Next Article in Journal
Fendiline Enhances the Cytotoxic Effects of Therapeutic Agents on PDAC Cells by Inhibiting Tumor-Promoting Signaling Events: A Potential Strategy to Combat PDAC
Next Article in Special Issue
Physiological and Proteomic Responses of Mulberry Trees (Morus alba. L.) to Combined Salt and Drought Stress
Previous Article in Journal
Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis
Previous Article in Special Issue
Water Deficit Elicits a Transcriptional Response of Genes Governing d-pinitol Biosynthesis in Soybean (Glycine max)
Article Menu

Export Article

Open AccessArticle

The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2019, 20(10), 2422; https://doi.org/10.3390/ijms20102422
Received: 13 April 2019 / Revised: 13 May 2019 / Accepted: 14 May 2019 / Published: 16 May 2019
(This article belongs to the Special Issue Mechanisms of Drought Stress Tolerance in Plants)
  |  
PDF [2119 KB, uploaded 16 May 2019]
  |  

Abstract

Drought is a major limiting factor for plant growth and crop productivity. Many Calcineurin B-like interacting protein kinases (CIPKs) play crucial roles in plant adaptation to environmental stresses. It is particularly essential to find the phosphorylation targets of CIPKs and to study the underlying molecular mechanisms. In this study, we demonstrate that CIPK11 acts as a novel component to modulate drought stress in plants. The overexpression of CIPK11 (CIPK11OE) in Arabidopsis resulted in the decreased tolerance of plant to drought stress. When compared to wild type plants, CIPK11OE plants exhibited higher leaf water loss and higher content of reactive oxygen species (ROS) after drought treatment. Additionally, a yeast two hybrid screening assay by using CIPK11 as a bait captures Di19-3, a Cys2/His2-type zinc-finger transcription factor that is involved in drought stress, as a new interactor of CIPK11. Biochemical analysis revealed that CIPK11 interacted with Di19-3 in vivo and it was capable of phosphorylating Di19-3 in vitro. Genetic studies revealed that the function of CIPK11 in regulating drought stress was dependent on Di19-3. The transcripts of stress responsive genes, such as RAB18, RD29A, RD29B, and DREB2A were down-regulated in the CIPK11OE plants. Whereas overexpression of CIPK11 in di19-3 mutant background, expression levels of those marker genes were not significantly altered. Taken together, our results demonstrate that CIPK11 partly mediates the drought stress response by regulating the transcription factor Di19-3. View Full-Text
Keywords: Arabidopsis thaliana; drought stress; transcription factor; abiotic stress Arabidopsis thaliana; drought stress; transcription factor; abiotic stress
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Ma, Y.; Cao, J.; Chen, Q.; He, J.; Liu, Z.; Wang, J.; Li, X.; Yang, Y. The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 2422.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top