Next Article in Journal
Morphological Study of Chitosan/Poly (Vinyl Alcohol) Nanofibers Prepared by Electrospinning, Collected on Reticulated Vitreous Carbon
Previous Article in Journal
Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts
Previous Article in Special Issue
Preparation and Characterization of Electrostatically Crosslinked Polymer–Liposomes in Anticancer Therapy
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessReview

Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications

Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2018, 19(6), 1717;
Received: 15 May 2018 / Revised: 6 June 2018 / Accepted: 7 June 2018 / Published: 9 June 2018
(This article belongs to the Special Issue Nanotechnology in Drug Delivery)
PDF [2032 KB, uploaded 9 June 2018]


Nanoparticles are particles that range in size from about 1–1000 nanometers in diameter, about one thousand times smaller than the average cell in a human body. Their small size, flexible fabrication, and high surface-area-to-volume ratio make them ideal systems for drug delivery. Nanoparticles can be made from a variety of materials including metals, polysaccharides, and proteins. Biological protein-based nanoparticles such as silk, keratin, collagen, elastin, corn zein, and soy protein-based nanoparticles are advantageous in having biodegradability, bioavailability, and relatively low cost. Many protein nanoparticles are easy to process and can be modified to achieve desired specifications such as size, morphology, and weight. Protein nanoparticles are used in a variety of settings and are replacing many materials that are not biocompatible and have a negative impact on the environment. Here we attempt to review the literature pertaining to protein-based nanoparticles with a focus on their application in drug delivery and biomedical fields. Additional detail on governing nanoparticle parameters, specific protein nanoparticle applications, and fabrication methods are also provided. View Full-Text
Keywords: protein; nanoparticles; biomaterials fabrication; nanomedicine; bioimaging; drug delivery protein; nanoparticles; biomaterials fabrication; nanomedicine; bioimaging; drug delivery

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int. J. Mol. Sci. 2018, 19, 1717.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top