaging of Stratum Corneum Revealed Complex Morphology-Based Regulation in Mice. J. Dermatol. Sci. 2017, 86, e40. [Google Scholar] [CrossRef]
- Hachem, J.-P.; Man, M.-Q.; Crumrine, D.; Uchida, Y.; Brown, B.E.; Rogiers, V.; Roseeuw, D.; Feingold, K.R.; Elias, P.M. Sustained Serine Proteases Activity by Prolonged Increase in pH Leads to Degradation of Lipid Processing Enzymes and Profound Alterations of Barrier Function and Stratum corneum Integrity. J. Invest. Dermatol. 2005, 125, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Hatano, Y.; Man, M.-Q.; Uchida, Y.; Crumrine, D.; Scharschmidt, T.C.; Kim, E.G.; Mauro, T.M.; Feingold, K.R.; Elias, P.M.; Holleran, W.M. Maintenance of an Acidic Stratum corneum Prevents Emergence of Murine Atopic Dermatitis. J. Invest. Dermatol. 2009, 129, 1824–1835. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Liu, X.; Gao, Y. Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov. Food Sci. Emerg. Technol. 2009, 10, 610–615. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors Influencing the Antioxidant Activity Determined by the ABTY Radical Cation Assay. Redox Rep. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- Evangelista-Vargas, S.; Santiani, A. Detection of Intracellular Reactive Oxygen Species (Superoxide Anion and Hydrogen Peroxide) and Lipid Peroxidation during Cryopreservation of Alpaca spermatozoa. Reprod. Domest. Anim. 2017, 52, 819–824. [Google Scholar] [CrossRef]
- Zofia, N.Ł.; Aleksandra, Z.; Tomasz, B.; Martyna, Z.D.; Magdalena, Z.; Zofia, H.B.; Tomasz, W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef]
Molecular Formula | Name of Compound | R. idaeus | R. rubrum | F. vesca |
---|---|---|---|---|
C6H12O7 | Gluconic acid | x | x | x |
C7H12O6 | Quinic acid | x | x | |
C10H16O16 | Citric acid derivative | x | ||
C6H8O7 | Citric acid | x | ||
C7H6O5 | Galic acid | x | x | x |
C14H16O10 | Galloyl quinic acid | x | x | x |
C30H26O14 | Prodelphinidin B4/B3 | x | ||
C13H16O8 | Hydroxybenzoic acid -hexoside | x | x | |
C15H14O7 | Gallocatechin | x | ||
C14H18O9 | Methyldihydroxybenzo -icacid hexoside | x | x | |
C11H12O2N2 | Tryptophan | x | ||
C15H18O9 | Caffeoyl glucose | x | ||
C15H18O8 | Coumaroyl hexoside | x | ||
C15H18O9 | Caffeic acid hexosie | x | ||
C15H14O7 | Epigallocatechin | x | x | |
C15H14O6 | Catechin | x | x | |
C15H18O9 | Caffeoyl glucose | x | ||
C16H18O9 | Chlorogenic acid | x | x | |
C27H30 O16 | Cyanidin 3-sophoroside | x | x | |
C33H40O20 | Cyanidin-3-glucosyl -rutinoside | x | ||
C26H28O15 | Cyanidin 3-sambubioside | x | ||
C21H20O11 | Cyanidin 3-glucoside | x | ||
C15H14O6 | Epicatechin | x | x | x |
C32H38O19 | Cyanidin 3-xylosylrutinoside | x | ||
C22H18O11 | Epigallocatechin gallate | x | x | x |
C21H20O10 | Pelargonidin-3-O -glucoside | x | ||
C21H22O11 | Ferulic acid hexose -derivative | x | ||
C7H6O3 | Salicylic acid | x | ||
C21H20O13 | Unknown flavonoid | x | ||
C22H18O10 | Epicatechingallate /catechingallate | x | ||
C20H16O12 | Ellagic acid rhamnoside | x | ||
C14H6O8 | Ellagic acid | x | ||
C20H20O11 | Taxifolin 3-alpha-L-arabino -furanoside | x | ||
C27H30O16 | Rutoside | x | x | x |
C21H20O13 | Quercetin 3-O-glucuronide | x | x | |
C21H20O12 | Quercetin glucoside | x | x | |
C21H20O11 | Kaempferol hexoside | x | x | |
C21H18O12 | Methylellagic acid -rhamnoside | x | ||
C21H18O12 | Methylellagic acid hexose | x |
Analyzed Plant | Name of Compound | Content (µg/mL) | ||
---|---|---|---|---|
Extract F10 (10 Days) F20 (20 Days) | ||||
Rubus idaeus | Gallic acid | - | 3.17 ± 0.03 | 3.82 ± 0.04 |
Caffeoyl glucose I | 0.20 ± 0.00 | 0.22 ± 0.00 | 0.27 ± 0.01 | |
Salicylic acid glucoside | 10.03 ± 0.04 | 10.33 ± 0.14 | 10.95 ± 0.06 | |
Benzoic acid hexoside | 2.48 ± 0.10 | 2.78 ± 0.05 | 2.72 ± 0.13 | |
Rutoside | - | 0.20 ± 0.00 | 0.36 ± 0.00 | |
Quercetin 3-O-glucuronide | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.12 ± 0.00 | |
Quercetin glucoside | - | 0.23 ± 0.00 | 0.17 ± 0.00 | |
Kaempferol rutoside | - | 0.27 ± 0.01 | 0.26 ± 0.01 | |
Galloyloquinic | - | 0.87 ± 0.02 | 1.12 ± 0.04 | |
Gallocatechin (I) | - | 2.49 ± 0.04 | 2.65 ± 0.08 | |
Gallocatechin (II) | - | 4.42 ± 0.18 | 5.60 ± 0.14 | |
Catechin | - | 1.83 ± 0.02 | 2.02 ± 0.05 | |
Epicatechin | - | 0.55 ± 0.02 | 0.60 ± 0.01 | |
Epigallocatechingallate | - | 3.90 ± 0.14 | 4.96 ± 0.18 | |
Ribes rubrum | Gallic acid | - | 2.48 ± 0.08 | 2.84 ± 0.10 |
Chlorogenic acid | - | 0.15 ± 0.01 | 0.31 ± 0.01 | |
Benzoicacid hexoside | 3.92 ± 0.20 | 3.78 ± 0.12 | 3.69 ± 0.14 | |
Methyldihydroxybenzoicacidhexoside | 0.36 ± 0.01 | 0.28 ± 0.01 | 0.30 ± 0.01 | |
Caffeoylyglucose | 0.14 ± 0.01 | 0.15 ± 0.00 | 0.14 ± 0.00 | |
Rutoside | - | 0.89 ± 0.01 | 1.01 ± 0.02 | |
Quercetin hexoside | - | 0.20 ± 0.01 | 0.15 ± 0.00 | |
Kaempferol hexoside | - | 0.24 ± 0.01 | 0.20 ± 0.01 | |
Galloyloquinic | - | 0.96 ± 0.03 | 0.95 ± 0.04 | |
Gallocatechin (I) | 0.15 ± 0.01 | 0.63 ± 0.03 | 0.87 ± 0.02 | |
Gallocatechin (II) | - | 0.44 ± 0.02 | 0.82 ± 0.02 | |
Catechin | - | 1.19 ± 0.01 | 1.10 ± 0.00 | |
Epicatechin | - | 1.97 ± 0.04 | 1.49 ± 0.01 | |
Epigallocatechin gallate | - | 0.39 ± 0.01 | 0.74 ± 0.02 | |
Fragaria vesca | Gallic acid | 0.32 ± 0.02 | 2.94 ± 0.11 | 3.85 ± 0.01 |
Chlorogenic acid | - | 0.12 ± 0.00 | 0.23 ± 0.01 | |
Rutoside | - | 0.61 ± 0.01 | 0.78 ± 0.01 | |
Taxifolin | 0.29 ± 0.00 | 0.87 ± 0.04 | 0.89 ± 0.03 | |
Quercetin glucuronide | 0.10 ± 0.00 | - | - | |
Quercetin hexoside | 0.04 ± 0.00 | 0.25 ± 0.01 | 0.27 ± 0.00 | |
Kaempferol hexoside | - | 0.09 ± 0.00 | 0.13 ± 0.00 | |
Ellagic acid rhamnoside | 0.15 ± 0.00 | - | - | |
Ellagic acid | - | 0.15 ± 0.00 | 0.17 ± 0.00 | |
Methyl ellagic acid rhamnoside | 1.96 ± 0.08 | 0.67 ± 0.03 | 0.75 ± 0.02 | |
Methyl ellagic acid hexose | 0.24 ± 0.01 | - | - | |
Galloyloquinic | - | 0.85 ± 0.01 | 1.03 ± 0.05 | |
Gallocatechin (I) | - | 0.91 ± 0.04 | 0.75 ± 0.03 | |
Gallocatechin (II) | - | 0.98 ± 0.04 | 0.91 ± 0.00 | |
Catechin | - | 0.28 ± 0.01 | 0.28 ± 0.01 | |
Epicatechin | - | 0.80 ± 0.03 | 0.73 ± 0.03 | |
Epigallocatechin gallate | - | 1.09 ± 0.04 | 1.03 ± 0.05 |
Plant Extract | Ferment 10 Days | Ferment 20 Days | |
---|---|---|---|
Type of Plant Analyzed | IC50 [µg/mL] | ||
R. rubrum | 3207.45 ± 34.48 | 1661.29 ± 15.28 **** | 1730.95 ± 19.56 **** |
R. idaeus | 3246.56 ± 31.39 | 1871.61 ± 18.45 **** | 1789.21 ± 17.45 **** |
F. vesca | 2165.26 ± 23.46 | 1740.81 ± 16.71 **** | 1846.82 ± 17.47 **** |
Plant Extract | Ferment 10 Days | Ferment 20 Days | |
---|---|---|---|
Type of Plant Analyzed | IC50 [µg/mL] | ||
R. rubrum | 270.81 ± 2.23 | 129.18 ± 1.58 **** | 124.71 ± 1.25 **** |
R. idaeus | 124.32 ± 1.41 | 130.49 ± 1.26 ** | 120.84 ± 1.35 **** |
F. vesca | 125.48 ± 1.27 | 132.41 ± 2.43 ** | 127.20 ± 1.14 **** |
INCI Name | Concentration [wt.%] |
---|---|
Aqua | 88.5 |
Propanediol | 2.0 |
Sodium Hyaluronate | 1.5 |
Sorbitol | 1.0 |
Niacinamide | 2.0 |
D-Panthenol | 1.5 |
Extract/Ferment/Extract + Ferment | 1.0 |
Lactobionic Acid | 1.0 |
Gluconolactone and Sodium Benzoate | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Wójciak, M.; Szczepanek, D.; Sowa, I. Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts. Int. J. Mol. Sci. 2022, 23, 14675. https://doi.org/10.3390/ijms232314675
Ziemlewska A, Nizioł-Łukaszewska Z, Zagórska-Dziok M, Wójciak M, Szczepanek D, Sowa I. Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts. International Journal of Molecular Sciences. 2022; 23(23):14675. https://doi.org/10.3390/ijms232314675
Chicago/Turabian StyleZiemlewska, Aleksandra, Zofia Nizioł-Łukaszewska, Martyna Zagórska-Dziok, Magdalena Wójciak, Dariusz Szczepanek, and Ireneusz Sowa. 2022. "Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts" International Journal of Molecular Sciences 23, no. 23: 14675. https://doi.org/10.3390/ijms232314675
APA StyleZiemlewska, A., Nizioł-Łukaszewska, Z., Zagórska-Dziok, M., Wójciak, M., Szczepanek, D., & Sowa, I. (2022). Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts. International Journal of Molecular Sciences, 23(23), 14675. https://doi.org/10.3390/ijms232314675