Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors
Abstract
:1. Introduction
1.1. Psoriasis—Short Disease Outline
1.2. Psoriasis and Comorbid Diseases—Clinical Data and Epidemiology
1.3. Psoriasis and Concomitant Cardiovascular Risk Factors—Clinical Consequences
2. The Role of Inflammatory Molecules and Mechanisms in Psoriasis-Associated Diseases
2.1. Production of Inflammatory Factors is Mostly Regulated by Gene Transcription
2.2. Psoriasis and Cardiovascular Risk Factors—Defining Common Pro-Inflammatory Pathways
2.3. ‘Psoriatic March’ Concept
3. Possible Common Genetic Background of Psoriasis and Concomitant Cardiovascular Risk Factors
3.1. Genetic Pathways of Primary HT and Psoriasis
3.2. Genetic Pathways of Insulin Resistance, DM-2, and Psoriasis
3.3. Genetic Pathways of Dyslipidemia and Psoriasis
3.4. Genetic Pathways of Obesity, Abnormal Body Mass Index (BMI), and Psoriasis
3.5. Genetic Pathways of MS and Psoriasis
3.6. Genetic Pathways of Depression and Psoriasis
3.7. Genetic Linkage between CVD and Psoriasis
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin-converting enzyme |
AGT | angiotensinogen |
BMI | body mass index |
CAD | coronary artery disease |
CARD14 | caspase recruitment domain-containing protein 14 |
CARMA | CARD-containing membrane-associated guanylate kinase protein |
CVD | cardiovascular disease |
DEG | differentially expressed genes |
DM-2 | type 2 diabetes mellitus |
DNA | deoxyribonucleic acid |
eNOS | endothelial nitric oxide synthase |
GLUT4 | insulin- responsive glucose transporter receptor |
GWAS | genome wide association study |
HDL | high-density lipoprotein |
HLA | human leukocyte antigen |
HT | hypertension |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
LDL | low-density lipoprotein |
lncRNA | long non-coding ribonucleic acid |
MALT1 MHC | mucosa-associated lymphoid tissue lymphoma translocation protein 1 major histocompatibility complex |
mRNA | messenger ribonucleic acid |
MS | metabolic syndrome |
NF-κB nNOS | nuclear factor kappa-light-chain-enhancer of activated B cells neuronal nitric oxide synthase |
NO | nitric oxide |
PCSK9 | proprotein convertase subtilisin/kexin type-9 |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
SNP | single nucleotide polymorphism |
SREBP | sterol regulatory element binding protein |
TG | triglyceride |
Th | T-helper lymphocyte |
TNF-α | tumor necrosis factor alpha |
VLDL | very-low-density lipoprotein |
WHR | waist-to-hip-ratio |
References
- Nedoszytko, B.; Szczerkowska-Dobosz, A.; Stawczyk-Macieja, M.; Owczarczyk-Saczonek, A.; Reich, A.; Bartosińska, J.; Batycka-Baran, A.; Czajkowski, R.; Dobrucki, I.T.; Dobrucki, L.W.; et al. Pathogenesis of psoriasis in the “omic” era. Part II. Genetic, genomic and epigenetic changes in psoriasis. Postep. Dermatol. Alergol. 2020, 37, 283–298. [Google Scholar] [CrossRef]
- Ogawa, K.; Okada, Y. The current landscape of psoriasis genetics in 2020. J. Dermatol. Sci. 2020, 99, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Krueger, J.G. The immunopathogenesis of psoriasis. Dermatol. Clin. 2015, 33, 13–23. [Google Scholar] [CrossRef] [PubMed]
- De Fátima Santos Paim de Oliveira, M.; de Oliveira Rocha, B.; Duarte, G.V. Psoriasis: Classical and emerging comorbidities. An. Bras. Dermatol. 2015, 90, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Maciejewicz, A.; Sawińska, E.; Reich, A. Risk of cardiovascular diseases in psoriasis—The current state of knowledge. Dermatol. Rev. 2019, 106, 495–506. [Google Scholar] [CrossRef]
- Owczarczyk-Saczonek, A.; Purzycka-Bohdan, D.; Nedoszytko, B.; Reich, A.; Szczerkowska-Dobosz, A.; Bartosiñska, J.; Batycka-Baran, A.; Czajkowski, R.; Dobrucki, I.T.; Dobrucki, L.W.; et al. Pathogenesis of psoriasis in the “omic” era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postep. Dermatol. Alergol. 2020, 37, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Lønnberg, A.S.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S.F. Association of Psoriasis with the Risk for Type 2 Diabetes Mellitus and Obesity. JAMA Dermatol. 2016, 152, 761–767. [Google Scholar] [CrossRef]
- Lechner, K.; von Schacky, C.; McKenzie, A.L.; Worm, N.; Nixdorff, U.; Lechner, B.; Kränkel, N.; Halle, M.; Krauss, R.M.; Scherr, J. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur. J. Prev. Cardiol. 2020, 27, 394–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuabara, K.; Azfar, R.S.; Shin, D.B.; Neimann, A.L.; Troxel, A.B.; Gelfand, J.M. Cause-specific mortality in patients with severe psoriasis: A population-based cohort study in the UK. Br. J. Dermatol. 2010, 163, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Gisondi, P.; Del Giglio, M.; Girolomoni, G. Considerations for Systemic Treatment of Psoriasis in Obese Patients. Am. J. Clin. Dermatol. 2016, 17, 609–615. [Google Scholar] [CrossRef]
- Bremmer, S.; Van Voorhees, A.S.; Hsu, S.; Korman, N.J.; Lebwohl, M.G.; Young, M.; Bebo, B.F., Jr.; Blauvelt, A.; National Psoriasis Foundation. Obesity and psoriasis: From the Medical Board of the National Psoriasis Foundation. J. Am. Acad. Dermatol. 2010, 63, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Loza, M.J.; McCall, C.E.; Li, L.; Isaacs, W.B.; Xu, J.; Chang, B.L. Assembly of inflammation-related genes for pathway-focused genetic analysis. PLoS ONE 2007, 2, e1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotamisligil, G.S.; Arner, P.; Caro, J.F.; Atkinson, R.L.; Spiegelman, B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Investig. 1995, 95, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Elahi, M.M.; Asotra, K.; Matata, B.M.; Mastana, S.S. Tumor necrosis factor alpha-308 gene locus promoter polymorphism: An analysis of association with health and disease. Biochim. Biophys. Acta. 2009, 1792, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathy, N.W.; Chen, X.M. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 2017, 292, 12375–12382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, A.; O’Sullivan, P.A.; Breyer, F.; Ghose, A.; Cao, L.; Krappmann, D.; Bowcock, A.M.; Ley, S.C. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation. Biochem. J. 2016, 473, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Harden, J.L.; Lewis, S.M.; Pierson, K.C.; Suárez-Fariñas, M.; Lentini, T.; Ortenzio, F.S.; Zaba, L.C.; Goldbach-Mansky, R.; Bowcock, A.M.; Lowes, M.A. CARD14 expression in dermal endothelial cells in psoriasis. PLoS ONE 2014, 9, e111255. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Wollina, U. Local effects of adipose tissue in psoriasis and psoriatic arthritis. Psoriasis 2017, 7, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.C.; Lan, C.E. Psoriasis and Cardiovascular Comorbidities: Focusing on Severe Vascular Events, Cardiovascular Risk Factors and Implications for Treatment. Int. J. Mol. Sci. 2017, 18, 2211. [Google Scholar] [CrossRef] [Green Version]
- Davidovici, B.B.; Sattar, N.; Prinz, J.; Puig, L.; Emery, P.; Barker, J.N.; van de Kerkhof, P.; Ståhle, M.; Nestle, F.O.; Girolomoni, G.; et al. Psoriasis and systemic inflammatory diseases: Potential mechanistic links between skin disease and co-morbid conditions. J. Investig. Dermatol. 2010, 130, 1785–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehncke, W.H.; Boehncke, S.; Tobin, A.M.; Kirby, B. The ‘psoriatic march’: A concept of how severe psoriasis may drive cardiovascular comorbidity. Exp. Dermatol. 2011, 20, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Kirby, B. Psoriasis is a systemic disease with multiple cardiovascular and metabolic comorbidities. Dermatol. Clin. 2015, 33, 41–55. [Google Scholar] [CrossRef]
- Santilli, S.; Kast, D.R.; Grozdev, I.; Cao, L.; Feig, R.L.; Golden, J.B.; Debanne, S.M.; Gilkeson, R.C.; Orringer, C.E.; McCormick, T.S.; et al. Visualization of atherosclerosis as detected by coronary artery calcium and carotid intima-media thickness reveals significant atherosclerosis in a cross-sectional study of psoriasis patients in a tertiary care center. J. Transl. Med. 2016, 14, 217. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Vebman, J.I.; Choy, A.; Yao, C. Review of the Prevalence of Cardiovascular and Metabolic Comorbidities of Psoriasis. SKIN J. Cutan. Med. 2020, 4, 112–118. [Google Scholar] [CrossRef]
- Newhouse, S.J.; Wallace, C.; Dobson, R.; Mein, C.; Pembroke, J.; Farrall, M.; Clayton, D.; Brown, M.; Samani, N.; Dominiczak, A.; et al. Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study. Hum. Mol. Genet. 2005, 14, 1805–1814. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Caulfield, M.; Dominiczak, A.F. Genetic and molecular aspects of hypertension. Circ. Res. 2015, 116, 937–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, R.; Du, Y.Y.; Zhang, Y.Z.; Chen, Q.H.; Zhao, L.S.; Li, L. Association between G-217A polymorphism in the AGT gene and essential hypertension: A meta-analysis. Genet. Mol. Res. 2015, 14, 5527–5534. [Google Scholar] [CrossRef]
- Weger, W.; Hofer, A.; Wolf, P.; El-Shabrawi, Y.; Renner, W.; Kerl, H.; Salmhofer, W. The angiotensin-converting enzyme insertion/deletion and the endothelin -134 3A/4A gene polymorphisms in patients with chronic plaque psoriasis. Exp. Dermatol. 2007, 16, 993–998. [Google Scholar] [CrossRef]
- Tsai, C.T.; Fallin, D.; Chiang, F.T.; Hwang, J.J.; Lai, L.P.; Hsu, K.L.; Tseng, C.D.; Liau, C.S.; Tseng, Y.Z. Angiotensinogen gene haplotype and hypertension: Interaction with ACE gene I allele. Hypertension 2003, 41, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakada, T.A.; Russell, J.A.; Wellman, H.; Boyd, J.H.; Nakada, E.; Thain, K.R.; Thair, S.A.; Hirasawa, H.; Oda, S.; Walley, K.R. Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest 2011, 139, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Li, Y.; Zuo, X.B.; Tang, H.Y.; Tang, X.F.; Gao, J.P.; Sheng, Y.J.; Yin, X.Y.; Zhou, F.S.; Zhang, C.; et al. Identification of a missense variant in LNPEP that confers psoriasis risk. J. Investig. Dermatol. 2014, 134, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Cals-Grierson, M.M.; Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide. 2004, 10, 179–193. [Google Scholar] [CrossRef]
- Ogretmen, Z.; Hiz, M.M.; Silan, F.; Uludag, A.; Ozdemirc, O. Association of endothelial nitric oxide synthase Glu298Asp gene polymorphism in psoriasis cases with hypertension. Ann. Saudi. Med. 2014, 34, 340–345. [Google Scholar] [CrossRef]
- Coto-Segura, P.; Coto, E.; Mas-Vidal, A.; Morales, B.; Alvarez, V.; Díaz, M.; Alonso, B.; Santos-Juanes, J. Influence of endothelial nitric oxide synthase polymorphisms in psoriasis risk. Arch. Dermatol. Res. 2011, 303, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.C.; Wu, W.M.; Huang, Y.H.; Chung, W.H.; Tsai, H.Y.; Hsu, L.A. The (CCTTT) n pentanucleotide repeat polymorphism in the inducible nitric oxide synthase gene promoter and the risk of psoriasis in Taiwanese. Arch. Dermatol. Res. 2015, 307, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Lim, S.; Tan, E.S.; Oon, H.H.; Ren, E.C. HLA Correlations with Clinical Phenotypes and Risk of Metabolic Comorbidities in Singapore Chinese Psoriasis Patients. Mol. Diagn. Ther. 2019, 23, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.A.; Norlander, A.E.; Madhur, M.S. Inhibition of Interleukin 17-A but not Interleukin-17F Signaling Lowers Blood Pressure and Reduces End-organ Inflammation in Angiotensin II-induced Hypertension. JACC Basic Transl. Sci. 2016, 1, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Iizuka, H. Psoriasis and metabolic syndrome. J. Dermatol. 2012, 39, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenberg, C.; Lotta, L.A. Genomic insights into the causes of type 2 diabetes. Lancet 2018, 391, 2463–2474. [Google Scholar] [CrossRef]
- McCarthy, M.I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 2010, 363, 2339–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, N.; Quaranta, M.; Prescott, N.J.; Allen, M.; Smith, R.; Burden, A.D.; Worthington, J.; Griffiths, C.E.; Mathew, C.G.; Barker, J.N.; et al. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. J. Med. Genet. 2008, 45, 114–116. [Google Scholar] [CrossRef]
- Li, Y.; Liao, W.; Chang, M.; Schrodi, S.J.; Bui, N.; Catanese, J.J.; Poon, A.; Matsunami, N.; Callis-Duffin, K.P.; Leppert, M.F.; et al. Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J Investig. Dermatol. 2009, 129, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaranta, M.; Burden, A.D.; Griffiths, C.E.; Worthington, J.; Barker, J.N.; Trembath, R.C.; Capon, F. Differential contribution of CDKAL1 variants to psoriasis, Crohn’s disease and type II diabetes. Genes. Immun. 2009, 10, 654–658. [Google Scholar] [CrossRef]
- Coto-Segura, P.; Batalla, A.; González-Fernández, D.; Gómez, J.; Santos-Juanes, J.; Queiro, R.; Alonso, B.; Iglesias, S.; Coto, E. CDKAL1 gene variants affect the anti-TNF response among Psoriasis patients. Int. Immunopharmacol. 2015, 29, 947–949. [Google Scholar] [CrossRef]
- Pina, T.; Armesto, S.; Lopez-Mejias, R.; Genre, F.; Ubilla, B.; Gonzalez-Lopez, M.A.; Gonzalez-Vela, M.C.; Corrales, A.; Blanco, R.; Garcia-Unzueta, M.T.; et al. Anti-TNF-α therapy improves insulin sensitivity in non-diabetic patients with psoriasis: A 6-month prospective study. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1325–1330. [Google Scholar] [CrossRef]
- Işik, S.; Hız, M.M.; Kılıç, S.; Öğretmen, Z.; Silan, F. Is there any increased risk of hypertension, diabetes and cardiac diseases in psoriatic patients with TNF-α G238A and G308A polymorphism? Postep. Dermatol. Alergol. 2016, 33, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.Z.; Wang, Y.D.; Qi, X.Y.; Xiao, X.H. JAZF1, a relevant metabolic regulator in type 2 diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3148. [Google Scholar] [CrossRef]
- Rudman, N.; Gornik, O.; Lauc, G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 2019, 593, 1598–1615. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Z.; Rani, P.L.; Fu, X.; Yu, W.; Bao, F.; Yu, G.; Li, J.; Li, L.; Sun, L.; et al. Identification of PTPN22, ST6GAL1 and JAZF1 as psoriasis risk genes demonstrates shared pathogenesis between psoriasis and diabetes. Exp. Dermatol. 2017, 26, 1112–1117. [Google Scholar] [CrossRef]
- Azfar, R.S.; Gelfand, J.M. Psoriasis and metabolic disease: Epidemiology and pathophysiology. Curr. Opin. Rheumatol. 2008, 20, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Eirís, N.; González-Lara, L.; Santos-Juanes, J.; Queiro, R.; Coto, E.; Coto-Segura, P. Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J. Dermatol. Sci. 2014, 75, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, J.; Grewal, S.; Langan, S.M.; Mehta, N.N.; Ogdie, A.; Van Voorhees, A.S.; Gelfand, J.M. Psoriasis and comorbid diseases: Epidemiology. J. Am. Acad. Dermatol. 2017, 76, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.M.; Chen, C.C.; Chu, C.K.; Wang, K.H.; Huang, C.Y.; Lee, A.W. The Roles of Lipoprotein in Psoriasis. Int. J. Mol. Sci. 2020, 21, 859. [Google Scholar] [CrossRef] [Green Version]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Luan, C.; Chen, X.; Zhu, Y.; Osland, J.M.; Gerber, S.D.; Dodds, M.; Hu, Y.; Chen, M.; Yuan, R. Potentiation of Psoriasis-Like Inflammation by PCSK9. J. Investig. Dermatol. 2019, 139, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Krahel, J.A.; Baran, A.; Kamiński, T.W.; Flisiak, I. Proprotein Convertase Subtilisin/Kexin Type 9, Angiopoietin-Like Protein 8, Sortilin, and Cholesteryl Ester Transfer Protein-Friends of Foes for Psoriatic Patients at the Risk of Developing Cardiometabolic Syndrome? Int. J. Mol. Sci. 2020, 21, 3682. [Google Scholar] [CrossRef]
- Aulchenko, Y.S.; Ripatti, S.; Lindqvist, I.; Boomsma, D.; Heid, I.M.; Pramstaller, P.P.; Penninx, B.W.; Janssens, A.C.; Wilson, J.F.; Spector, T.; et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 2009, 41, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Varshney, P.; Narasimhan, A.; Mittal, S.; Malik, G.; Sardana, K.; Saini, N. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis. Sci. Rep. 2016, 6, 19295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malis, C.; Rasmussen, E.L.; Poulsen, P.; Petersen, I.; Christensen, K.; Beck-Nielsen, H.; Astrup, A.; Vaag, A.A. Total and regional fat distribution is strongly influenced by genetic factors in young and elderly twins. Obes. Res. 2005, 13, 2139–2145. [Google Scholar] [CrossRef]
- Rohde, K.; Keller, M.; la Cour Poulsen, L.; Blüher, M.; Kovacs, P.; Böttcher, Y. Genetics and epigenetics in obesity. Metabolism 2019, 92, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Su, L.N.; Wang, Y.B.; Wnag, C.G.; Wei, H.P. Network analysis identifies common genes associated with obesity in six obesity-related diseases. J. Zhejiang Univ. Sci. B 2017, 18, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Coto-Segura, P.; González-Lara, L.; Eiris, N.; Santos-Juanes, J.; Queiro, R.; Coto, E. Effect of the FTO rs9930506 polymorphism on obesity and the main clinical outcomes in patients with psoriasis. Br. J. Dermatol. 2014, 171, 917–919. [Google Scholar] [CrossRef]
- Tupikowska-Marzec, M.; Kolačkov, K.; Zdrojowy-Wełna, A.; Słoka, N.K.; Szepietowski, J.C.; Maj, J. The Influence of FTO Polymorphism rs9939609 on Obesity, Some Clinical Features, and Disturbance of Carbohydrate Metabolism in Patients with Psoriasis. Biomed. Res. Int. 2019, 2019, 7304345. [Google Scholar] [CrossRef] [Green Version]
- Loos, R.J.; Lindgren, C.M.; Li, S.; Wheeler, E.; Zhao, J.H.; Prokopenko, I.; Inouye, M.; Freathy, R.M.; Attwood, A.P.; Beckmann, J.S.; et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 2008, 40, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Voiculescu, V.M.; Solomon, I.; Popa, A.; Draghici, C.C.; Dobre, M.; Giurcaneanu, C.; Papagheorghe, L.; Lupu, M. Gene polymorphisms of TNF-238G/A, TNF-308G/A, IL10-1082G/A, TNFAIP3, and MC4R and comorbidity occurrence in a Romanian population with psoriasis. J. Med. Life 2018, 11, 69–74. [Google Scholar]
- Gerdes, S.; Rostami-Yazdi, M.; Mrowietz, U. Adipokines and psoriasis. Exp. Dermatol. 2011, 20, 81–87. [Google Scholar] [CrossRef]
- Torres, T.; Bettencourt, N.; Ferreira, J.; Carvalho, C.; Mendonça, D.; Vasconcelos, C.; Selores, M.; Silva, B. Lack of association between leptin, leptin receptor, adiponectin gene polymorphisms and epicardial adipose tissue, abdominal visceral fat volume and atherosclerotic burden in psoriasis patients. Arch. Physiol. Biochem. 2015, 121, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyama, S.; Abe, F.; Kimura, M.; Yoshida, M.; Higuchi, T. Association between leptin gene expression in subcutaneous adipose tissue and circulating leptin levels in obese patients with psoriasis. Arch. Dermatol. Res. 2015, 307, 539–544. [Google Scholar] [CrossRef]
- Stjernholm, T.; Ommen, P.; Langkilde, A.; Johansen, C.; Iversen, L.; Rosada, C.; Stenderup, K. Leptin deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes. Exp. Dermatol. 2017, 26, 338–345. [Google Scholar] [CrossRef]
- Prakash, J.; Srivastava, N.; Awasthi, S.; Agarwal, C.; Natu, S.; Rajpal, N.; Mittal, B. Association of PPAR-γ gene polymorphisms with obesity and obesity-associated phenotypes in North Indian population. Am. J. Hum. Biol. 2012, 24, 454–459. [Google Scholar] [CrossRef]
- Sertznig, P.; Reichrath, J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Derm. Endocrinol. 2011, 3, 130–135. [Google Scholar] [CrossRef]
- Seleit, I.; Bakry, O.A.; Abd El Gayed, E.; Ghanem, M. Peroxisome Proliferator-Activated Receptor-γ Gene Polymorphism in Psoriasis and Its Relation to Obesity, Metabolic Syndrome, and Narrowband Ultraviolet B Response: A Case-Control Study in Egyptian Patients. Indian J. Dermatol. 2019, 64, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Yemchenko, Y.O.; Shynkevych, V.I.; Ishcheikin, K.Y.; Kaidashev, I.P. PPAR-Gamma Agonist Pioglitazone Reduced CD68+ but Not CD163+ Macrophage Dermal Infiltration in Obese Psoriatic Patients. PPAR Res. 2020, 2020, 4548012. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, F.; Yang, S.; Kong, Y.; Xiao, F.; Hou, Y.; Fan, X.; Zhang, X. Combined effects of HLA-Cw6, body mass index and waist-hip ratio on psoriasis vulgaris in Chinese Han population. J. Dermatol. Sci. 2008, 52, 123–129. [Google Scholar] [CrossRef]
- Li, W.Q.; Han, J.L.; Zhang, M.F.; Qureshi, A.A. Interactions between adiposity and genetic polymorphisms on the risk of psoriasis. Br. J. Dermatol. 2013, 168, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.W.; Harskamp, C.T.; Armstrong, E.J. Psoriasis and metabolic syndrome: A systematic review and meta-analysis of observational studies. J. Am. Acad. Dermatol. 2013, 68, 654–662. [Google Scholar] [CrossRef]
- Bellia, A.; Giardina, E.; Lauro, D.; Tesauro, M.; Di Fede, G.; Cusumano, G.; Federici, M.; Rini, G.B.; Novelli, G.; Lauro, R.; et al. “The Linosa Study”: Epidemiological and heritability data of the metabolic syndrome in a Caucasian genetic isolate. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 455–461. [Google Scholar] [CrossRef]
- Fall, T.; Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 2014, 382, 740–757. [Google Scholar] [CrossRef]
- Fanning, E.; O’Shea, D. Genetics and the metabolic syndrome. Clin. Dermatol. 2018, 36, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kristiansson, K.; Perola, M.; Tikkanen, E.; Kettunen, J.; Surakka, I.; Havulinna, A.S.; Stancáková, A.; Barnes, C.; Widen, E.; Kajantie, E.; et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ. Cardiovasc. Genet. 2012, 5, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.; Möller, S.; Zillikens, D.; Boehncke, W.H.; Ibrahim, S.M.; Ludwig, R.J. Genetic control of psoriasis is relatively distinct from that of metabolic syndrome and coronary artery disease. Exp. Dermatol. 2013, 22, 552–553. [Google Scholar] [CrossRef]
- Abdel Hay, R.M.; Rashed, L.A. Association between the leptin gene 2548G/A polymorphism, the plasma leptin and the metabolic syndrome with psoriasis. Exp. Dermatol. 2011, 20, 715–719. [Google Scholar] [CrossRef]
- Kara, N.; Aydin, F.; Senturk, N.; Gunes, S.; Canturk, M.T.; Bagci, H.; Bek, Y.; Turanli, A.Y. Lack of association between the G-2548A polymorphism of the leptin gene and psoriasis in a Turkish population. Int. J. Dermatol. 2007, 46, 1271–1274. [Google Scholar] [CrossRef]
- Bradley, S.M.; Rumsfeld, J.S. Depression and cardiovascular disease. Trends Cardiovasc. Med. 2015, 25, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatr. 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Aberra, T.M.; Joshi, A.A.; Lerman, J.B.; Rodante, J.A.; Dahiya, A.K.; Teague, H.L.; Ng, Q.; Silverman, J.I.; Sorokin, A.V.; Salahuddin, T.; et al. Self-reported depression in psoriasis is associated with subclinical vascular diseases. Atherosclerosis 2016, 251, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.; Marangell, L.B.; Nakamura, M.; Armstrong, A.; Jeon, C.; Bhutani, T.; Wu, J.J. Depression and suicidality in psoriasis: Review of the literature including the cytokine theory of depression. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1999–2009. [Google Scholar] [CrossRef]
- Patel, N.; Nadkarni, A.; Cardwell, L.A.; Vera, N.; Frey, C.; Patel, N.; Feldman, S.R. Psoriasis, Depression, and Inflammatory Overlap: A Review. Am. J. Clin. Dermatol. 2017, 18, 613–620. [Google Scholar] [CrossRef]
- Barnes, J.; Mondelli, V.; Pariante, C.M. Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017, 42, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Murphy, T.M.; Crawford, B.; Dempster, E.L.; Hannon, E.; Burrage, J.; Turecki, G.; Kaminsky, Z.; Mill, J. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl. Psychiatr. 2017, 7, e989. [Google Scholar] [CrossRef]
- Lapsley, C.R.; Irwin, R.; McLafferty, M.; Thursby, S.J.; O’Neill, S.M.; Bjourson, A.J.; Walsh, C.P.; Murray, E.K. Methylome profiling of young adults with depression supports a link with immune response and psoriasis. Clin. Epigenetics 2020, 12, 85. [Google Scholar] [CrossRef]
- Shibata, K.; Kajiyama, H.; Ino, K.; Nawa, A.; Nomura, S.; Mizutani, S.; Kikkawa, F. P-LAP/IRAP-induced cell proliferation and glucose uptake in endometrial carcinoma cells via insulin receptor signaling. BMC Cancer 2007, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Grarup, N.; Andersen, G.; Krarup, N.T.; Albrechtsen, A.; Schmitz, O.; Jørgensen, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4516 glucose-tolerant middle-aged Danes. Diabetes 2008, 57, 2534–2540. [Google Scholar] [CrossRef] [Green Version]
- Al Harthi, F.; Huraib, G.B.; Zouman, A.; Arfin, M.; Tariq, M.; Al-Asmari, A. Apolipoprotein E gene polymorphism and serum lipid profile in Saudi patients with psoriasis. Dis. Markers 2014, 2014, 239645. [Google Scholar] [CrossRef] [Green Version]
- Bennet, A.M.; Di Angelantonio, E.; Ye, Z.; Wensley, F.; Dahlin, A.; Ahlbom, A.; Keavney, B.; Collins, R.; Wiman, B.; de Faire, U.; et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007, 298, 1300–1311. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, H.; Nikamo, P.; Qi Low, H.; Helms, C.; Seielstad, M.; Liu, J.; Bowcock, A.M.; Stahle, M.; Liao, W. Association of cardiovascular and metabolic disease genes with psoriasis. J. Investig. Dermatol. 2013, 133, 836–839. [Google Scholar] [CrossRef] [Green Version]
- Torres, T.; Chiricozzi, A.; Chimenti, S.; Saraceno, R. Genetic Markers for Cardiovascular Disease in Psoriasis: The Missing Piece. Mol. Diagn. Ther. 2014, 18, 93–95. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.A.; Shah, T.; Prieto, D.; Zhang, W.; Price, J.; Fowkes, G.R.; Cooper, J.; Talmud, P.J.; Humphries, S.E.; Sundstrom, J.; et al. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int. J. Epidemiol. 2013, 42, 475–492. [Google Scholar] [CrossRef] [Green Version]
Comorbidities in Psoriasis | |
---|---|
Physical | psoriatic arthritis hypertension diabetes dyslipidemia obesity metabolic syndrome cardiovascular disease inflammatory bowel disease nonalcoholic fatty liver disease chronic obstructive pulmonary disease uveitis Parkinson’s disease lymphomas osteoporosis celiac disease erectile dysfunction sleep apnea |
Psychological | depression suicidality anxiety smoking alcoholism |
Treatment related | hypertension dyslipidemia hepatotoxicity nephrotoxicity skin neoplasms |
Chromosome | SNP | Nearby Gene | Gene Product | Minor/Major Allele | Findings in Psoriasis | SAMPLE SIZE | Population | Authors | Cardiovascular Associations |
---|---|---|---|---|---|---|---|---|---|
17 | rs4341 | ACE | angiotensin I converting enzyme | 287-base pair insertion ⁄deletion (I ⁄D) | homozygosity for the ACE I allele was considerably more prevalent in patients with early-onset psoriasis in comparison to the control subjects | 207 patients and 182 controls | Central European | Weger et al. (2007) [30] | might interact with angiotensinogen gene haplotypes which are linked with HT (Tsai et al. (2003)) [31] |
5 | rs2303138 | LNPEP | leucyl and cystinyl aminopeptidase | A/T | significantly down-regulated in the involved skin of psoriasis patients compared with the skin of the controls | 8339 patients and 12,725 controls | Asian | Cheng et al. (2014) [33] | important component of the renin–angiotensin system responsible for primary HT pathogenesis via vasopressin clearance and serum sodium regulation (Nakada et al. (2011)) [32] affects glucose uptake via the interaction of the insulin receptor signaling with the insulin-responsive glucose transporter GLUT4 (Shibata et al. (2007)) [98] |
7 | rs1799983 | eNOS Glu298 Asp | endothelial nitric oxide synthase | T/G | T allele greater frequency was found to be associated with higher incidence of psoriasis itself, and moreover, HT among psoriatic patients | 75 patients and 55 controls | South European | Ogretmen et al. (2014) [36] | triggering factor of the endothelial disfunction, vasodilation disruption and furthermore thrombocyte aggregation via blood flood impeding (Moncada et al. (1993)) [34] |
6 | HLA-A | major histocompatibility complex, class I, A | HLA-A 07*02 | carriers of the allele had a greater susceptibility to HT and psoriasis (in particular nail psoriasis) | 120 patients and 130 controls | Asian | Shen et al. (2019) [39] | ||
6 | rs6908425 | CDKAL1 | CDK5 regulatory subunit-associated protein 1-like 1 | associated with greater incidence of psoriasis | 1256 patients and 2938 controls | North European | Wolf et al. (2008) [46] | gene function remains unresolved; however, the polymorphism is associated with the pathogenesis of DM-2 via the impaired insulin response and CVD (Steinthorsdottir et al. (2007)) [45] | |
7 | rs849135 | JAZF1 | JAZF zinc finger 1 | A/G | newly identified susceptibility gene for psoriasis | 4483 psoriasis and 6030 controls | Asian | Wang et al. (2017) [54] | pancreatic beta-cell function and glucose metabolism impairment which leads to DM-2 (Grarup et al. (2008)) [99] |
3 | rs16861329 | ST6GAL1 | ST6 beta-galactoside alpha-2,6-sialyltransferase 1 | T/C | newly identified susceptibility gene for psoriasis | 4483 psoriasis and 6030 controls | Asian | Wang et al. (2017) [54] | involved in the process of N-glycosylation of proteins that alters their structure and function and are described to take part in type 1 and 2 diabetes (Rudman et al. (2019)) [53] |
6 | HLA-C | major histocompatibility complex, class I, C | HLA-C 01*02 | greater occurrence among psoriasis patients, elevated risk of dyslipidemia in psoriasis | 120 patients and 130 controls | Asian | Shen et al. (2019) [39] | ||
16 | rs9930506 | FTO | alpha-keto-glutarate dependent dioxygenase | G/A | homozygotes for the G allele psoriatic patients had a higher mean BMI index | 413 patients and 210 controls | South European | Coto-Segura et al. (2014) [67] | major influence of fat mass increase and obesity (Su et al. (2017)) [66] |
16 | rs9939609 | FTO | alpha-ketoglutarate dependent dioxygenase | A/T | among psoriatic patients the polymorphism presence carried greater risk of obesity (increased BMI) and diabetes (increased insulin concentrations) | 197 psoriatic patients | Central European | Tupikowska-Marzec et al. (2019) [68] | major influence of fat mass increase and obesity (Su LN, et al. (2017)) [66] |
18 | rs17782313 | MC4R | hypothalamic melanocortin 4 receptor | greater expression associated with obese psoriasis patients in comparison to non-obese psoriasis patients | 82 psoriasis patients | Central European | Voiculescu et al. (2018) [70] | widely recognized genetic risk factor for early-onset severe obesity (Loos et al. (2009)) [69] | |
8 | PPAR-γ | peroxisome proliferator-activated receptor-γ | Pro12Ala | significant link between the risk of psoriasis itself and additionally obesity among those patients | 45 psoriasis patients and 45 controls | Middle East | Seleit et al. (2019) [77] | adipocyte differentiation and intracellular insulin-signaling pathway, which promotes obesity (Prakash et al. (2012)) [75] | |
6 | HLA-C | major histocompatibility complex | HLA-C 06*02 | major psoriasis genetic risk factor allele, correlation with a significant body mass increase and elevated WHR ratio | 466 patients and 177 controls | Asian | Jin et al. (2008) [79] | ||
7 | rs7799039 | LEP | leptin (adipokine) | G2548A | polymorphism carriers had a greater prevalence of psoriasis, MS, and higher plasma leptin | 94 patients and 100 controls | Middle East | Abdel Hay et al. (2011) [87] | higher plasma leptin is associated with greater obesity risk and also psoriasis (Gerdes et al. (2011)) [71] |
19 | APOE | apolipopro-tein E | ε2 and ε4 alleles | greater allele frequencies correlated with higher risk of psoriasis and higher serum cholesterol, triglycerides, and LDL levels among psoriatic patients | 94 patients and 200 controls | Middle East | Al Harthi et al. (2014) [100] | apolipoprotein E influences lipid metabolism processes, which promote atherosclerosis, and thus, lead to CVD (Bennet et al. (2007)) [101] | |
19 | rs492603 | FUT2 | alpha-(1,2)fucosyltran-sferase | A/G | higher risk of dyslipidemia among psoriatic patients (mainly increase triglyceride levels) | 4482 patients and 7463 controls | Multi | Lu et al. (2013) [102] | |
22 | rs181362 | UBE2L3 | ubiquitin-conjugating enzyme | T/C | higher risk of dyslipidemia among psoriatic patients (mainly decreased HDL-C) | 4482 patients and 7463 controls | Multi | Lu et al. (2013) [102] | |
12 | rs3184504 | SH2B3 | SH2B adaptor protein 3 | T/C | higher risk of CAD and elevated systolic and diastolic blood pressure measurements | 4482 patients and 7463 controls | Multi | Lu et al. (2013) [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purzycka-Bohdan, D.; Kisielnicka, A.; Bohdan, M.; Szczerkowska-Dobosz, A.; Sobalska-Kwapis, M.; Nedoszytko, B.; Nowicki, R.J. Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors. Int. J. Mol. Sci. 2021, 22, 9063. https://doi.org/10.3390/ijms22169063
Purzycka-Bohdan D, Kisielnicka A, Bohdan M, Szczerkowska-Dobosz A, Sobalska-Kwapis M, Nedoszytko B, Nowicki RJ. Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors. International Journal of Molecular Sciences. 2021; 22(16):9063. https://doi.org/10.3390/ijms22169063
Chicago/Turabian StylePurzycka-Bohdan, Dorota, Anna Kisielnicka, Michał Bohdan, Aneta Szczerkowska-Dobosz, Marta Sobalska-Kwapis, Bogusław Nedoszytko, and Roman J. Nowicki. 2021. "Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors" International Journal of Molecular Sciences 22, no. 16: 9063. https://doi.org/10.3390/ijms22169063
APA StylePurzycka-Bohdan, D., Kisielnicka, A., Bohdan, M., Szczerkowska-Dobosz, A., Sobalska-Kwapis, M., Nedoszytko, B., & Nowicki, R. J. (2021). Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors. International Journal of Molecular Sciences, 22(16), 9063. https://doi.org/10.3390/ijms22169063