Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin
Abstract
1. Introduction
2. Materials and Method
2.1. Reagents
2.2. Animal Grouping and Treating
2.3. Biochemical Analysis of Serum
2.4. Statistical Analyses
3. Result
3.1. Effect of Compound of Salvianolic Acid b and Paeonol Treatment on Electrocardiogram T Wave of Rabbits
3.2. Effect of Compound of Salvianolic Acid b and Paeonol Treatment on Hemorrheology in Rabbits
3.3. Effect of Compound of Salvianolic Acid b and Paeonol Treatment on Blood MDA, NO, ET, NO/ET, LDH, and CPK
4. Discussion
5. Conclusion
Reference
- Perloff, JK. The coronary circulation in cyanotic congenital heart disease. Int. J. Cardiol 2004, 97, 79–86. [Google Scholar]
- Malinova, LI; Simonenko, GV; Denisova, TP; Tuchin, VV. Metabolic and hormonal blood flow modeling in patients with coronary heart disease: in vitro and clinical study. Med. Laser Appl 2007, 22, 173–184. [Google Scholar]
- Hu, JS. Acupuncture Treatment of Chest Bi Syndrome. J. Tradit. Chin. Med 2008, 28, 148–151. [Google Scholar] [Green Version]
- Inanami, O; Watanabe, Y; Syuto, B; Nakano, M; Tsuji, M; Kuwabara, M. Oral administration of (−)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic. Biol. Med 1998, 29, 359–365. [Google Scholar]
- Wang, XJ; Xu, JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci. Res 2005, 51, 129–138. [Google Scholar]
- Xiao, XQ; Zhang, HY; Tang, XC. Huperzine A attenuates amyloid beta-peptide fragment 25–35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res 2002, 7, 30–36. [Google Scholar]
- Li, M; Zhao, C; Wong, RN; Goto, S; Wang, Z; Liao, F. Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B. Clin. Hemorheol. Microcirc 2004, 31, 97–103. [Google Scholar]
- Qui, Y; Rui, YC; Zhang, L; Li, TJ; Zhang, WD. VEGF induced hyperpermeability in bovine aortic endothelial cell and inhibitory effect of salvianolic acid B. Acta Pharmacol. Sin 2001, 22, 117–120. [Google Scholar]
- Wu, YJ; Hong, CY; Lin, SJ; Wu, P; Shiao, MS. Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler. Thromb. Vasc. Biol 1998, 18, 481–486. [Google Scholar]
- Hung, HH; Chen, YL; Lin, SJ; Yang, SP; Shih, CC; Shiao, MS; Chang, CH. A salvianolic acid B-rich fraction of Salvia miltiorrhiza induces neointimal cell apoptosis in rabbit angioplasty model. Histol. Histopathol 2001, 16, 175–183. [Google Scholar]
- Larsson, A; Björk, J; Lundberg, C. Nephelometric determination of rat fibrinogen as a marker of inflammatory response. Vet. Immunol. Immunopathol 1997, 59, 163–169. [Google Scholar]
- Holman, JM, Jr; Rikkers, LF. Success of medical and surgical management of acute variceal hemorrhage. Am. J. Surg 1980, 140, 816–820. [Google Scholar]
- Wang, SB; Tian, S; Yang, F; Yang, HG; Yang, XY; Du, GH. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur. J. Pharmacol 2009, 615, 125–132. [Google Scholar]
- Malinow, MR; Levenson, J; Giral, P; Nieto, FJ; Razavian, M; Segond, P; Simon, A. Role of blood pressure, uric acid, and hemorheological parameters on plasma homocyst(e)ine concentration. Atherosclerosis 1995, 114, 175–183. [Google Scholar]
- Massaeli, H; Sobrattee, S; Pierce, GN. The importance of lipid solubility in antioxidants and free radical generating systems for determining lipoprotein peroxidation. Free Radic. Biol. Med 1999, 26, 1524–1530. [Google Scholar]
- Zhao, XH; Zhang, Y; Li, D. Elimination of acidic or oxidative stress for four probiotics with some chemicals in vitro. Afr. J. Microbiol. Res 2009, 3, 353–357. [Google Scholar]
- Abdelhalim, MAK. The potential influence of high cholesterol diet-induced oxidative stress on composition and properties of red blood cells in rabbits. Afr. J. Microbiol. Res 2010, 4, 836–843. [Google Scholar]
- Saenjum, C; Chaiyasut, C; Kadchumsang, S; Chansakaow, S; Suttajit, M. Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. J. Med. Plants Res 2010, 4, 1594–1600. [Google Scholar]
- Tortolani, AJ; Powell, SR; Mišik, V; Weglicki, WB; Pogo, GJ; Kramer, JH. Detection of alkoxyl and carbon-centered free radicals in coronary sinus blood from patients undergoing elective cardioplegia. Free Radic. Biol. Med 1993, 14, 421–426. [Google Scholar]
- Schwenke, DC; Behr, SR. α-tocopherol and probucol reduce autoantibody titer to MDA-LDL in hypercholesterolemic rabbits. Free Radic. Biol. Med 2001, 31, 778–789. [Google Scholar]
- Atolaiye, BO; Adebayo, MA; Jagha, O-OO; Olonisakin, A; Agbo, CO. Evaluation of the potency of certain substances as antioxidants in the assessment of red cell viability. J. Med. Plants Res 2009, 3, 485–492. [Google Scholar]
- Wang, W; Qin, CQ; Ding, Y; Peng, HE; Wang, LS. Effect of dietary carboxymethyl chitosans on the levels of iron, zinc and copper in mice. Carbohydr. Polym 2010, 81, 203–206. [Google Scholar]
- Tian, JW; Fu, FH; Li, GS; Gao, YB; Zhang, YJ; Meng, QS; Li, CL; Liu, F. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats. Phytomedicine 2009, 16, 726–733. [Google Scholar]
- Siow, RCM; Li, FYL; Rowlands, DJ; de Winter, P; Mann, GE. Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic. Biol. Med 2007, 42, 909–925. [Google Scholar]
- Shuai, X-H; Hu, T-J; Liu, H-L; Su, Z-J; Zeng, Y; Li, Y-H. Immunomodulatory effect of a Sophora subprosrate polysaccharide in mice. Int. J. Biol. Macromol 2010, 46, 79–84. [Google Scholar]
- Le, XY; Chen, CL; Ma, L; Zhao, N; Tang, YQ; Liu, XQ. Effects of Danshensu on the Incidence of Ischemia-reperfusion Induced Arrhythmia in Hypertrophy Rat Heart. Chin. J. Nat. Med 2008, 6, 461–465. [Google Scholar]
- Rubino, A; Loesch, A; Burnstock, G. Nitric Oxide and Endothelin-1 in Coronary and Pulmonary Circulation. Int. Rev. Cytol 1999, 189, 59–93. [Google Scholar]
| Group | n | 30 s | 1 min | 5 min | 10 min | 30 min |
|---|---|---|---|---|---|---|
| Normal | 8 | 020 ± 0.02 | 0.24 ± 0.10 | 0.19 ± 0.15 | 0.19 ± 0.22 | 0.03 ± 0.02 |
| Model 1 | 8 | 0.33 ± 0.05ÄÄ | 0.51 ± 0.16ÄÄ | 0.56 ± 0.10ÄÄ | 0.59 ± 0.20ÄÄ | 0.30 ± 0.14ÄÄ |
| Model 2 | 8 | 0.31 ± 0.06ÄÄ | 0.42 ± 0.11ÄÄ | 0.42 ± 0.10ÄÄ | 0.39 ± 0.17ÄÄ | 0.21 ± 0.12ÄÄ |
| CSAP (15 mg/kg BW) | 8 | 0.17 ± 0.11** | 0.28 ± 0.14** | 0.23 ± 0.11** | 0.19 ± 0.13** | 0.04 ± 0.04** |
| CSAP (10 mg/kg BW) | 8 | 0.19 ± 0.21** | 0.32 ± 0.18** | 0.25 ± 0.22** | 0.20 ± 0.16** | 0.08 ± 0.05** |
| CSAP (5 mg/kg BW) | 8 | 0.22 ± 0.18* | 0.48 ± 0.46ÄÄ | 0.30 ± 0.21* | 0.27 ± 0.22Ä** | 0.13 ± 0.16Ä** |
| SAB (12.5 mg/kg BW) | 8 | 0.21 ± 0.09** | 0.38 ± 0.11** | 0.27 ± 0.12** | 0.22 ± 0.12** | 0.10 ± 0.05** |
| Paeonol (2.5 mg/kg BW) | 8 | 0.22 ± 0.14** | 0.38 ± 0.13** | 0.26 ± 0.13** | 0.21 ± 0.12** | 0.09 ± 0.03** |
| CSP (20 μg·kg−1) | 8 | 0.16 ± 0.14** | 0.24 ± 0.18** | 0.23 ± 0.31** | 0.27 ± 0.33** | 0.01 ± 0.04** |
| Group | Whole-blood Viscosity (mpa·s) | Plasma Viscosity (mpa·s) | Hematocrit (%) | Fibrinogen (g/L) | |
|---|---|---|---|---|---|
| Low Shear Rate | High Shear Rate | ||||
| Normal | 7.36 ± 1.09 | 3.36 ± 0.21 | 1.12 ± 0.04 | 42.56 ± 2.82 | 1.68 ± 1.22 |
| Model 1 | 13.12 ± 2.26ÄÄ | 4.50 ± 0.41ÄÄ | 1.37 ± 0.15ÄÄ | 46.88 ± 3.78Ä | 3.81 ± 1.56Ä |
| Model 2 | 10.34 ± 2.04ÄÄ | 3.91 ± 0.39ÄÄ | 1.23 ± 0.14ÄÄ | 44.94 ± 3.47Ä | 2.98 ± 1.48Ä |
| CSAP (15 mg/kg BW) | 9.73 ± 0.45** | 3.97 ± 0.55** | 1.19 ± 0.07** | 40.12 ± 7.03** | 2.09 ± 0.63** |
| CSAP (10 mg/kg BW) | 9.89 ± 0.98** | 4.03 ± 0.18** | 1.19 ± 0.05** | 41.08 ± 5.72** | 2.59 ± 0.55** |
| CSAP (5 mg/kg BW) | 10.12 ± 1.21*ÄÄ | 4.15 ± 0.27* | 1.21 ± 0.09** | 45.37 ± 6.21 | 2.83 ± 1.06* |
| SAB (12.5 mg/kg BW) | 10.01 ± 0.89** | 4.06 ± 0.61** | 1.20 ± 0.08** | 42.73 ± 8.11** | 2.68 ± 0.71** |
| Paeonol (2.5 mg/kg BW) | 9.95 ± 0.69** | 3.99±0.42** | 1.19 ± 0.06** | 43.37 ± 8.09** | 2.72 ± 0.84* |
| CSP (20 μg·kg−1) | 9.78 ± 0.53** | 3.92 ± 0.67** | 1.17 ± 0.06** | 41.09 ± 7.13* | 2.11 ± 0.66** |
| Group | n | MDA (nmol·mL−1) | NO (μmol·mL−1) | ET (pg·mL−1) | NO/ET |
|---|---|---|---|---|---|
| Normal | 8 | 2.25 ± 0.42 | 54.82 ± 17.59 | 335.07 ± 48.21 | 0.16 ± 0.05 |
| Model 1 | 8 | 3.18 ± 0.53ÄÄ | 122.93 ± 23.15ÄÄ | 385.77 ± 56.21 | 0.32 ± 0.05ÄÄ |
| Model 2 | 8 | 2.62 ± 0.49Ä | 107.68 ± 20.12ÄÄ | 378.32 ± 49.87 | 0.29 ± 0.05ÄÄ |
| CSAP (15 mg/kg BW) | 8 | 1.95 ± 0.23* | 62.68 ± 11.12** | 263.45 ± 26.31ÄÄ | 0.24 ± 0.05* |
| CSAP (10 mg/kg BW) | 8 | 2.42 ± 0.48* | 81.08 ± 12.10ÄÄ** | 317.21 ± 68.12 | 0.26 ± 0.08* |
| CSAP (5 mg/kg BW) | 8 | 2.75 ± 0.62Ä* | 104.23 ± 13.42ÄÄ* | 365.41 ± 75.24 | 0.29 ± 0.10 |
| SAB (12.5 mg/kg BW) | 8 | 2.25 ± 0.21* | 88.53 ± 18.04ÄÄ** | 321.37 ± 59.51 | 0.27 ± 0.06* |
| Paeonol (2.5 mg/kg BW) | 8 | 2.33 ± 0.32* | 83.08 ± 15.39ÄÄ** | 336.72 ± 72.48 | 0.26 ± 0.05* |
| CSP (20 μg·kg−1) | 8 | 1.93 ± 0.41* | 60.45 ± 15.12** | 258.87 ± 65.12** | 0.24 ± 0.07* |
| Group | n | LDH | CPK |
|---|---|---|---|
| Normal | 8 | 532 ± 125 | 737 ± 258 |
| Model 1 | 8 | 779 ± 318Ä | 1862 ± 437ÄÄ |
| Model 2 | 8 | 713 ± 285Ä | 1659 ± 401ÄÄ |
| CSAP (15 mg/kg BW) | 8 | 564 ± 151* | 790 ± 593** |
| CSAP (10 mg/kg BW) | 8 | 688 ± 171 | 1022 ± 469* |
| CSAP (5 mg/kg BW) | 8 | 763 ± 140 | 1715 ± 586 |
| SAB (12.5 mg/kg BW) | 8 | 698±173 | 1274±638* |
| Paeonol (2.5 mg/kg BW) | 8 | 709±183 | 1308±516* |
| CSP (20 μg·kg−1) | 8 | 551 ± 124 | 803 ± 498** |
Abbreviations
| CSAP | compound of salvianolic acid b and paeonol |
| MDA | malonaldehyde |
| LDH | lactate dehydrogenase |
| CPK | creatine phosphokinase |
| CAP | Compound salvia pellet |
| CHD | coronary heart disease |
| ET | endothelin |
| NO | nitric oxide |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, Q.; Wang, S.; Xie, Y.; Wang, J.; Li, H.; Zhou, X.; Liu, W. Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin. Int. J. Mol. Sci. 2010, 11, 3696-3704. https://doi.org/10.3390/ijms11103696
Yang Q, Wang S, Xie Y, Wang J, Li H, Zhou X, Liu W. Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin. International Journal of Molecular Sciences. 2010; 11(10):3696-3704. https://doi.org/10.3390/ijms11103696
Chicago/Turabian StyleYang, Qian, Siwang Wang, Yanhua Xie, Jianbo Wang, Hua Li, Xuanxuan Zhou, and Wenbo Liu. 2010. "Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin" International Journal of Molecular Sciences 11, no. 10: 3696-3704. https://doi.org/10.3390/ijms11103696
APA StyleYang, Q., Wang, S., Xie, Y., Wang, J., Li, H., Zhou, X., & Liu, W. (2010). Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin. International Journal of Molecular Sciences, 11(10), 3696-3704. https://doi.org/10.3390/ijms11103696
