Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwak, J.M.; Nguyen, V.; Schroeder, J.I. The role of reactive oxygen species in hormonal responses. Plant Physiol. 2006, 141, 323–329. [Google Scholar] [CrossRef]
- Fichman, J.; Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? Plant J. 2020, 102, 887–896. [Google Scholar] [CrossRef]
- Kumar, M.; Kesawat, M.S.; Ali, A.; Lee, S.-C.; Gill, A.S.; Kim, H.U. Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 2019, 8, 592. [Google Scholar] [CrossRef]
- Orman-Ligeza, B.; Parizot, B.; de Rycke, R.; Fernandez, A.; Himschoot, E.; Van Breusegem, F.; Bennett, M.J.; Périlleux, C.; Beeckman, T.; Draye, X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 2016, 143, 3328–3339. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Y.C.; An, G.Y.; Zhou, Y.; Shangguan, Z.P.; Gao, J.F.; Song, C.P. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells. Cell Res. 2001, 11, 195–202. [Google Scholar] [CrossRef]
- Hose, E.; Steudle, E.; Hartung, W. Abscisic acid and hydraulic conductance of maize roots: A study using cell- and root-pressure probes. Planta 2000, 211, 874–882. [Google Scholar] [CrossRef]
- Aroca, R. Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J. Plant Growth Regul. 2006, 25, 10–17. [Google Scholar] [CrossRef]
- Sutka, M.; Li, G.; Boudet, J.; Boursiac, Y.; Doumas, P.; Maurel, C. Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiol. 2011, 155, 1264–1276. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant aquaporins: Membrane channels with multiple integrated functions. Annu. Rev. Plant Physiol. 2008, 59, 595–624. [Google Scholar] [CrossRef] [PubMed]
- Luu, D.T.; Maurel, C. Aquaporins in a challenging environment: Molecular gears for adjusting plant water status. Plant Cell Environ. 2005, 28, 85–96. [Google Scholar] [CrossRef]
- Kim, Y.X.; Steudle, E. Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays. J. Exp. Bot. 2009, 60, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Benabdellah, K.; Ruiz-Lozano, J.M.; Aroca, R. Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation in Phaseolus vulgaris. Plant Mol. Biol. 2009, 70, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Chaumont, F. Are aquaporins expressed in stomatal complexes promising targets to enhance stomatal dynamics? Front. Plant Sci. 2020, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Chaumont, F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Sharipova, G.; Veselov, D.; Kudoyarova, G.; Fricke, W.; Dodd, I.; Katsuhara, M.; Furuichi, T.; Ivanov, I.; Veselov, S. Exogenous, application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA deficient barley mutant Az34. Ann. Bot. 2016, 118, 777–785. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Dong, F.; Gao, J.; Galbraith, D.W.; Song, C.P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 2001, 126, 1438–1448. [Google Scholar] [CrossRef]
- Ludewig, M.; Dorffling, K.; Seifert, H. Abscisic acid and water transport in sunflowers. Planta 1988, 175, 325–333. [Google Scholar] [CrossRef]
- Fiscus, E.L. Effects of abscisic acid on the hydraulic conductance of and the total ion transport through phaseolus root systems. Plant Physiol. 1981, 68, 169–174. [Google Scholar] [CrossRef][Green Version]
- Parent, B.; Hachez, C.; Redondo, E.; Simonneau, T.; Chaumont, F.; Tardieu, F. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans-scale approach. Plant Physiol. 2009, 149, 2000–2012. [Google Scholar] [CrossRef]
- Katsuhara, M.; Akiyama, Y.; Koshio, K.; Shibasaka, M.; Kasamo, K. Functional Analysis of Water Channels in Barley Roots. Plant Cell Physiol. 2002, 43, 885–893. [Google Scholar] [CrossRef]
- Katsuhara, M.; Tsuji, N.; Shibasaka, M.; Panda, S.K. Osmotic stress decreases PIP aquaporin transcripts in barley roots but H2O2 is not involved in this process. J. Plant Res. 2014, 127, 787–792. [Google Scholar] [CrossRef]
- Sharipova, G.V.; Veselova, S.V.; Veselov, D.S. Dynamics of features of water exchange during moderate osmotic stress. Biomics 2013, 5, 130–135. [Google Scholar]
- Aroca, R.; Amodeo, G.; Fernández-Illescas, S.; Herman, E.M.; Chaumont, F.; Chrispeels, M.J. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol. 2005, 137, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Veselova, S.V.; Burkhanova, G.F.; Nuzhnaya, T.V.; Maksimov, I.V. Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum. Russ. J. Plant Physiol. 2016, 63, 609–619. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Veselova, S.; Hartung, W.; Farhutdinov, R.; Veselov, D.; Sharipova, G. Involvement of root ABA and hydraulic conductance in the control of water relations in wheat plants exposed to increased evaporative demand. Planta 2011, 233, 87–94. [Google Scholar] [CrossRef] [PubMed]



Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharipova, G.; Ivanov, R.; Veselov, D.; Akhiyarova, G.; Shishova, M.; Nuzhnaya, T.; Kudoyarova, G. Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance. Int. J. Mol. Sci. 2021, 22, 9144. https://doi.org/10.3390/ijms22179144
Sharipova G, Ivanov R, Veselov D, Akhiyarova G, Shishova M, Nuzhnaya T, Kudoyarova G. Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance. International Journal of Molecular Sciences. 2021; 22(17):9144. https://doi.org/10.3390/ijms22179144
Chicago/Turabian StyleSharipova, Guzel, Ruslan Ivanov, Dmitriy Veselov, Guzel Akhiyarova, Maria Shishova, Tatyana Nuzhnaya, and Guzel Kudoyarova. 2021. "Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance" International Journal of Molecular Sciences 22, no. 17: 9144. https://doi.org/10.3390/ijms22179144
APA StyleSharipova, G., Ivanov, R., Veselov, D., Akhiyarova, G., Shishova, M., Nuzhnaya, T., & Kudoyarova, G. (2021). Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance. International Journal of Molecular Sciences, 22(17), 9144. https://doi.org/10.3390/ijms22179144

