A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Chronic kidney disease | CKD |
Kidney Disease Outcomes Quality Initiative | KDOQI |
Mammalian target of rapamycin inhibitors | mTORs |
Cyclosporine | CsA |
Tacrolimus | TAC |
Sirolimus | SIR |
Azathioprine | AZA |
Mycophenolic acid | MPA |
Mycophenolate | MMF |
ATP binding cassette subfamily B member 1 | ABCB1 |
cytochrome P450 family 2 subfamily C member 9 | CYP2C9 |
cytochrome P450 family 2 subfamily C member 19 | CYP2C19 |
cytochrome P450 family 3 subfamily A member 5 | CYP3A5 |
interleukin 6 | IL-6 |
interleukin 10 | IL-10 |
inosine triphosphatase | ITPA |
macrophage migration inhibitory factor | MIF |
transforming growth factor beta 1 | TGFB1 |
tumor necrosis factor | TNF |
thiopurine S-methyltransferase | TPMT |
References
- Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.-U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; et al. Chronic Kidney Disease as a Global Public Health Problem: Approaches and Initiatives—a Position Statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007, 72, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of Chronic Kidney Disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney Disease as a Risk Factor for Development of Cardiovascular Disease: A Statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 42, 1050–1065. [Google Scholar] [CrossRef]
- Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. Definition, Evaluation, and Classification of Renal Osteodystrophy: A Position Statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006, 69, 1945–1953. [Google Scholar] [CrossRef]
- Adams, S.M.; Crisamore, K.R.; Empey, P.E. Clinical Pharmacogenomics: Applications in Nephrology. Clin. J. Am. Soc. Nephrol. Clin. J. Am. Soc. Nephrol. 2018, 13, 1561–1571. [Google Scholar] [CrossRef]
- Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet Lond. Engl. 2019, 394, 521–532. [Google Scholar] [CrossRef]
- Halloran, P.F. Immunosuppressive Drugs for Kidney Transplantation. N. Engl. J. Med. 2004, 351, 2715–2729. [Google Scholar] [CrossRef]
- Zaza, G.; Granata, S.; Sallustio, F.; Grandaliano, G.; Schena, F.P. Pharmacogenomics: A New Paradigm to Personalize Treatments in Nephrology Patients. Clin. Exp. Immunol. 2010, 159, 268–280. [Google Scholar] [CrossRef]
- Kurzawski, M.; Droździk, M. Pharmacogenetics in Solid Organ Transplantation: Genes Involved in Mechanism of Action and Pharmacokinetics of Immunosuppressive Drugs. Pharmacogenomics 2013, 14, 1099–1118. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, D.A.; Attwood, K.; Meaney, C.J.; Wilding, G.E.; Consiglio, J.D.; Chang, S.S.; Gundroo, A.; Venuto, R.C.; Cooper, L.; Tornatore, K.M. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front. Genet. 2020, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; van Schaik, R.H.N.; van der Heiden, I.P.; van der Werf, M.; Gregoor, P.J.H.S.; Lindemans, J.; Weimar, W.; van Gelder, T. Genetic Polymorphisms of the CYP3A4, CYP3A5, and MDR-1 Genes and Pharmacokinetics of the Calcineurin Inhibitors Cyclosporine and Tacrolimus. Clin. Pharmacol. Ther. 2003, 74, 245–254. [Google Scholar] [CrossRef]
- Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II. Clin. Pharmacokinet. 2010, 49, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.N.; van Gelder, T. The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef]
- van Gelder, T.; van Schaik, R.H.; Hesselink, D.A. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat. Rev. Nephrol. 2014, 10, 725–731. [Google Scholar] [CrossRef]
- Evans, W.E. Pharmacogenetics of Thiopurine S-Methyltransferase and Thiopurine Therapy. Ther. Drug Monit. 2004, 26, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Budhiraja, P.; Popovtzer, M. Azathioprine-Related Myelosuppression in a Patient Homozygous for TPMT*3A. Nat. Rev. Nephrol. 2011, 7, 478–484. [Google Scholar] [CrossRef]
- Yates, C.R.; Krynetski, E.Y.; Loennechen, T.; Fessing, M.Y.; Tai, H.L.; Pui, C.H.; Relling, M.V.; Evans, W.E. Molecular Diagnosis of Thiopurine S-Methyltransferase Deficiency: Genetic Basis for Azathioprine and Mercaptopurine Intolerance. Ann. Intern. Med. 1997, 126, 608–614. [Google Scholar] [CrossRef]
- Xiong, H.; Xin, H.-W.; Wu, X.-C.; Li, Q.; Xiong, L.; Yu, A.-R. Association between Inosine Triphosphate Pyrophosphohydrolase Deficiency and Azathioprine-Related Adverse Drug Reactions in the Chinese Kidney Transplant Recipients. Fundam. Clin. Pharmacol. 2010, 24, 393–400. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Lener, A.; Drozdzik, M. TPMT but Not ITPA Gene Polymorphism Influences the Risk of Azathioprine Intolerance in Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2009, 65, 533–540. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.W.; Zeevi, A.; Webber, S.A.; Girnita, D.M.; Selby, R.; Fu, J.; Shah, T.; Pravica, V.; Hutchinson, I.V.; et al. IMPDH1 Gene Polymorphisms and Association with Acute Rejection in Renal Transplant Patients. Clin. Pharmacol. Ther. 2008, 83, 711–717. [Google Scholar] [CrossRef]
- Xin, H.-W.; Xiong, H.; Wu, X.-C.; Li, Q.; Xiong, L.; Yu, A.-R. Relationships between Thiopurine S-Methyltransferase Polymorphism and Azathioprine-Related Adverse Drug Reactions in Chinese Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2009, 65, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Vannaprasaht, S.; Angsuthum, S.; Avihingsanon, Y.; Sirivongs, D.; Pongskul, C.; Makarawate, P.; Praditpornsilpa, K.; Tassaneeyakul, W.; Tassaneeyakul, W. Impact of the Heterozygous TPMT*1/*3C Genotype on Azathioprine-Induced Myelosuppression in Kidney Transplant Recipients in Thailand. Clin. Ther. 2009, 31, 1524–1533. [Google Scholar] [CrossRef]
- Takada, K.; Arefayene, M.; Desta, Z.; Yarboro, C.H.; Boumpas, D.T.; Balow, J.E.; Flockhart, D.A.; Illei, G.G. Cytochrome P450 Pharmacogenetics as a Predictor of Toxicity and Clinical Response to Pulse Cyclophosphamide in Lupus Nephritis. Arthritis Rheum. 2004, 50, 2202–2210. [Google Scholar] [CrossRef] [PubMed]
- Ngamjanyaporn, P.; Thakkinstian, A.; Verasertniyom, O.; Chatchaipun, P.; Vanichapuntu, M.; Nantiruj, K.; Totemchokchyakarn, K.; Attia, J.; Janwityanujit, S. Pharmacogenetics of Cyclophosphamide and CYP2C19 Polymorphism in Thai Systemic Lupus Erythematosus. Rheumatol. Int. 2011, 31, 1215–1218. [Google Scholar] [CrossRef]
- Chiou, Y.-H.; Wang, L.-Y.; Wang, T.-H.; Huang, S. Genetic Polymorphisms Influence the Steroid Treatment of Children with Idiopathic Nephrotic Syndrome. Pediatr. Nephrol. 2012, 27, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.M.; Attia, T.A.; El-Shal, A.S.; Abduelometty, F.A. Multi-Drug Resistance-1 Gene Polymorphisms in Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids. Gene 2013, 530, 201–207. [Google Scholar] [CrossRef]
- Sadeghi-Bojd, S.; Falsafinejad, F.; Danesh, H.; Bizhani, F.; Bahari, G.; Hashemi, M. Macrophage Migration Inhibitory Factor -173 G>C Gene Polymorphism Is Associated with Increased Risk of Nephrotic Syndrome in Children. Iran. J. Kidney Dis. 2019, 13, 232–236. [Google Scholar] [PubMed]
- Luo, Y.; Gong, Y.; Yu, Y. Interleukin-10 Gene Promoter Polymorphisms Are Associated with Cyclosporin A-Induced Gingival Overgrowth in Renal Transplant Patients. Arch. Oral Biol. 2013, 58, 1199–1207. [Google Scholar] [CrossRef]
- Choi, H.J.; Cho, H.Y.; Ro, H.; Lee, S.H.; Han, K.H.; Lee, H.; Kang, H.G.; Ha, I.S.; Choi, Y.; Cheong, H. Il Polymorphisms of the MDR1 and MIF Genes in Children with Nephrotic Syndrome. Pediatr. Nephrol. 2011, 26, 1981–1988. [Google Scholar] [CrossRef]
- Berdeli, A.; Mir, S.; Ozkayin, N.; Serdaroglu, E.; Tabel, Y.; Cura, A. Association of Macrophage Migration Inhibitory Factor -173C Allele Polymorphism with Steroid Resistance in Children with Nephrotic Syndrome. Pediatr. Nephrol. 2005, 20, 1566–1571. [Google Scholar] [CrossRef]
- Świerczewska, M.; Ostalska-Nowicka, D.; Kempisty, B.; Szczepankiewicz, A.; Nowicki, M. Polymorphic Variants of MIF Gene and Prognosis in Steroid Therapy in Children with Idiopathic Nephrotic Syndrome. Acta Biochim. Pol. 2014, 61, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Babel, N.; Cherepnev, G.; Kowalenko, A.; Horstrup, J.; Volk, H.-D.; Reinke, P. Nonimmunologic Complications and Gene Polymorphisms of Immunoregulatory Cytokines in Long-Term Renal Transplants. Kidney Int. 2004, 66, 428–432. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Singh, R.; Srivastava, A.; Kapoor, R.; Mittal, R.D. Do Drug Transporter (ABCB1) SNPs Influence Cyclosporine and Tacrolimus Dose Requirements and Renal Allograft Outcome in the Posttransplantation Period? J. Clin. Pharmacol. 2011, 51, 603–615. [Google Scholar] [CrossRef]
- Santoro, A.; Felipe, C.R.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Struchiner, C.J.; Ojopi, E.B.; Suarez-Kurtz, G. Pharmacogenetics of Calcineurin Inhibitors in Brazilian Renal Transplant Patients. Pharmacogenomics 2011, 12, 1293–1303. [Google Scholar] [CrossRef]
- Glowacki, F.; Lionet, A.; Buob, D.; Labalette, M.; Allorge, D.; Provôt, F.; Hazzan, M.; Noël, C.; Broly, F.; Cauffiez, C. CYP3A5 and ABCB1 Polymorphisms in Donor and Recipient: Impact on Tacrolimus Dose Requirements and Clinical Outcome after Renal Transplantation. Nephrol. Dial. Transplant. 2011, 26, 3046–3050. [Google Scholar] [CrossRef]
- Kuypers, D.R.J.; Naesens, M.; de Jonge, H.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Ther. Drug Monit. 2010, 32, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Inoue, T.; Habuchi, T.; Suzuki, T. Influence of CYP3A5, ABCB1 and NR1I2 Polymorphisms on Prednisolone Pharmacokinetics in Renal Transplant Recipients. Steroids 2008, 73, 1052–1059. [Google Scholar] [CrossRef]
- Grinyó, J.; Vanrenterghem, Y.; Nashan, B.; Vincenti, F.; Ekberg, H.; Lindpaintner, K.; Rashford, M.; Nasmyth-Miller, C.; Voulgari, A.; Spleiss, O.; et al. Association of Four DNA Polymorphisms with Acute Rejection after Kidney Transplantation. Transpl. Int. 2008, 21, 879–891. [Google Scholar] [CrossRef]
- von Ahsen, N.; Richter, M.; Grupp, C.; Ringe, B.; Oellerich, M.; Armstrong, V.W. No Influence of the MDR-1 C3435T Polymorphism or a CYP3A4 Promoter Polymorphism (CYP3A4-V Allele) on Dose-Adjusted Cyclosporin A Trough Concentrations or Rejection Incidence in Stable Renal Transplant Recipients. Clin. Chem. 2001, 47, 1048–1052. [Google Scholar] [CrossRef]
- Quteineh, L.; Verstuyft, C.; Furlan, V.; Durrbach, A.; Letierce, A.; Ferlicot, S.; Taburet, A.-M.; Charpentier, B.; Becquemont, L. Influence of CYP3A5 Genetic Polymorphism on Tacrolimus Daily Dose Requirements and Acute Rejection in Renal Graft Recipients. Basic Clin. Pharmacol. Toxicol. 2008, 103, 546–552. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Jiao, Z.; Zhang, M.; Zhong, L.-J.; Liang, H.-Q.; Ma, C.-L.; Zhang, L.; Zhong, M.-K. Association of MDR1, CYP3A4*18B, and CYP3A5*3 Polymorphisms with Cyclosporine Pharmacokinetics in Chinese Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2008, 64, 1069–1084. [Google Scholar] [CrossRef]
- Kagaya, H.; Miura, M.; Saito, M.; Habuchi, T.; Satoh, S. Correlation of IMPDH1 Gene Polymorphisms with Subclinical Acute Rejection and Mycophenolic Acid Exposure Parameters on Day 28 after Renal Transplantation. Basic Clin. Pharmacol. Toxicol. 2010, 107, 631–636. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Gawrońska-Szklarz, B.; Domański, L.; Droździk, M. The Impact of Thiopurine S-Methyltransferase Polymorphism on Azathioprine-Induced Myelotoxicity in Renal Transplant Recipients. Ther. Drug Monit. 2005, 27, 435–441. [Google Scholar] [CrossRef]
- Kumaraswami, K.; Katkam, S.K.; Aggarwal, A.; Sharma, A.; Manthri, R.; Kutala, V.K.; Rajasekhar, L. Epistatic Interactions among CYP2C19*2, CYP3A4 and GSTP1 on the Cyclophosphamide Therapy in Lupus Nephritis Patients. Pharmacogenomics 2017, 18, 1401–1411. [Google Scholar] [CrossRef]
- Moussa, A.; Mabrouk, S.; Hamdouni, H.; Ajmi, M.; Tfifha, M.; Omezzine, A.; Abroug, S.; Bouslama, A. MDR-1 and CYP3A5 Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids (Preliminary Results). Clin. Lab. 2017, 63, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Jafar, T.; Mandal, K.; Mahdi, A.A.; Awasthi, S.; Sharma, R.K.; Kumar, A.; Gulati, S.; Agrawal, S. Does Cytokine Gene Polymorphism Affect Steroid Responses in Idiopathic Nephrotic Syndrome? Indian J. Med. Sci. 2008, 62, 383–391. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.-H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Klein, T.E. Clinical Pharmacogenetics Implementation Consortium Guidelines for Thiopurine Methyltransferase Genotype and Thiopurine Dosing. Clin. Pharmacol. Ther. 2011, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Ferraresso, M.; Tirelli, A.; Ghio, L.; Grillo, P.; Martina, V.; Torresani, E.; Edefonti, A. Influence of the CYP3A5 Genotype on Tacrolimus Pharmacokinetics and Pharmacodynamics in Young Kidney Transplant Recipients. Pediatr. Transplant. 2007, 11, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, M.; Masuda, S.; Katsura, T.; Oike, F.; Takada, Y.; Inui, K. Effect of Intestinal CYP3A5 on Postoperative Tacrolimus Trough Levels in Living-Donor Liver Transplant Recipients. Pharmacogenet. Genomics 2006, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Op den Buijsch, R.A.M.; Christiaans, M.H.L.; Stolk, L.M.L.; de Vries, J.E.; Cheung, C.Y.; Undre, N.A.; van Hooff, J.P.; van Dieijen-Visser, M.P.; Bekers, O. Tacrolimus Pharmacokinetics and Pharmacogenetics: Influence of Adenosine Triphosphate-Binding Cassette B1 (ABCB1) and Cytochrome (CYP) 3A Polymorphisms. Fundam. Clin. Pharmacol. 2007, 21, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Macphee, I.A.M.; Fredericks, S.; Mohamed, M.; Moreton, M.; Carter, N.D.; Johnston, A.; Goldberg, L.; Holt, D.W. Tacrolimus Pharmacogenetics: The CYP3A5*1 Allele Predicts Low Dose-Normalized Tacrolimus Blood Concentrations in Whites and South Asians. Transplantation 2005, 79, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.; Zheng, J.; Chen, Z.; Tang, Z.; Chen, J.; Li, L. Influence of CYP3A5 and MDR1 Polymorphisms on Tacrolimus Concentration in the Early Stage after Renal Transplantation. Clin. Transplant. 2005, 19, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Celińska, A.; Baer-Dubowska, W. Pharmacoepigenetics: An Element of Personalized Therapy? Expert Opin. Drug Metab. Toxicol. 2017, 13, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R. Inflammation Is a Major Regulator of Drug Metabolizing Enzymes and Transporters: Consequences for the Personalization of Drug Treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
Author (Year of Publication) | Ethnicity | Drug | Phenotype or Trait | Gene | Polymorphism (Rs Number) | N | Selection Criteria of Non-Responders | Responders | N | Selection Criteria of Responders |
---|---|---|---|---|---|---|---|---|---|---|
Xiong, 2010 [18] | East Asians | AZA | Kidney transplant recipients | ITPA | 94C > A (rs1127354) | 35 | Hematotoxicity and/or hepatotoxicity and/or GI toxicity and/or flu-like symptoms | Renal transplants, AZA treatment present or previously | 120 | No adverse drug reactions |
Kurzawski, 2009 [19] | Caucasians | AZA | Renal transplant recipients | TPMT | *1 vs. *2,*3A,*3C | 108 | Leucopenia and/or Hepatotoxicity | Renal transplants, AZA treatment previously | 48 | No adverse drug reactions |
ITPA | 94C > A (rs1127354) | |||||||||
Wang, 2008 [20] | Caucasians | TAC, MMF, PRE | Kidney transplant recipients (no antiviral, anticancer, or other leucopenia-causing medication) | IMPDH1 | 898G > A | 60 | Leucopenia | Renal transplants | 129 | No adverse drug reactions |
IMPDH1 | rs2288550 | |||||||||
IMPDH1 | 1552G > A | |||||||||
Xin, 2009 [21] | East Asians | AZA, CsA, PRE | Renal transplant recipients | TPMT | *1 vs. *3C | 30 | Hematotoxicity and/or hepatotoxicity | Renal transplants | 120 | No adverse drug reactions |
Vannaprasaht, 2009 [22] | Asians | AZA, PRE, CNIs | Kidney transplant recipients | TPMT | *1 vs. *3C | 22 | Myelosuppression | Renal transplants | 117 | No adverse drug reactions |
Takada, 2004 [23] | Caucasians | pulse cyclophosphamide | Lupus nephritis | CYP2C19 | CYP2C19*2 (rs4244285) | 28 | Development of premature ovarian failure | Patients with lupus nephritis | 20 | No adverse drug reactions |
CYP2C9 | CYP2C9*2 (rs1799853) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Ngamjanyaporn, 2011 [24] | Asians | cyclophosphamide | SLE | CYP2C19 | *1 vs. *2 (rs4244285) | 36 | Ovarian toxicity | Patients with systemic lupus erythematosus | 35 | No adverse drug reactions |
Chiou, 2012 [25] | Asians | PRE | Idiopathic NS | CYP3A5 | 6986A > G (rs776746) | 16 | Steroid resistant NS | Patients with NS | 58 | Steroid sensitive NS |
ABCB1 | C1236T (rs1128503) | |||||||||
ABCB1 | G2677T (rs2032582) | |||||||||
ABCB1 | G2677A (rs2032582) | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
Youssef, 2013 [26] | Mixed | PRE | Idiopathic NS | ABCB1 | C1236T (rs1128503) | 46 | Steroid non-responders | Patients with INS | 92 | Steroid responders |
ABCB1 | G2677T/A (rs2032582) | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
Sadeghi-Bojd, 2019 [27] | Asians | steroids | Idiopathic NS | MIF | -173G > C (rs755622) | 27 | Steroid resistant | Patients with NS | 107 | Steroid responders |
Luo, 2013 [28] | East Asians | CsA | Gingival overgrowth in renal transplant recipients | IL-10 | -1082A > G | 122 | With gingival overgrowth | Renal transplants | 80 | Without gingival overgrowth |
IL-10 | -819C > T | |||||||||
IL-10 | -592C > A | |||||||||
Choi, 2011 [29] | East Asians | steroids | Idiopathic NS | ABCB1 | 1236C > T (rs1128503) | 69 | Steroid non-responders | Patients with NS | 101 | Steroid responders |
ABCB1 | 2677G > T (rs2032582) | |||||||||
ABCB1 | 2677G > A (rs2032582) | |||||||||
ABCB1 | 3435C > T (rs1045642) | |||||||||
MIF | G-173C (rs755622) | |||||||||
Berdeli, 2005 [30] | Mixed | steroids | Idiopathic NS | MIF | G-173C (rs755622) | 77 | Steroid non-responders | Patients with NS | 137 | Steroid responders |
Swierczewska, 2014 [31] | Caucasians | steroids | Idiopathic NS | MIF | G-173C (rs755622) | 41 | Steroid non-responders | Patients with NS | 30 | Steroid responders |
Babel, 2004 [32] | Caucasians | CsA+ TAC/PRE and ATG/anti-IL-2R antibody | Long-term renal transplants | IL10 | A-1082G (rs1800896) | 51 | Type 2/steroid-induced DM | Renal transplants | 207 | No adverse drug reactions |
TNFa | A-308G (rs1800629) | |||||||||
IL-6 | C-174G | |||||||||
TGFB1 10 | C > T | |||||||||
Singh, 2011 [33] | Asians | CsA | Rejection episodes in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 49 | Rejection episodes | Renal transplants | 176 | No rejection episodes |
CsA | ABCB1 | 2677 G > T (rs2032582) | 72 | 176 | ||||||
CsA | ABCB1 | 3435 C > T (rs1045642) | 70 | 176 | ||||||
TAC | ABCB1 | 1236 C > T (rs1128503) | 46 | 29 | ||||||
TAC | ABCB1 | 2677 G > T (rs2032582) | 46 | 29 | ||||||
TAC | ABCB1 | 3435 C > T (rs1045642) | ||||||||
Santoro, 2011 [34] | Mixed | CsA and AZA/SRL or TAC and AZA/SRL | Renal transplant patients | CYP3A5 | CYP3A5*3 (rs776746) | 15 | Biopsy-proven rejection episodes | Renal transplants | 138 | No biopsy-proven rejection episodes |
ABCB1 | 1236 C > T (rs1128503) | 139 | 15 | |||||||
ABCB1 | 2677 G > T (rs2032582) | 129 | 15 | |||||||
ABCB1 | 3435 C > T (rs1045642) | 140 | 15 | |||||||
Glowacki, 2011 [35] | Caucasians | TAC | Acute tubular necrosis/TAC tubular or vascular toxicity after renal transplantation | ABCB1 | 3435 C > T (rs1045642) | 16 | Acute tubular necrosis/TAC tubular or vascular toxicity | Renal transplants | 187 | No acute tubular necrosis/TAC tubular or vascular toxicity |
Kuypers, 2010 [36] | Caucasians | calcineurin inhibitor | Calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients | CYP3A5 | CYP3A5*3 (rs776746) | 51 | Calcineurin inhibitor-associated nephrotoxicity | Renal allograft recipients | 253 | |
Miura, 2008 [37] | East Asians | PRE and TAC and MMF | Acute rejection in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 43 | Acute rejection | Renal transplants | 52 | No acute rejection |
ABCB1 | 2677 G > T (rs2032582) | |||||||||
ABCB1 | 2677 G > A (rs2032582) | |||||||||
ABCB1 | 3435 C > T (rs1045642) | |||||||||
Grinyo, 2008 [38] | Caucasians | CsA and MMF | Acute rejection after kidney transplantation | ABCB1 | 3435 C > T (rs1045642) | 77 | Biopsy-proven acute rejection | Renal transplants | 160 | No biopsy-proven acute rejection |
ABCB1 | 1236 C > T (rs1128503) | |||||||||
ABCB1 | 2677 G > T (rs2032582) | |||||||||
ABCB1 | 2677 G > A (rs2032582) | |||||||||
IMPDH1 | G1320A | |||||||||
IL-10 | C-592A (rs1800872) | |||||||||
IL-10 | A-1082G (rs1800896) | |||||||||
IL-10 | C-819T (rs3021097) | |||||||||
TGF-b1 | C869T (rs1800470) | |||||||||
Von Ahsen, 2001 [39] | Caucasians | CsA | Rejection episodes in stable renal transplant recipients | ABCB1 | 3435 C > T (rs1045642) | 47 | Rejection | Renal transplants | 77 | No rejection |
Quteineh, 2008 [40] | Caucasians | TAC | Delayed allograft function in renal graft recipients | CYP3A5 | CYP3A5*3 (rs776746) | 77 | Delayed graft function | Renal transplants | 59 | No delayed graft function |
Qiu, 2008 [41] | East Asians | CsA | Rejection episodes in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 6 | Rejection | Renal transplants | 97 | No rejection |
ABCB1 | 2677 G > T/A (rs2032582) | 6 | 97 | |||||||
ABCB1 | 3435 C > T (rs1045642) | 6 | 97 | |||||||
CYP3A5 | CYP3A5*3 (rs776746) | 6 | 97 | |||||||
Kagaya, 2010 [42] | Asians | MMF | Subclinical acute rejection after renal transplantation | IMPDH | rs2278293 | 21 | Subclinical acute rejection | 61 | No subclinical acute rejection | |
IMPDH | rs2278294 | |||||||||
Kurzawski, 2005 [43] | Caucasians | AZA | AZA-induced myelotoxicity in renal transplant recipients | TPMT | *1 vs. *2,*3A,*3C | 67 | AZA-induced myelotoxicity | Renal transplants | 113 | No adverse drug reactions |
Kumaraswami, 2017 [44] | Asians | cyclophosphamide | Lupus nephritis | CYP2C19 | CYP2C19*2 (rs4244285) | 24 | No response | Lupus nephritis patients | 123 | Complete and partial response |
CYP2C9 | CYP2C9*2 (rs1799853) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Moussa, 2017 [45] | Mixed | steroids | Pediatric idiopathic nephrotic syndrome | ABCB1 | C1236T (rs1128503) | 10 | Steroid non-responders | Idiopathic nephrotic syndrome | 53 | Steroid responders |
ABCB1 | G2677A | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Tripathi, 2008 [46] | Asians | glucocorticoids | Idiopathic nephrotic syndrome | TNF-α | A-308G (rs1800629) | 35 | Steroid resistant | Idiopathic nephrotic syndrome | 115 | Steroid sensitive |
IL-6 | G174C (rs1800795) |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Pulse cyclophosphamide | CYP2C9 | CYP2C9*2 | rs1799853 | 2 | ||||||
All | ||||||||||
Dominant | 1.24 (0.20–7.90) | 1.24 (0.20–7.90) | 0 | 0.41 | - | - | ||||
Recessive | 1.89 (0.11–32.69) | 1.89 (0.11–32.69) | 0 | 0.52 | ||||||
Additive | 1.93 (0.11–33.45) | 1.93 (0.11–33.45) | 0 | 0.54 | ||||||
Pulse cyclophosphamide | CYP2C19 | CYP2C19*2 (G681A) | rs4244285 | 3 | ||||||
All | ||||||||||
Dominant | 1.07 (0.60–1.90) | 0.81 (0.17–3.90) | 86 | 0.001 | - | - | ||||
Recessive | 1.25 (0.34–4.63) | 1.25 (0.34–4.63) | 0 | 0.89 | ||||||
Additive | 1.36 (0.34–5.36) | 1.36 (0.34–5.36) | 0 | 0.48 | ||||||
Caucasians | 1 | - | - | |||||||
Asians | 2 | |||||||||
Dominant | 1.88 (0.98–3.60) | 1.88 (0.98–3.60) | 0 | 0.50 | - | - | ||||
Recessive | 1.46 (0.33–3.67) | 1.46 (0.33–3.67) | 0 | 0.84 | ||||||
Additive | 2.06 (0.44–9.58) | 2.06 (0.44–9.58) | 0 | 0.94 | ||||||
Pulse cyclophosphamide | CYP3A5 | CYP3A5*3 | rs776746 | |||||||
All | 2 | |||||||||
Dominant | 0.67 (0.30–1.48) | 0.67 (0.30–1.48) | 0% | 0.54 | - | - | ||||
Recessive | 0.90 (0.30–2.68) | 0.90 (0.30–2.68) | 0% | 0.58 | - | - | ||||
Additive | 0.73 (0.17–3.08) | 0.73 (0.17–3.08) | 0% | 0.32 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Prednizolone | ||||||||||
All | TPMT | *1 vs. *3C | 2 | |||||||
Dominant | 0.49 (0.18–1.37) | 0.64 (0.01–50.02) | 94.4% | <0.0001 | - | - | ||||
Recessive | 4 (0.08–202.85) | 4 (0.08–202.85) | 0% | >0.9999 | - | - | ||||
Additive | 4.5 (0.09–228.51) | 4.5 (0.09–228.51) | 0% | >0.9999 | - | - | ||||
All | CYP3A5 | CYP3A5*3 | rs776746 | 2 | ||||||
Dominant | 2.38 (0.41–13.67) | 2.38 (0.41–13.67) | 0% | 0.84 | - | - | ||||
Recessive | 2.54 (1.03–6.22) | 2.54 (1.03–6.22) | 0% | 0.73 | - | - | ||||
Additive | 3.24 (0.54–19.51) | 3.24 (0.54–19.51) | 0% | 0.80 | - | - | ||||
All | ABCB1 | C3435T | rs1045642 | 9 | ||||||
Dominant | 0.86 (0.63–1.18) | 0.86 (0.63–1.18) | 0% | 0.61 | 0.62 | 0.48 | ||||
Recessive | 1.21 (0.86–1.70) | 1.21 (0.86–1.70) | 0% | 0.76 | 0.72 | 0.76 | ||||
Additive | 0.97 (0.64–1.48) | 0.97 (0.64–1.48) | 0% | 0.95 | 0.31 | 0.61 | ||||
Caucasians | ABCB1 | C3435T | rs1045642 | 2 | ||||||
Dominant | 1.02 (0.28–3.68) | 1.05 (0.26–4.28) | 14.7% | 0.28 | - | - | ||||
Recessive | 2.02 (0.82–4.96) | 2.05 (0.73–5.75) | 23.6% | 0.25 | - | - | ||||
Additive | 1.84 (0.46–7.32) | 1.84 (0.46–7.32) | 0% | 0.68 | - | - | ||||
Asians | ABCB1 | C3435T | rs1045642 | 5 | ||||||
Dominant | 0.89 (0.62–1.28) | 0.89 (0.62–1.28) | 0% | 0.83 | 0.24 | 0.48 | ||||
Recessive | 1.07 (0.66–1.75) | 1.07 (0.66–1.75) | 0% | 0.86 | 0.82 | 0.48 | ||||
Additive | 1.01 (0.59–1.74) | 1.01 (0.59–1.74) | 0% | 0.99 | 0.79 | 0.82 | ||||
Mixed | ABCB1 | C3435T | rs1045642 | 2 | ||||||
Dominant | 0.75 (0.39–1.44) | 0.66 (0.19–2.31) | 70.6% | 0.07 | - | - | ||||
Recessive | 1.17 (0.68–2.02) | 1.17 (0.68–2.02) | 0% | 0.36 | - | - | ||||
Additive | 0.76 (0.37–1.59) | 0.76 (0.36–1.61) | 3.8% | 0.31 | - | - | ||||
All | ABCB1 | C1236T | rs1128503 | 9 | ||||||
Dominant | 1.29 (0.91–1.84) | 1.31 (0.90–1.89) | 5% | 0.39 | 0.62 | 0.36 | ||||
Recessive | 1.70 (1.22–2.38) | 1.62 (1.10–2.40) | 20.4% | 0.26 | 0.09 | 0.26 | ||||
Additive | 1.63 (1.01–2.64) | 1.62 (0.95–2.76) | 14% | 0.32 | 0.72 | 0.76 | ||||
Caucasians | ABCB1 | C1236T | rs1128503 | 2 | ||||||
Dominant | 0.56 (0.21–1.52) | 0.56 (0.21–1.52) | 0% | 0.38 | - | - | ||||
Recessive | 0.94 (0.33–2.63) | 0.94 (0.33–2.63) | 0% | 0.65 | - | - | ||||
Additive | 0.63 (0.18–2.22) | 0.63 (0.18–2.22) | 0% | 0.42 | - | - | ||||
Asians | ABCB1 | C1236T | rs1128503 | 5 | ||||||
Dominant | 1.42 (0.91–2.21) | 1.48 (0.90–2.43) | 7.6% | 0.36 | 0.27 | 0.82 | ||||
Recessive | 1.69 (1.11–2.60) | 1.58 (0.88–2.83) | 37.1% | 0.17 | 0.46 | 0.48 | ||||
Additive | 1.90 (1.02–3.53) | 1.92 (0.88–4.19) | 27.2% | 0.24 | 0.94 | 0.82 | ||||
Mixed | ABCB1 | C1236T | rs1128503 | 2 | ||||||
Dominant | 1.55 (0.79–3.05) | 1.55 (0.79–3.05) | 0% | 0.68 | - | - | ||||
Recessive | 2.17 (1.14–4.12) | 2.06 (0.88–4.81) | 39.3% | 0.20 | - | - | ||||
Additive | 1.97 (0.76–5.12) | 1.97 (0.76–5.12) | 0% | 0.46 | - | - | ||||
Prednizolone | ABCB1 | G2677T | rs2032582 | 5 | ||||||
All | ||||||||||
Dominant | 1.08 (0.60–1.93) | 1.08 (0.60–1.93) | 0% | 0.83 | 0.43 | 0.23 | ||||
Recessive | 1.16 (0.67–2.01) | 1.11 (0.48–2.57) | 53.8% | 0.07 | 0.72 | 0.08 | ||||
Additive | 1.34 (0.66–2.71) | 1.34 (0.66–2.71) | 0% | 0.73 | 0.76 | 0.48 | ||||
Caucasians | ABCB1 | G2677T | rs2032582 | 2 | ||||||
Dominant | 1.42 (0.36–5.62) | 1.42 (0.36–5.62) | 0% | 0.57 | - | - | ||||
Recessive | 0.64 (0.24–1.70) | 0.62 (0.15–2.61) | 53.5% | 0.14 | - | - | ||||
Additive | 0.89 (0.19–4.14) | 0.91 (0.16–5.23) | 22.3% | 0.26 | - | - | ||||
Asians | ABCB1 | G2677T | rs2032582 | 3 | ||||||
Dominant | 1.01 (0.53–1.93) | 1.01 (0.53–1.93) | 0% | 0.63 | - | - | ||||
Recessive | 1.53 (0.78–3.00) | 1.57 (0.55–4.47) | 54.6% | 0.11 | - | - | ||||
Additive | 1.49 (0.67–3.30) | 1.49 (0.67–3.30) | 0% | 0.82 | - | - | ||||
Prednizolone | ABCB1 | G2677A | rs2032582 | |||||||
All | 5 | |||||||||
Dominant | 1.21 (0.62–2.37) | 1.30 (0.59–2.84) | 21.1% | 0.28 | 0.16 | 0.08 | ||||
Recessive | 1.64 (0.60–4.47) | 1.64 (0.60–4.47) | 0% | 0.68 | 0.48 | 0.82 | ||||
Additive | 1.22 (0.38–3.91) | 1.22 (0.38–3.91) | 0% | 0.55 | 0.23 | 0.23 | ||||
Caucasians | ABCB1 | G2677A | rs2032582 | 1 | ||||||
Asians | 4 | |||||||||
Dominant | 1.07 (0.54–2.14) | 1.08 (0.53–2.18) | 2.9% | 0.38 | 0.50 | 0.75 | ||||
Recessive | 1.39 (0.48–4.01) | 1.39 (0.48–4.01) | 0% | 0.70 | 0.90 | 0.75 | ||||
Additive | 0.91 (0.26–3.13) | 0.91 (0.26–3.13) | 0% | 0.76 | 0.49 | 0.33 | ||||
Prednizolone | MIF | −173 G > C | rs755622 | |||||||
All | 4 | |||||||||
Dominant | 1.56 (1.09–2.24) | 1.28 (0.55–3.00) | 80.6% | 0.001 | 0.16 | <0.0001 | ||||
Recessive | 2.90 (1.02–8.30) | 2.88 (0.68–12.16) | 45.3% | 0.14 | 0.91 | 0.75 | ||||
Additive | 2.98 (1.03–8.63) | 2.93 (0.54–15.99) | 59.4% | 0.06 | 0.92 | 0.75 | ||||
Prednizolone | IL-6 | C-174G | rs1800795 | |||||||
All | 2 | |||||||||
Dominant | 0.82 (0.49–1.37) | 0.82 (0.49–1.37) | 0% | 0.69 | - | - | ||||
Recessive | 0.80 (0.43–1.48) | 0.32 (0.02–4.28) | 82.8% | 0.02 | - | - | ||||
Additive | 0.66 (0.31–1.40) | 0.31 (0.02–3.76) | 80.9% | 0.02 | - | - | ||||
Prednizolone | TNF | G-308A | ||||||||
All | 2 | |||||||||
Dominant | 0.82 (0.49–1.38) | 0.82 (0.49–1.38) | 0% | 0.35 | - | - | ||||
Recessive | 0.12 (0.02–0.65) | 0.12 (0.02–0.65) | 0% | 0.38 | ||||||
Additive | 0.12 (0.02–0.64) | 0.12 (0.02–0.64) | 0% | 0.38 |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
MMF | ABCB1 | 3435C > T | rs1045642 | |||||||
All | 2 | |||||||||
Dominant | 2.07 (1.09–3.94) | 2.07 (1.09–3.94) | 0% | 0.41 | - | - | ||||
Recessive | 1.43 (0.81–2.54) | 1.27 (0.52–3.09) | 46.3% | 0.17 | - | - | ||||
Additive | 2.25 (1.05–4.84) | 1.99 (0.64–6.22) | 47.2% | 0.17 | - | - | ||||
MMF | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 2 | |||||||||
Dominant | 1.67 (0.93–3.00) | 1.67 (0.93–3.00) | 0% | 0.51 | - | - | ||||
Recessive | 1.89 (1.05–3.40) | 1.63 (0.52–5.11) | 70.2% | 0.07 | - | - | ||||
Additive | 2.43 (1.17–5.04) | 2.13 (0.73–6.18) | 33.9% | 0.22 | - | - | ||||
MMF | ABCB1 | 2677G > T | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 2.20 (1.16–4.17) | 2.20 (1.16–4.17) | 0% | 0.81 | - | - | ||||
Recessive | 1.79 (0.94–3.40) | 1.37 (0.36–5.18) | 66.2% | 0.09 | - | - | ||||
Additive | 2.92 (1.32–6.46) | 2.77 (1.09–7.05) | 14% | 0.28 | - | - | ||||
MMF | ABCB1 | 2677G > A | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 3.72 (0.72–19.22) | 3.72 (0.72–19.22) | 0% | 0.50 | - | - | ||||
Recessive | 3.04 (0.22–42.65) | 3.04 (0.22–42.65) | 0% | 0.75 | - | - | ||||
Additive | 4.14 (0.28–61.96) | 4.14 (0.28–61.96) | 0% | 0.94 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Cyclosporine (CsA) | TPMT | 1 vs. 3C | ||||||||
All | 2 | |||||||||
Dominant | 0.49 (0.18–1.37) | 0.64 (0.01–50.02) | 94.4% | <0.0001 | - | - | ||||
Recessive | 4 (0.08–202.85) | 4 (0.08–202.85) | 0% | >0.9999 | - | - | ||||
Additive | 4.5 (0.09–228.51) | 4.5 (0.09–228.51) | 0% | >0.9999 | - | - | ||||
CsA | IL10 | −1082A > G | ||||||||
All | 3 | |||||||||
Dominant | 0.75 (0.49–1.14) | 0.76 (0.42–1.37) | 48.1% | 0.15 | - | - | ||||
Recessive | 1.11 (0.70–1.77) | 1.11 (0.70–1.77) | 0% | 0.93 | - | - | ||||
Additive | 1.04 (0.59–1.85) | 1.04 (0.59–1.85) | 0% | 0.59 | - | - | ||||
CsA | IL10 | −819C > T | ||||||||
All | 2 | |||||||||
Dominant | 1.72 (1.09–2.72) | 1.72 (1.09–2.72) | 0% | 0.33 | - | - | ||||
Recessive | 1.90 (1.12–3.24) | 2.30 (0.82–6.40) | 61.9% | 0.11 | - | - | ||||
Additive | 2.70 (1.43–5.10) | 2.70 (1.43–5.10) | 0% | 0.56 | - | - | ||||
CsA | IL10 | −592C > A | ||||||||
All | 2 | |||||||||
Dominant | 1.67 (1.07–2.60) | 1.67 (1.04–2.70) | 13.5% | 0.28 | - | - | ||||
Recessive | 1.93 (1.16–3.22) | 2.17 (0.91–5.19) | 57.6% | 0.12 | - | - | ||||
Additive | 2.79 (1.52–5.13) | 2.79 (1.52–5.13) | 0% | 0.49 | - | - | ||||
CsA | TGFB1 | C869T (P10L) | ||||||||
All | 2 | |||||||||
Dominant | 0.80 (0.47–1.37) | 0.80 (0.47–1.37) | 0% | 0.67 | - | - | ||||
Recessive | 0.68 (0.44–1.05) | 0.68 (0.44–1.05) | 0% | 0.49 | - | - | ||||
Additive | 0.66 (0.36–1.19) | 0.66 (0.36–1.19) | 0% | 0.94 | - | - | ||||
CsA | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 4 | |||||||||
Dominant | 0.91 (0.59–1.40) | 0.82 (0.32–2.14) | 71% | 0.02 | 0.88 | 0.75 | ||||
Recessive | 1.14 (0.72–1.80) | 1.00 (0.38–2.60) | 70.5% | 0.02 | 0.68 | 0.75 | ||||
Additive | 1.04 (0.60–1.80) | 0.91 (0.23–3.58) | 77.1% | 0.00 | 0.84 | 0.75 | ||||
CsA | ||||||||||
All | 3 | |||||||||
Dominant | 0.88 (0.55–1.38) | 0.85 (0.24–3.01) | 85.7% | 0.001 | - | - | ||||
Recessive | 1.03 (0.63–1.69) | 1.33 (0.31–5.80) | 83.7% | 0.00 | - | - | ||||
Additive | 0.97 (0.54–1.75) | 1.32 (0.17–10.44) | 88.9% | 0.0001 | - | - | ||||
CsA | ABCB1 | 3435 C > T | rs1045642 | |||||||
All | 5 | |||||||||
Dominant | 1.02 (0.67–1.54) | 1.02 (0.55–1.90) | 50.6% | 0.09 | 0.94 | 0.48 | ||||
Recessive | 1.47 (1.01–2.16) | 1.47 (1.01–2.16) | 0% | 0.84 | 0.64 | 0.82 | ||||
Additive | 1.33 (0.81–2.18) | 1.37 (0.71–2.67) | 33.7% | 0.20 | 0.70 | 0.48 | ||||
CsA | ||||||||||
All | 3 | |||||||||
Dominant | 0.44 (0.09–2.16) | 0.44 (0.09–2.16) | 0% | 0.999 | - | - | ||||
Recessive | 0.98 (0.53–1.82) | 0.98 (0.53–1.82) | 0% | 0.78 | - | - | ||||
Additive | 0.48 (0.09–2.40) | 0.48 (0.09–2.40) | 0% | 0.97 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Azathioprine | TPMT | 1 vs. 3C | ||||||||
All | 4 | |||||||||
Dominant | 1.64 (0.83–3.26) | 2.14 (0.22–21.08) | 90.1% | <0.0001 | 0.75 | 0.33 | ||||
Recessive | 2.33 (0.24–22.55) | 2.33 (0.24–22.55) | 0% | 0.99 | 0.80 | >0.9999 | ||||
Additive | 2.78 (0.29–26.75) | 2.78 (0.29–26.75) | 0% | 0.99 | 0.59 | >0.9999 | ||||
Azathioprine | ITPA | 94C > A | rs1127354 | |||||||
All | 2 | |||||||||
Dominant | 1.60 (0.84–3.06) | 1.59 (0.81–3.14) | 8.6% | 0.30 | - | - | ||||
Recessive | 21.82 (1.07–445.72) | 21.82 (1.07–445.72) | 0% | >0.9999 | - | - | ||||
Additive | 10.19 (0.92–113.39) | 10.19 (0.92–113.39) | 0% | 0.35 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Tacrolimus | CYP3A5 | CYP3A5*3 | rs776746 | |||||||
All | 3 | |||||||||
Dominant | 0.24 (0.08–0.69) | 0.24 (0.08–0.69) | 0% | 0.86 | - | - | ||||
Recessive | 0.88 (0.53–1.46) | 0.88 (0.53–1.46) | 0% | 0.87 | - | - | ||||
Additive | 0.25 (0.08–0.77) | 0.25 (0.08–0.77) | 0% | 0.91 | - | - | ||||
Tacrolimus | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 2 | |||||||||
Dominant | 1.53 (0.62–3.81) | 1.53 (0.62–3.81) | 0% | 0.54 | - | - | ||||
Recessive | 1.08 (0.52–2.21) | 1.08 (0.52–2.21) | 0% | 0.54 | - | - | ||||
Additive | 1.48 (0.54–4.10) | 1.48 (0.54–4.10) | 0% | 0.49 | - | - | ||||
Tacrolimus | ABCB1 | 2677 G > T | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 0.44 (0.17–1.10) | 0.58 (0.07–4.61) | 77.3% | 0.04 | - | - | ||||
Recessive | 0.46 (0.21–1.03) | 0.46 (0.21–1.03) | 0% | 0.66 | - | - | ||||
Additive | 0.33 (0.12–0.91) | 0.40 (0.08–2.14) | 56% | 0.13 | - | - | ||||
Tacrolimus | ABCB1 | 3435C > T | rs1045642 | |||||||
All | 3 | |||||||||
Dominant | 0.76 (0.43–1.34) | 0.66 (0.21–2.13) | 73.7% | 0.02 | - | - | ||||
Recessive | 1.47 (0.83–2.59) | 1.24 (0.43–3.57) | 69.4% | 0.04 | - | - | ||||
Additive | 1.06 (0.53–2.12) | 0.83 (0.20–3.47) | 74.2% | 0.02 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziastoudi, M.; Pissas, G.; Raptis, G.; Cholevas, C.; Eleftheriadis, T.; Dounousi, E.; Stefanidis, I.; Theoharides, T.C. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 4480. https://doi.org/10.3390/ijms22094480
Tziastoudi M, Pissas G, Raptis G, Cholevas C, Eleftheriadis T, Dounousi E, Stefanidis I, Theoharides TC. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. International Journal of Molecular Sciences. 2021; 22(9):4480. https://doi.org/10.3390/ijms22094480
Chicago/Turabian StyleTziastoudi, Maria, Georgios Pissas, Georgios Raptis, Christos Cholevas, Theodoros Eleftheriadis, Evangelia Dounousi, Ioannis Stefanidis, and Theoharis C. Theoharides. 2021. "A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease" International Journal of Molecular Sciences 22, no. 9: 4480. https://doi.org/10.3390/ijms22094480
APA StyleTziastoudi, M., Pissas, G., Raptis, G., Cholevas, C., Eleftheriadis, T., Dounousi, E., Stefanidis, I., & Theoharides, T. C. (2021). A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. International Journal of Molecular Sciences, 22(9), 4480. https://doi.org/10.3390/ijms22094480