Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities
Abstract
:1. Introduction
2. Isolation Techniques for Volatiles in Honeys
3. Significance of Volatile Organic Compounds in Honey
3.1. Determination of Floral and Geographical Origin of Honey
3.2. Determination of Aroma/Flavor Profile of Honey
3.3. Biomedical Activities of Honey and Contribution from Its Volatile Constituents
3.3.1. Terpenes
3.3.2. Norisoprenoids
3.3.3. Benzene Derivatives
4. Conclusions
Acknowledgement
References
- Ayoub, S.M.H.; Makawi, S.Z.A.; Gadkariem, E.A. Determination of antioxidant flavonoids in Sudanese honey samples by solid phase extraction and high performance liquid chromatography. E. J. Chem 2009, 6, S429–S437. [Google Scholar]
- Baroni, M.V.; Nores, M.L.; Díaz, M.D.P.; Chiabrando, G.A.; Fassano, J.P.; Costa, C.; Wunderlin, D.A. Determination of volatile organic compound patterns characteristics of five unifloral honeys by solid- phase microextraction—Gas chromatography-mass spectrometry coupled to chemimetrics. J. Agric. Food Chem 2006, 54, 7235–7241. [Google Scholar]
- Castro-Várquez, L.M.; Díaz-Maroto, M.C.; de Tores, C.; Pérez-Coello, M.S. Effects of geographical origins on the chemical and sensory characteristics of chestnut honeys. Food Res. Int 2010, 43, 2335–2340. [Google Scholar]
- Castro-Várquez, L.M.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. J. Agric. Food Chem 2006, 54, 4809–4813. [Google Scholar]
- Manyi-Loh, C.E.; Clarke, A.M.; Ndip, R.N. An overview of honey: Therapeutic properties and contribution in nutrition and human health. Afric. J. Microbiol. Res 2011, 5, 844–852. [Google Scholar]
- Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem 2011, 126, 1288–1298. [Google Scholar]
- Soria, A.C.; Gonzalez, M.; de Lorenzo, C.; Castro-Martinez, I.; Sanz, J. Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chem 2004, 85, 121–130. [Google Scholar]
- Silici, S. Determination of volatile compound of pine honeys. Turk. J. Biol 2011, 35, 641–645. [Google Scholar]
- Campos, G.; Nappi, U.; Raslan, D.; Augusti, R. Substância voláteis em mel floral e mel de melalo. Cienc. Techhnol. Aliment 2000, 20, 18–22. [Google Scholar]
- Jerković, I.; Marijanović, Z. Volatile composition screening of Salix spp. Nectar honey. Benzenecarboxylic acids, norisoprenoids, terpenes and others. Chem. Biodivers 2010, 7, 2309–2325. [Google Scholar]
- Montenegro, G.; Gómez, M.; Casaubon, G.; Belancic, A.; Mujica, A.M.; Peña, R.C. Analysis of volatile compounds in three unifloral native Chilean honeys. Int. J. Exp. Bot 2009, 78, 61–65. [Google Scholar]
- Guyot-Declerck, C.; Renson, S.; Bouseta, A.; Collins, S. Floral quality and discrimination of Lavandula angustifoliaxlatifolia honeys. Food Chem 2002, 79, 453–459. [Google Scholar]
- Jerković, J.; Mastelić, J.; Marijanović, Z. A variety of volatile compounds as markers in unifloral honey from Dalmatian sage (Salvia officinalis L.). Chem. Biodivers 2006, 3, 1307–1316. [Google Scholar]
- Jerković, I.; Marijanović, Z. Screening of volatile composition of Lavandula hybrida REVERCHON II honey using headspace solid-phase micro extraction and ultrasonic solvent extraction. Chem. Biodivers 2009, 6, 421–430. [Google Scholar]
- Barra, M.P.G.; Ponce-Díaz, M.C.; Venegas-Gallegos, C. Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chilean J. Agric. Res 2010, 70, 75–84. [Google Scholar]
- Cuevas-Glory, L.F.; Ortis-Várquez, E.; Centurión-Yah, A.; Alea, J.A.P.; Sauri-Duch, E. Solid-phase micro extraction method development for headspaceanalysis of volatile compounds in honeys from Yucatan. Téc. Pecu. Méx 2008, 46, 387–395. [Google Scholar]
- Castro-Várquez, L.; Díaz-Maroto, M.C.; Gonzalez-Viñas, M.A.; de la Fuente, E.; Pérez-Coello, M.S. Influence of storage conditions on chemical composition and sensory properties of citrus honey. J. Agric. Food Chem 2008, 56, 1999–2006. [Google Scholar]
- Ampuero, S.; Bogdanov, S.; Bosset, J.-O. Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. Eur. Food Res. Technol 2004, 218, 198–207. [Google Scholar]
- Castro-Várquez, L.; Pérez-Coello, M.S.; Cabezudo, M.D. Analysis of volatile compounds of Rosemary honey. Comparison of different extraction techniques. Chromatographia 2003, 57, 227–233. [Google Scholar]
- Kaskonienė, V.; Venskutonis, P.R.; Čeksterytė, V. Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chem 2008, 111, 988–997. [Google Scholar]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Evaluation of four isolation techniques for honey aroma compounds. J. Sci. Food. Agric 2005, 85, 91–97. [Google Scholar]
- Jerković, I.; Tuberoso, C.I.G.; Kasum, A.; Marijanović, Z. Volatile Composition of Asphodelus Microcarpus SALZM. et Viv. Honey obtained by HS-SPME and USE analysed by GC-MS. Chem. Biodivers 2011, 8, 587–598. [Google Scholar]
- Cuevas-Glory, L.F.; Pino, J.A.; Santiago, L.S.; Sauri-Duch, L.F. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 2007, 103, 1032–1043. [Google Scholar]
- Soria, A.C.; Martínez-Castro, I.; Sanz, J. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry. J. Sep. Sci 2003, 26, 793–801. [Google Scholar]
- Jerković, I.; Mastelić, J.; Marijanović, Z.; Klein, Ž.; Jelić, M. Comparison of hydrodistillation and ultrasonic solvent extraction for the isolation of volatile compounds from two unifloral honeys of Robinia pseudoacacia L. and Castanea sativa L. Ultrason. Sonochem 2007, 14, 750–756. [Google Scholar]
- Pontes, M.; Marques, J.C.; Cámara, J.S. Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase micro-extraction-gas chromatography-quadrupole mass spectrometry. Talanta 2007, 74, 91–103. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar]
- Piasenzotto, L.; Gracco, L.; Conte, L. Solid phase micro extraction (SPME) applied to honey quality control. J. Sci. Food Agric 2003, 83, 1037–1044. [Google Scholar]
- Castro-Várquez, L.M.; Díaz-Maroto, M.C.; Guchu, E.; Pérez-Coello, M.S. Analysis of volatile compounds of eucalypt honey by solid phase extraction followed by gas chromatography coupled to mass spectrometry. Eur. Food Res. Technol 2006, 224, 27–31. [Google Scholar]
- Peña, R.M.; Barciela, J.; Herrero, C.; García-Martín, S. Solid-phase microextraction gas chromatography-mass spectrometry determination of monoterpenes in honeys. J. Sep. Sci 2004, 27, 1540–1544. [Google Scholar]
- Jerković, I.; Marijanovic, Z.; Kezic, J.; Gugić, M. Headspace, volatile and semi-volatile organic compounds, diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Molecules 2009, 14, 2717–2728. [Google Scholar]
- Wardencki, W.; Chmiel, T.; Dymerski, T.; Biernacka, P.; Plutowska, B. Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecol. Chem. Eng 2009, 16, 287–300. [Google Scholar]
- Manyi-Loh, C.E.; Clarke, A.M.; Munzhelele, T.; Green, E.; Mkwetshana, N.F.; Ndip, R.N. Selected South African honeys and their extracts possess in vitro anti-Helicobacter pylori activity. Arch. Med. Res 2010, 41, 324–331. [Google Scholar]
- Manyi-Loh, C.E.; Clarke, A.M.; Ndip, R.N. Identification of volatile compounds in solvent extracts of honeys produced in South Africa. Afr. J. Agric. Res 2011, 6, 4327–4334. [Google Scholar]
- Alissandrakis, E.; Daferera, D.; Tarantilis, P.A.; Polissiou, M.; Harizanis, P.C. Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chem 2003, 82, 575–582. [Google Scholar]
- Stanimirova, I.; Üstün, B.; Cajka, T.; Riddelova, K.; Hajslova, J.; Buydens, L.M.C.; Walczak, B. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using patterns recognition techniques. Food Chem 2010, 118, 171–176. [Google Scholar]
- Pérez, R.A.; Sánchez-Brunete, C.; Calvo, R.M.; Tadeo, J.L. Analysis of volatiles form Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. J. Agric. Food Chem 2002, 50, 2633–2637. [Google Scholar]
- Guyot, C.; Scheirman, V.; Collin, S. Floral origin markers of Heather honeys: Calluna vulgaris and Erica arborea. Food Chem 1999, 64, 3–11. [Google Scholar]
- Serra-Bonvehí, J.; Ventura-Coll, F. Flavour index aroma profiles of fresh and processed honeys. J. Sci. Food Agric 2003, 83, 275–282. [Google Scholar]
- Castro-Várquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem 2009, 112, 1022–1030. [Google Scholar]
- Mannas, D.; Altug, T. SPME/GC/MS and sensory flavour profile analysis for estimation of authenticity of thyme honey. J. Food Sci. Technol 2007, 42, 133–138. [Google Scholar]
- Kaškonienė, V.; Venskutonis, P.R. Floral markers in honeys of various botanical and geographical origins. Compr. Rev. Food Sci. Food Saf 2010, 9, 620–634. [Google Scholar]
- Alissandrakis, E.; Tarantilis, P.A.; Harizans, P.C.; Polissons, M. Comparison of the volatile composition of thyme honeys from several origins in Greece. J. Agric. Food Chem 2007, 55, 8152–8157. [Google Scholar]
- Odeh, I.; Abu-Lafi, S.; Dewik, H.; Al-Najjar, I.; Imam, A.; Dembitsky, V.M.; Hanuš, L.O. A variety of volatile compoundsas markers in Palestinian honey from Thymus capitatus, Thymelaea hirsute and Tolpis virgata. Food Chem 2007, 101, 1393–1397. [Google Scholar]
- Donarski, J.A.; Jones, S.A.; Harrison, M.; Driffield, M.; Chareton, A.J. Identification of botanical biomarker found in Corsican honey. Food Chem 2010, 118, 987–994. [Google Scholar]
- Bayraktar, D.; Onoğur, T.A. Investigation of the aroma impact volatiles in Turkish pine honey samples produced in Marmaris, Datça and Fethiye regions by SPME/GC/MS technique. Int. J. Food Sci. Technol 2011, 46, 1060–1065. [Google Scholar]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas-chromatography-Olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged Red wines. J. Agric. Food Chem 2004, 52, 1653–1660. [Google Scholar]
- Arvanitoyannis, I.S.; Gotsiou, P.; Lydrakis-Simantiris, N.; Kefalas, P. Novel quality control method in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit. Rev. Food Sci 2005, 45, 193–203. [Google Scholar]
- Kwakman, P.H.S.; Te Velde, A.A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. How honey kills bacteria. FASEB J 2010, 24, 2576–2582. [Google Scholar]
- Ansari, A.A.; Alexander, C. Effects of natural honey (produced by African sculata in Guyana) against bacteria (P. aeruginosa, E. coli and S. aureus) and funfus (C. albicans). World J. Diary Food Sci 2009, 4, 73–77. [Google Scholar]
- Halawani, E.; Shohayeb, M. Survey of the antimicrobial activity of Saudi and some international honeys. J. Microbiol. Antimicrob 2011, 3, 94–101. [Google Scholar]
- French, V.M.; Cooper, M.A.; Molan, P.C. Antibacterial activity of honey against coagulase-negative staphylococci. J. Antimicrob. Chemother 2005, 56, 228–231. [Google Scholar]
- Osmojasola, P.F. The antibacterial effect of honey on bacteria isolated from infected wound in Ilorin Nigeria. Niger. Soc. Exp. Biol. J 2002, 2, 109–112. [Google Scholar]
- Olaitan, P.B.; Adeleke, O.E.; Ola, I.O. Honey: A reservoir for micro-organisms and an inhibitory agent for microbes. Afr. Health Sci 2007, 7, 159–165. [Google Scholar]
- Weston, R. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem 2000, 71, 235–239. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev 1999, 12, 564–582. [Google Scholar]
- The National Honey Board, Honey-Health and Therapeutics; National Honey Board: Longmont, CO, USA, 2002.
- Jerković, I.; Tuberso, C.I.G.; Gugić, M.; Bubalo, D. Composition of Sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: Norisoprenoids and other volatile organic compounds. Molecules 2010, 15, 6375–6385. [Google Scholar]
- White, J.W. Honey. Adv. Food Res 1978, 24, 288–374. [Google Scholar]
- Turkmen, N.; Sari, F.; Poyrazoglu, E.S.; Velioglu, Y.S. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem 2006, 95, 653–657. [Google Scholar]
- Tosi, E.; Ciappini, M.; Ré, E.; Lucero, H. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem 2002, 77, 71–74. [Google Scholar]
- Anthony, S.M.; Han, I.Y.; Rieck, J.R.; Dawson, P.L. Antioxidative effect of Maillard reaction products formed from honey at different reaction times. J. Agric. Food Chem 2000, 48, 3985–3989. [Google Scholar]
- Helyes, L.; Lugasi, A. Formation of certain compounds having technologicak and nutritional importance in tomato fruits during maturation. Acta Aliment 2006, 35, 183–193. [Google Scholar]
- Henriques, A.; Jackson, S.; Cooper, R.; Burton, N. Free radical production and quenching in honeys with wound healing potential. J. Antimicrob. Chemother 2006, 58, 773–777. [Google Scholar]
- Stolle, A.; Ondruschka, B.; Hopf, H. Thermal rearrangement of monoterpenes and Monoterpenoids. Chem. Inform 2009, 40. [Google Scholar] [CrossRef]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother 2001, 47, 565–573. [Google Scholar]
- Abd El-Moaty, H.I. Essential oil and iridoide glycosides of Nepeta septemcrenata Erenb. J. Nat. Prod 2010, 3, 103–111. [Google Scholar]
- Tholl, D. Terpene synthetases and the regulation, diversity and biological roles of terpenes metabolism. Curr. Opin. Plant Biol 2006, 9, 297–304. [Google Scholar]
- Bianchi, F.; Careri, M.; Musci, M. Volatile norisoprenoids as markers of botanical origin of Sardinian strawberry-tree (Arbutus unedo L.) honey: Characterization of aroma compounds by dynamic headspace extraction and gas-chromatography-mass spectrometry. Food Chem 2005, 89, 527–532. [Google Scholar]
- Ferreira, A.C.S.; de Pinho, P.G. Norisoprenoids profile during port wine aging: Influence of some technological parameters. Anal. Chim. Acta 2004, 513. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carreto, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compoundsin products derived from bees. J. Pharm. Biomed. Anal 2006, 41, 1220–1234. [Google Scholar]
- D’Arcy, B.R.; Rentoul, G.B.; Rowland, C.Y.; Blackman, A.J. Composition of Australian honey extractives.1.Norisoprenoids, monoterpenes, and other natural volatiles from blue Gum (Eucalyptus leucoxylon) and yellow Box (Eucalyptus meliiodora) honeys. J. Agric. Food Chem 1997, 45, 1834–1843. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Zaldivar-Cruz, J.M.; Kuri, V.; Fernández-López, J.; Carbonell-Barrachina, Á.A.; Pérez-Álvarez, J.Á. Aroma profile and physic-chemical properties of artisanal honeys form Tabasco, Mexico. Int. J. Food Sci. Technol. 2010, 45, 1111–1118. [Google Scholar]
- Tan, S.T.; Holland, P.T.; Wilkins, A.L.; Molan, P.C. Extractives from New Zealand honeys. 1. White clover, manuka and kanuka unifloral honeys. J. Agric. Food Chem 1988, 36, 453–460. [Google Scholar]
- Bondock, S.; Fadaly, W.; Metwally, M.A. Synthesis and antimicrobial activity of new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem 2010, 45, 3692–3701. [Google Scholar]
- Bentivenga, G.; D’Auria, M.; Fedeli, P.; Mauriello, G.; Racioppi, R. SPME-GC-MS analysis of volatile organic compounds in honey from Basilicata. Evidence for the presence of pollutants from anthropogenic activities. Int. J. Food Sci. Technol 2004, 39, 1079–1086. [Google Scholar]
- Weston, R.J.; Brocklebank, L.K.; Lu, Y. Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem 2000, 70, 427–435. [Google Scholar]
Method Employed | Honey Type/Country | Floral Marker | Reference |
---|---|---|---|
USE-GC-MS | Thyme (Greece) | 3-hydroxy-4-phenyl-2-butanone and 3-hydroxy-1-phenyl-2-butanone | Alissandrakis et al. [43] |
SDE-GC-MS | Oak honeydew (Spain) | Trans-Oak lactone | Castro-Várquez et al. [4] |
HS-SPME-GC-MS | Tolpis virgata | 3,5-dihydroxytoluene and tridecane | Odeh et al. [44] |
Thymus capitatus | 1,3-diphenyl-2-propanone, (3-methylbutyl)benzene, 3, 4, 5-trimethoxybenzaldehyde and 3, 4-dimethoxybenzaldehyde | ||
Thymalae hirsuta | Benzene propanol, benzylalcohol, nonanal, hexanol and 4-methoxyphenol | ||
(Palestine) | |||
HS-SPME-GC-MS-Olfactometry | Acacia | Hexanal | Wardencki et al. [32] |
Buckwheat | Pentanal, furfural and 2-ethylhexanol | ||
Lime | p-methyl acetophenone | ||
Honeydew | Methyl butanal and lilac ldehyde | ||
Rape | p-Cymene | ||
(Poland) | |||
SPME-GC-MS | Citrus | Methyl anthranilate and limonene diol | Piasenzotto et al. [28] |
Lime tree | p-methyl acetophenone, carvacrol and 8-p-menthen-1,2-diol | ||
Thyme | Ethenyl phenyl acetate | ||
Dandelion | Phenyl acetonitrile | ||
Chestnut | Aminoacetophenone | ||
Eucalyptus | Nonanoic acid and acetoin | ||
(Italy) | |||
USE-GC-MS | Salvia officinalis L. (Croatia) | Benzoic acid and phenyl acetic acid | Jerković et al. [13] |
HS-SPME-GC-MS | Medicago sativa (alfafa) | Octanal, benzene acetaldehyde,1-octanol, 2-methoxyphenol, nonanal and 2-H-1-benzopyran-2-one | Baroni et al. [2] |
Helianthus annus (sunflower) | |||
Melilotus albus (white clover) | |||
Prosopis spp (carob) | |||
Prosopis caldenia (Calden) | |||
(Argentina) | |||
LNSDE-SE-GC-MS | Calluna vulgaris (France, Belgium, Uk, Norway, Germany) | Phenyl acetic acid, dehydrovomifoliol and 3,5,5-trimethylcyclohex-2-ene derivative | Guyot et al. [38] |
Erica arborea (France, Greece, Italy) | 4-methoxybenzaldehyde, 4-methoxybenzoic acid And methyl vanillate | ||
SPME-GC-MS | Quillajia saponaria (Quillay) | Megastigmatrienone, 2-p-hydroxyphenyl alcohol, β-pineme and linalool oxide. | Montenegro et al. [11] |
Escallonia pulverulenta (corontillo) | Safranal | ||
Eucryphia cordifolia (Ulmo) | Isophorone and cetosiophorone | ||
(Chile) | |||
MSDE-GC-MS | Eucalyptus | 3-caren-2-ol, p-cymene and its derivate alcohol. | Castro-Várquez et al. [40] |
Citrus | Linalool oxide, lilac alcohol and lilac aldehyde | ||
Lavender | Nerolidol oxide | ||
(Spain) |
Volatile Compound | Aroma Description | Reference |
---|---|---|
Nonanal | Aldehyde, citrus, fatty floral Green, spiny | Bayraktar and Onoğur [46] |
Nonanol | Green, sweet, oily | |
Decanal | Soap, orange, peel, tallow | |
Octanal | Fat, soap, lemon, green | |
Linalool | Sweet, citrus, forest, geranium | Wardencki et al. [32] |
Benzaldehyde | Sweet, almond, marzipan | |
Dimethyl sulphide | Sweet, honey, acrid, cooked vegetables, sulphuric | |
Furfural | Sweet, fruit, cherry soft almond | |
Sinensal (isomer I) | Sweet, orange | Castro-Várquez et al. [29] |
Sinensal (isomer II) | Sweet, orange | |
β-damascenone | Fruity, sweet, honey | |
Phenylacetaldehyde | Sweet, honey-like | |
Isophorone and cetoisophorone | Spicy | Montenegro et al. [11] |
Benzene and phenolic acids | Ripe fruit and spicy | Castro-Várquez et al. [40] |
Hexanol and hotrienol | Balsamic and aromatic herb | |
3-caren-2-ol and spathulenol | Cheese and hay | |
γ-butyrolactone, pantolactone, and oak lactone | Woody, toasty, caramel | Cullere et al. [47] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514-9532. https://doi.org/10.3390/ijms12129514
Manyi-Loh CE, Ndip RN, Clarke AM. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. International Journal of Molecular Sciences. 2011; 12(12):9514-9532. https://doi.org/10.3390/ijms12129514
Chicago/Turabian StyleManyi-Loh, Christy E., Roland N. Ndip, and Anna M. Clarke. 2011. "Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities" International Journal of Molecular Sciences 12, no. 12: 9514-9532. https://doi.org/10.3390/ijms12129514
APA StyleManyi-Loh, C. E., Ndip, R. N., & Clarke, A. M. (2011). Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. International Journal of Molecular Sciences, 12(12), 9514-9532. https://doi.org/10.3390/ijms12129514