Neuromyelitis Optica Spectrum Disorder Treatment—Current and Future Prospects
Abstract
1. Introduction
2. Methods
3. Pathogenesis of NMODS
4. Current NMODS Treatment
4.1. Treatment of Relapse
4.2. Maintenance Treatment
4.2.1. Immunosuppression
4.2.2. Cell Depletion
4.2.3. IL-6—Targeted Activity
4.2.4. Complement Inhibition
5. Future Therapies
5.1. Cell Depletion
5.2. Complement Inhibition
5.3. Counteracting Anti AQP4 IgG
5.4. Polynuclear-Targeted Activity
5.5. Other Avenues
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AQP4 | aquaporin 4 |
AZA | azathioprine |
BBB | blood-brain barrier |
CNS | central nervous system |
CSF | cerebrospinal fluid |
ECP | eosinophil cationic protein |
GFAP | glial fibrillary associated protein |
HSCT | hematopoietic stem cell transplantation |
IA | immunoadsorption |
IgG | immunoglobulin G |
IVIG | intravenous immunoglobulins |
IVMP | intravenous pulse of methylprednisolone |
LETM | longitudinal extensive transverse myelitis |
MAG | myelin associated glycoprotein |
MBPE | eosinophilic granule major basic protein |
MMF | mycophenolate mofetil |
MRI | magnetic resonance imaging |
MOG | myelin oligodendrocyte glycoprotein |
MS | multiple sclerosis |
NMOSD | neuromyelitis optica spectrum disorders |
OAPs | orthogonal arrays of particles |
ON | optic neuritis |
PLEX | plasmapharesis |
RTX | rituximab |
TPMT | thiopurine methyltransferase |
References
- Devic, E. Myélite aiguë dorso-lombaire avec névrite optique—Autopsie. In Congrès Français de Médecine (Premiere Session; Lyon, 1894; Procès-Verbaux, Mémoires et Discussions); Asselin et Houzeau; Louis Savy: Lyon, France; Paris, France, 1895; pp. 434–439. [Google Scholar]
- Lennon, A.V.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef]
- Damiza-Detmer, A.; Milewska-Jędrzejczak, M.; Pawełczyk, M.; Damiza, I.; Głąbiński, A. Neuromyelitis optica spectrum disorder (NMOSD)—Diagnosis, epidemiology, clinical course, treatment. Aktualności Neurol. 2019, 19, 19–26. [Google Scholar] [CrossRef]
- Collongues, N.; Ayme-Dietrich, E.; Monassier, L.; De Seze, J. Pharmacotherapy for Neuromyelitis Optica Spectrum Disorders: Current Management and Future Options. Drugs 2019, 79, 125–142. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Lennon, A.V.; Lucchinetti, C.F.; Pittock, S.J.; Weinshenker, B.G. The spectrum of neuromyelitis optica. Lancet Neurol. 2007, 6, 805–815. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; De Seze, J.; Fujihara, K.; Greenberg, B.M.; Jacob, A.; et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef]
- Rego, C.A.D.; Collongues, N. Neuromyelitis optica spectrum disorders: Features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes. Rev. Neurol. 2018, 174, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.; Cook, L.J. Neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease: Current topics. Curr. Opin. Neurol. 2020, 33, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Brod, S.A. Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult. Scler. Relat. Disord. 2020, 46, 102538. [Google Scholar] [CrossRef] [PubMed]
- Pandit, L.; Asgari, N.; Apiwattanakul, M.; the GJCF International Clinical Consortium & Biorepository for Neuromyelitis Optica. Demographic and clinical features of neuromyelitis optica: A review. Mult. Scler. 2015, 21, 845–853. [Google Scholar] [PubMed]
- Wu, Y.; Zhong, L.; Geng, J. Neuromyelitis optica spectrum disorder: Pathogenesis, treatment, and experimental models. Mult. Scler. Relat. Disord. 2019, 27, 412–418. [Google Scholar] [CrossRef]
- Mandler, R.N. Neuromyelitis optica—Devic’s syndrome, update. Autoimmun. Rev. 2006, 5, 537–543. [Google Scholar] [CrossRef]
- Yoshii, F.; Moriya, Y.; Ohnuki, T.; Ryo, M.; Takahashi, W. Fingolimod-induced leukoencephalopathy in a patient with neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 2016, 7, 53–57. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Asavapanumas, N.; Verkman, A.S. Emerging therapeutic targets for neuromyelitis optica spectrum disorder. Expert Opin. Ther. Targets 2020, 24, 219–229. [Google Scholar] [CrossRef]
- Selmaj, K.; Selmaj, I. Novel emerging treatments for NMOSD. Neurol. Neurochir. Pol. 2019, 53, 317–326. [Google Scholar] [CrossRef]
- Bennett, B.; Greenberg, A. Traboulsee, Efficacy of satralizumab as monotherapy in pre-specified subgroups of SAkuraStar, a double-blind placebo-controlled Phase 3 clinical study in patients with neuromyelitis optica spectrum disorder (NMOSD). J. Neurol. Sci. 2019, 25, 44. [Google Scholar]
- Papadopoulos, M.; Verkman, A.S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 2012, 11, 535–544. [Google Scholar] [CrossRef]
- Bennett, J.L.; Lam, C.; Kalluri, S.R.; Saikali, P.; Bautista, K.; Dupree, C.; Glogowska, M.; Case, D.; Antel, J.P.; Owens, G.P.; et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 2009, 66, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Eculizumab: A Review in Neuromyelitis Optica Spectrum Disorder. Drugs 2020, 80, 719–727. [Google Scholar] [CrossRef]
- Ceglie, G.; Papetti, L.; Valeriani, M.; Merli, P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5304. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.; Saxena, S.; Chitnis, T. Targeting IL-6 receptor in the treatment of neuromyelitis optica spectrum: A review of emerging treatment options. Expert Rev. Neurother. 2020, 20, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Linhares, U.C.; Schiavoni, P.B.; Barros, P.O. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J. Clin. Immunol. 2013, 33, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Araki, M. Blockade of IL-6 signaling in neuromyelitis optica. Neurochem. Int. 2019, 130, 104315. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Misu, T.; Kaneko, K.; Chihara, N.; Narikawa, K.; Tsuchida, S.; Nishida, H.; Komori, T.; Seki, M.; Komatsu, T.; et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: An immunopathological study. Brain 2020, 143, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Tradtrantip, L.; Asavapanumas, N.; Verkman, A.S. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol. Pharmacol. 2013, 83, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, F.; Schaller, K.L.; Owens, G.P.; Cotleur, A.C.; Kellner, D.; Takeshita, Y.; Obermeier, B.; Kryzer, T.J.; Sano, Y.; Kanda, T.; et al. Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Sci. Transl. Med. 2017, 9, eaai9111. [Google Scholar] [CrossRef]
- Jarius, S.; Wildemann, B.; Paul, F. Neuromyelitis optica: Clinical features, immunopathogenesis and treatment. Clin. Exp. Immunol. 2014, 176, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Bruck, W.; Popescu, B.; Lucchinetti, C.F.; Markovic-Plese, S.; Gold, R.; Thal, D.R.; Metz, I. Neuromyelitis optica lesions may inform multiple sclerosis heterogeneity debate. Ann. Neurol. 2012, 72, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Trebst, C.; Neuromyelitis Optica Study Group (NEMOS); Jarius, S.; Berthele, A.; Paul, F.; Schippling, S.; Wildemann, B.; Borisow, N.; Kleiter, I.; Aktas, O.; et al. Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 2014, 261, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kleiter, I.; Gahlen, A.; Borisow, N.; Fischer, K.; Wernecke, K.-D.; Wegner, B.; Hellwig, K.; Pache, F.; Ruprecht, K.; Havla, J.; et al. Neuromyelitis optica: Evaluation of 871 attacks and 1153 treatment courses. Ann. Neurol. 2016, 79, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Kimbrough, D.J.; Fujihara, K.; Jacob, A.; Lana-Peixoto, M.A.; Leite, M.I.; Levy, M.; Marignier, R.; Nakashima, I.; Palace, J.; De Seze, J.; et al. Treatment of neuromyelitis optica: Review and recommendations. Mult. Scler. Relat. Disord. 2012, 1, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Stiebel-Kalish, H.; Hellmann, M.A.; Mimouni, M.; Paul, F.; Bialer, O.; Bach, M.; Lotan, I. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e572. [Google Scholar] [CrossRef]
- Akaishi, T.; Nakashima, I.; Takahashi, T.; Abe, M.; Ishii, T.; Aoki, M. Neuromyelitis optica spectrum disorders with unevenly clustered attack occurrence. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e640. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, W.; Huh, S.-Y.; Lee, K.Y.; Jung, I.J.; Kim, H.J. Clinical Efficacy of Plasmapheresis in Patients with Neuromyelitis Optica Spectrum Disorder and Effects on Circulating Anti-Aquaporin-4 Antibody Levels. J. Clin. Neurol. 2013, 9, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Magaña, S.M.; Keegan, B.M.; Weinshenker, B.G.; Erickson, B.J.; Pittock, S.J.; Lennon, V.A.; Rodriguez, M.; Thomsen, K.M.; Weigand, S.D.; Mandrekar, J.; et al. Beneficial Plasma Exchange Response in Central Nervous System Inflammatory Demyelination. Arch. Neurol. 2011, 68, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Merle, H.; Olindo, S.; Jeannin, S.; Valentino, R.; Mehdaoui, H.; Cabot, F.; Donnio, A.; Hage, R.; Richer, R.; Smadja, D.; et al. Treatment of Optic Neuritis by Plasma Exchange (Add-On) in Neuromyelitis Optica. Arch. Ophthalmol. 2012, 130, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Nakashima, I.; Misu, T.; Miyazawa, I.; Shiga, Y.; Fujihara, K.; Itoyama, Y. Therapeutic efficacy of plasma exchange in nmo-igg-positive patients with neuromyelitis optica. Mult. Scler. 2007, 13, 128–132. [Google Scholar] [CrossRef]
- Shemin, D.; Briggs, D.; Greenan, M. Complications of therapeutic plasma exchange: A prospective study of 1727 procedures. J. Clin. Apher. 2007, 22, 270–276. [Google Scholar] [CrossRef]
- Kleiter, I.; Gahlen, A.; Borisow, N.; Fischer, K.; Wernecke, K.D.; Hellwig, K. Apheresis therapies for NMOSD attacks: A retrospective study of 207 therapeutic interventions. Neurol. Neuroimmunol. Neuroinflamm. 2018, 26, e504. [Google Scholar] [CrossRef]
- Faissner, S.; Nikolayczik, J.; Chan, A.; Gold, R.; Yoon, M.-S.; Haghikia, A. Immunoadsorption in patients with neuromyelitis optica spectrum disorder. Ther. Adv. Neurol. Disord. 2016, 9, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Kraft, A.; Heigl, F.; Mauch, E.; Koehler, J.; Harms, L.; Kümpfel, T.; Köhler, W.; Ehrlich, S.; Bayas, A.; et al. Tryptophan immunoadsorption during pregnancy and breastfeeding in patients with acute relapse of multiple sclerosis and neuromyelitis optica. Ther. Adv. Neurol. Disord. 2018, 11. [Google Scholar] [CrossRef]
- Sellner, J.; Boggild, M.; Clanet, M.; Hintzen, R.Q.; Illes, Z.; Montalban, X.; Du Pasquier, R.A.; Polman, C.H.; Sorensen, P.S.; Hemmer, B. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur. J. Neurol. 2010, 17, 1019–1032. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Ren, H.-T.; Qiao, L.; Zhang, Y.; Fei, Y.-Y.; Zhao, Y.; Cui, L.-Y. Comparison of efficacy and tolerability of azathioprine, mycophenolate mofetil, and cyclophosphamide among patients with neuromyelitis optica spectrum disorder: A prospective cohort study. J. Neurol. Sci. 2016, 370, 224–228. [Google Scholar] [CrossRef]
- Elsone, L.; Panicker, J.; Mutch, K.; Boggild, M.; Appleton, R.; Jacob, A. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: Experience in 10 patients. Mult. Scler. J. 2013, 20, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Altunrende, B.; Akdal, G.; Bajin, M.S.; Yaman, A.; Kocaslan, M.; Nalbantoğlu, M.; Ertaşoğlu, H.; Akman, G. Intravenous Immunoglobulin Treatment for Recurrent Optic Neuritis. Noropsikiyatr. Ars. 2019, 56, 3–6. [Google Scholar]
- Fragoso, Y.D.; Sousa, N.A.C.; Alves-Leon, S.V.; Dias, R.M.; Pimentel, M.L.V.; Gomes, S. Clinical characteristics of 153 Brazilian patients with neuromyelitis optica spectrum disorder (NMOSD). Mult. Scler. Relat. 2019, 27, 392–396. [Google Scholar] [CrossRef]
- Kuitwaard, K.; van Doorn, P.A. Newer therapeutic options for chronic inflammatory demyelinating polyradiculoneuropathy. Drugs 2009, 29, 987–1001. [Google Scholar] [CrossRef]
- Mandler, R.N.; Ahmed, W.; Dencoff, J.E. Devic’s neuromyelitis optica: A prospective study of seven patients treated with prednisone and azathioprine. Neurology 1998, 51, 1219–1220. [Google Scholar] [CrossRef]
- Espiritu, A.I.; Pasco, P.M.D. Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2019, 33, 22–32. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, W.; Park, M.S.; Sohn, E.H.; Li, X.F.; Kim, H.J. Efficacy and Safety of Mitoxantrone in Patients With Highly Relapsing Neuromyelitis Optica. Arch. Neurol. 2011, 68, 473–479. [Google Scholar] [CrossRef][Green Version]
- Cabre, P.; Olindo, S.; Marignier, R.; Jeannin, S.; Merle, H.; Smadja, D.; under the Aegis of the French National Observatory of Multiple Sclerosis. Efficacy of mitoxantrone in neuromyelitis optica spectrum: Clinical and neuroradiological study. J. Neurol. Neurosurg. Psychiatry 2012, 84, 511–516. [Google Scholar] [CrossRef]
- Yaguchi, H.; Sakushima, K.; Takahashi, I.; Nishimura, H.; Yashima-Yamada, M.; Nakamura, M.; Tsuzaka, K.; Maruo, Y.; Takahashi, T.; Yabe, I.; et al. Efficacy of Intravenous Cyclophosphamide Therapy for Neuromyelitis Optica Spectrum Disorder. Intern. Med. 2013, 52, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, T.; Komori, M.; Miyamoto, K.; Ozaki, A.; Suenaga, T.; Takahashi, R.; Kusunoki, S.; Matsumoto, S.; Kondo, T. Combination of cyclosporine A with corticosteroids is effective for the treatment of neuromyelitis optica. J. Neurol. 2012, 260, 627–634. [Google Scholar] [CrossRef]
- Huh, S.-Y.; Kim, S.-H.; Hyun, J.-W.; Joung, A.-R.; Park, M.S.; Kim, B.-J.; Kim, H.J. Mycophenolate Mofetil in the Treatment of Neuromyelitis Optica Spectrum Disorder. JAMA Neurol. 2014, 71, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Montcuquet, A.; Collongues, N.; Papeix, C.; Zephir, H.; Audoin, B.; Laplaud, D.; Bourre, B.; Brochet, B.; Camdessanche, J.P.; Labauge, P.; et al. NOMADMUS study group and the Observatoire Français de la Sclérose en Plaques (OFSEP). Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult. Scler. 2017, 23, 1377–1384. [Google Scholar] [CrossRef]
- Tahara, M.; Oeda, T.; Okada, K.; Kiriyama, T.; Ochi, K.; Maruyama, H.; Fukaura, H.; Nomura, K.; Shimizu, Y.; Mori, M.; et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 298–306. [Google Scholar] [CrossRef]
- Gao, F.; Chai, B.; Gu, C.; Wu, R.; Dong, T.; Yao, Y.; Zhang, Y. Effectiveness of rituximab in neuromyelitis optica: A meta-analysis. BMC Neurol. 2019, 19, 36. [Google Scholar] [CrossRef]
- Jeong, I.H.; Park, B.; Kim, S.-H.; Hyun, J.-W.; Joo, J.; Kim, H.J. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult. Scler. J. 2016, 22, 329–339. [Google Scholar] [CrossRef]
- Chen, D.; Gallagher, S.; Monson, N.L.; Herbst, R.; Wang, Y. Inebilizumab, a B Cell-Depleting Anti-CD19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies. J. Clin. Med. 2016, 5, 107. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R.; et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
- Frampton, J.E. Inebilizumab: First Approval. Drugs 2020, 80, 1259–1264. [Google Scholar] [CrossRef]
- Levy, M. Interleukin-6 receptor blockade for the treatment of NMOSD. Lancet Neurol. 2020, 19, 370–371. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Therapeutic Targeting of the Interleukin-6 Receptor. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Ringelstein, M.; Ayzenberg, I.; Harmel, J.; Lauenstein, A.-S.; Lensch, E.; Stögbauer, F.; Hellwig, K.; Ellrichmann, G.; Stettner, M.; Chan, A.; et al. Long-term Therapy With Interleukin 6 Receptor Blockade in Highly Active Neuromyelitis Optica Spectrum Disorder. JAMA Neurol. 2015, 72, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, M.; Qiu, W.; Ma, H.; Zhang, X.; Zhu, Z.; Yang, C.-S.; Jia, D.; Zhang, T.-X.; Yuan, M.; et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): An open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020, 19, 391–401. [Google Scholar] [CrossRef]
- Araki, M.; Matsuoka, T.; Miyamoto, K.; Kusunoki, S.; Okamoto, T.; Murata, M.; Miyake, S.; Aranami, T.; Yamamura, T. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: A pilot study. Neurology 2014, 82, 1302–1306. [Google Scholar] [CrossRef]
- Lotan, I.; Charlson, R.W.; Ryerson, L.Z.; Levy, M.; Kister, I. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 2020, 39, 101920. [Google Scholar] [CrossRef]
- Traboulsee, A.; Greenberg, B.M.; Bennett, J.L.; Szczechowski, L.; Fox, E.; Shkrobot, S.; Yamamura, T.; Terada, Y.; Kawata, Y.; Wright, P.; et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: A randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020, 19, 402–412. [Google Scholar] [CrossRef]
- Yao, X.; Verkman, A.S. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Pittock, S.J.; Lennon, V.A.; McKeon, A.; Mandrekar, J.; Weinshenker, B.G.; Lucchinetti, C.F.; O’Toole, O.; Wingerchuk, D.M. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: An open-label pilot study. Lancet Neurol. 2013, 12, 554–562. [Google Scholar] [CrossRef]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4–Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [CrossRef]
- Giglhuber, K.; Berthele, A. Eculizumab in the treatment of neuromyelitis optica spectrum disorder. Immunotherapy 2020, 12, 1053–1066. [Google Scholar] [CrossRef]
- Pardo, S.; Giovannoni, G.; Hawkes, C.; Lechner-Scott, J.; Waubant, E.; Levy, M. Editorial on: Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 2019, 33, A1–A2. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Sun, M.; Sun, J.; Zheng, T.; Wang, M. New progress in the treatment of neuromyelitis optica spectrum disorder with monoclonal antibodies (Review). Exp. Ther. Med. 2020, 21, 1. [Google Scholar] [CrossRef]
- Romeo, A.R.; Segal, B.M. Treatment of neuromyelitis optica spectrum disorders. Curr. Opin. Rheumatol. 2019, 31, 250–255. [Google Scholar] [CrossRef]
- Traub, J.; Husseini, L.; Weber, M.S. B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals 2021, 14, 37. [Google Scholar] [CrossRef]
- Alexopoulos, H.; Biba, A.; Dalakas, M.C. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics 2016, 13, 20–33. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Duan, T.; Yeaman, M.R.; Verkman, A.S. CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica. J. Neuroinflamm. 2019, 16, 57. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Zhang, H.; Saadoun, S.; Phuan, P.-W.; Lam, C.; Papadopoulos, M.C.; Bennett, J.L.; Verkman, A.S. Anti-Aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann. Neurol. 2011, 71, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Verkman, A. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J. Clin. Investig. 2013, 123, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Sand, I.K.; Fabian, M.T.; Telford, R.; Kraus, T.A.; Chehade, M.; Masilamani, M.; Moran, T.; Farrell, C.; Ebel, S.; Cook, L.J.; et al. Open-label, add-on trial of cetirizine for neuromyelitis optica. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e441. [Google Scholar] [CrossRef]
- Herges, K.; De Jong, A.B.; Kolkowitz, I.; Dunn, C.; Mandelbaum, G.; Ko, R.M.; Maini, A.; Han, M.H.; Killestein, J.; Polman, C.; et al. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Mult. Scler. J. 2012, 18, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Waters, P.; Macdonald, C.; Bell, B.A.; Vincent, A.; Verkman, A.; Papadopoulos, M.C. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann. Neurol. 2011, 71, 323–333. [Google Scholar] [CrossRef]
- Neubert, K.; Meister, S.; Moser, K.; Weisel, F.; Maseda, D.; Amann, K.; Wiethe, C.; Winkler, T.H.; Kalden, J.R.; A Manz, R.; et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 2008, 14, 748–755. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, D.-C.; Yang, C.-S.; Han, B.; Wang, J.; Yang, L.; Shi, F.-D. Safety and Efficacy of Bortezomib in Patients With Highly Relapsing Neuromyelitis Optica Spectrum Disorder. JAMA Neurol. 2017, 74, 1010–1012. [Google Scholar] [CrossRef]
- Sharrack, B.; Saccardi, R.; Alexander, T.; Badoglio, M.; Burman, J.; Farge, D.; Greco, R.; Jessop, H.; Kazmi, M.; Kirgizov, K.; et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: Updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant. 2020, 55, 283–306. [Google Scholar] [CrossRef]
- Peng, F.; Qiu, W.; Li, J.; Hu, X.; Huang, R.; Lin, D.; Bao, J.; Jiang, Y.; Bian, L. A Preliminary Result of Treatment of Neuromyelitis Optica With Autologous Peripheral Hematopoietic Stem Cell Transplantation. Neurologist 2010, 16, 375–378. [Google Scholar] [CrossRef]
- Greco, R.; Bondanza, A.; Oliveira, M.C.; Badoglio, M.; Burman, J.; Piehl, F.; Hagglund, H.; Krasulova, E.; Simões, B.P.; Carlson, K.; et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: A registry study of the EBMT Autoimmune Diseases Working Party. Mult. Scler. J. 2015, 21, 189–197. [Google Scholar] [CrossRef]
- Matiello, M.; Pittock, S.J.; Porrata, L.; Weinshenker, B.G. Failure of Autologous Hematopoietic Stem Cell Transplantation to Prevent Relapse of Neuromyelitis Optica. Arch. Neurol. 2011, 68, 953–955. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baldassari, L.E.; Feng, J.; Clayton, B.L.; Oh, S.-H.; Sakaie, K.; Tesar, P.J.; Wang, Y.; Cohen, J.A. Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Rev. Neurother. 2019, 19, 997–1013. [Google Scholar] [CrossRef]
Core Clinical Symptoms |
|
NMOSD with AQP4-IgG Positive |
|
NMOSD with AQP4-IgG Negative or Unmarked |
|
MRI Criteria for NMOSD without AQP4 |
|
Name | Route | Dosing Regimen | Mode of Action |
---|---|---|---|
Treatment of Acute Relapse | |||
methylprednisolone | iv | 1000 mg for 3–5 days | multiple anti-inflammatory |
plasma exchange | iv | 5–7 cycles | removal of auto-antibodies and inflammatory cytokines |
immunoadsorption | iv | removal of auto-antibodies and inflammatory cytokines | |
intravenous immunoglobulin | iv | 0.4 g/kg/day with 5 days | multiple anti-inflammatory |
Preventive Treatment | |||
azathiopryne | oral | 2 to 3 mg/kg/day | Immunosuppressant, depletion of B-cells and T-cells |
mitoxantrone | iv | 12 mg/m2 every 3 month (max dose 140 mg/m2) | anthracenedione antineoplastic agent, intercalates DNA |
metotrexate | oral | 7.5–25 mg weekly | folic acid inhibitor, modulation of T cells activity |
cyclofosfamide | iv | 2 g daily for 4 days | alkylating agent, inhibits white blood cells |
cyclosporine A | oral | 2–5 mg daily | calcineurin inhibitor, inhibits T-cells |
mycophenolate mofetil | oral | 750–3000 mg daily | immunosupresant inhibitor of inosine monophosphate dehydrogenase, depletion and suppressed proliferation of B and T cells |
rituximab | iv | 1 g on days 1 and 14; repeated every 6 months | chimeric monoclonal antibody anti CD20 |
inebilizumab * | iv | 300 mg on days 1 and 15 | humanized monoclonal antibody anti-CD19 |
tocilizumab | iv | 8 mg/kg every 4–6 weeks | recombinant humanized monoclonal antibody anti lL-6 receptor |
satralizumab * | sc | 120 mg | humanized monoclonal antibody anti Il-6 receptor |
eculizumab * | iv | 900 mg weekly for 4 weeks | recombinant humanized monoclonal antibody anti-C5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waliszewska-Prosół, M.; Chojdak-Łukasiewicz, J.; Budrewicz, S.; Pokryszko-Dragan, A. Neuromyelitis Optica Spectrum Disorder Treatment—Current and Future Prospects. Int. J. Mol. Sci. 2021, 22, 2801. https://doi.org/10.3390/ijms22062801
Waliszewska-Prosół M, Chojdak-Łukasiewicz J, Budrewicz S, Pokryszko-Dragan A. Neuromyelitis Optica Spectrum Disorder Treatment—Current and Future Prospects. International Journal of Molecular Sciences. 2021; 22(6):2801. https://doi.org/10.3390/ijms22062801
Chicago/Turabian StyleWaliszewska-Prosół, Marta, Justyna Chojdak-Łukasiewicz, Sławomir Budrewicz, and Anna Pokryszko-Dragan. 2021. "Neuromyelitis Optica Spectrum Disorder Treatment—Current and Future Prospects" International Journal of Molecular Sciences 22, no. 6: 2801. https://doi.org/10.3390/ijms22062801
APA StyleWaliszewska-Prosół, M., Chojdak-Łukasiewicz, J., Budrewicz, S., & Pokryszko-Dragan, A. (2021). Neuromyelitis Optica Spectrum Disorder Treatment—Current and Future Prospects. International Journal of Molecular Sciences, 22(6), 2801. https://doi.org/10.3390/ijms22062801