Molecular Pathogenesis of Alzheimer’s Disease: Reductionist versus Expansionist Approaches
Abstract
:1. Introduction
“Researchers have already cast much darkness on the subject, and if they continue their investigations, we shall soon know nothing at all about it.” - Mark Twain
2. Amyloid-β
2.1. Aβ and clinical disease
2.2. Aβ attack on the synapse
3. Phosphorylated Tau
3.1. The neurofibrillary tangle
3.2. Tau protein
3.3. Tau and clinical disease
3.4. Tau attack on the synapse
4. Oxidative Stress: An “Expansionist” Approach
4.1. Evidence for oxidative stress
4.2. Oxidative stress is an early event
4.3. Neuropathology equals neuroprotection
5. Conclusions
References
- Castellani, RJ; Lee, HG; Zhu, X; Perry, G; Smith, MA. Alzheimer disease pathology as a host response. J. Neuropathol. Exp. Neurol 2008, 67, 523–531. [Google Scholar]
- Spires-Jones, TL; Stoothoff, WH; de Calignon, A; Jones, PB; Hyman, BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 2009. [Google Scholar]
- Selkoe, DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res 2008, 192, 106–113. [Google Scholar]
- Nunomura, A; Castellani, RJ; Zhu, X; Moreira, PI; Perry, G; Smith, MA. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol 2006, 65, 631–641. [Google Scholar]
- Glenner, GG; Wong, CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun 1984, 122, 1131–1135. [Google Scholar]
- Masters, CL; Simms, G; Weinman, NA; Multhaup, G; McDonald, BL; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245–4249. [Google Scholar]
- Vetrivel, KS; Thinakaran, G. Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 2006, 66, S69–73. [Google Scholar]
- Wilquet, V; De Strooper, B. Amyloid-beta precursor protein processing in neurodegeneration. Curr. Opin. Neurobiol 2004, 14, 582–588. [Google Scholar]
- Ling, Y; Morgan, K; Kalsheker, N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int. J. Biochem. Cell Biol 2003, 35, 1505–1535. [Google Scholar]
- Gustaw, KA; Garrett, MR; Lee, HG; Castellani, RJ; Zagorski, MG; Prakasam, A; Siedlak, SL; Zhu, X; Perry, G; Petersen, RB; Friedland, RP; Smith, MA. Antigen-antibody dissociation in Alzheimer disease: a novel approach to diagnosis. J. Neurochem 2008, 106, 1350–1356. [Google Scholar]
- Citron, M; Westaway, D; Xia, W; Carlson, G; Diehl, T; Levesque, G; Johnson-Wood, K; Lee, M; Seubert, P; Davis, A; Kholodenko, D; Motter, R; Sherrington, R; Perry, B; Yao, H; Strome, R; Lieberburg, I; Rommens, J; Kim, S; Schenk, D; Fraser, P; St George Hyslop, P; Selkoe, DJ. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med 1997, 3, 67–72. [Google Scholar]
- Duff, K; Eckman, C; Zehr, C; Yu, X; Prada, CM; Perez-tur, J; Hutton, M; Buee, L; Harigaya, Y; Yager, D; Morgan, D; Gordon, MN; Holcomb, L; Refolo, L; Zenk, B; Hardy, J; Younkin, S. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 1996, 383, 710–713. [Google Scholar]
- Scheuner, D; Eckman, C; Jensen, M; Song, X; Citron, M; Suzuki, N; Bird, TD; Hardy, J; Hutton, M; Kukull, W; Larson, E; Levy-Lahad, E; Viitanen, M; Peskind, E; Poorkaj, P; Schellenberg, G; Tanzi, R; Wasco, W; Lannfelt, L; Selkoe, D; Younkin, S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med 1996, 2, 864–870. [Google Scholar]
- Maiorini, AF; Gaunt, MJ; Jacobsen, TM; McKay, AE; Waldman, LD; Raffa, RB. Potential novel targets for Alzheimer pharmacotherapy: I. Secretases. J. Clin. Pharm. Ther 2002, 27, 169–183. [Google Scholar]
- De Strooper, B; Annaert, W; Cupers, P; Saftig, P; Craessaerts, K; Mumm, JS; Schroeter, EH; Schrijvers, V; Wolfe, MS; Ray, WJ; Goate, A; Kopan, R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999, 398, 518–522. [Google Scholar]
- Baki, L; Marambaud, P; Efthimiopoulos, S; Georgakopoulos, A; Wen, P; Cui, W; Shioi, J; Koo, E; Ozawa, M; Friedrich, VL, Jr; Robakis, NK. Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc. Natl. Acad. Sci. USA 2001, 98, 2381–2386. [Google Scholar]
- Smine, A; Xu, X; Nishiyama, K; Katada, T; Gambetti, P; Yadav, SP; Wu, X; Shi, YC; Yasuhara, S; Homburger, V; Okamoto, T. Regulation of brain G-protein go by Alzheimer’s disease gene presenilin-1. J. Biol. Chem 1998, 273, 16281–16288. [Google Scholar]
- Katayama, T; Imaizumi, K; Sato, N; Miyoshi, K; Kudo, T; Hitomi, J; Morihara, T; Yoneda, T; Gomi, F; Mori, Y; Nakano, Y; Takeda, J; Tsuda, T; Itoyama, Y; Murayama, O; Takashima, A; St George-Hyslop, P; Takeda, M; Tohyama, M. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. cell biol 1999, 1, 479–485. [Google Scholar]
- Niwa, M; Sidrauski, C; Kaufman, RJ; Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 1999, 99, 691–702. [Google Scholar]
- Yu, G; Nishimura, M; Arawaka, S; Levitan, D; Zhang, L; Tandon, A; Song, YQ; Rogaeva, E; Chen, F; Kawarai, T; Supala, A; Levesque, L; Yu, H; Yang, DS; Holmes, E; Milman, P; Liang, Y; Zhang, DM; Xu, DH; Sato, C; Rogaev, E; Smith, M; Janus, C; Zhang, Y; Aebersold, R; Farrer, LS; Sorbi, S; Bruni, A; Fraser, P; St George-Hyslop, P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 2000, 407, 48–54. [Google Scholar]
- Kamal, A; Almenar-Queralt, A; LeBlanc, JF; Roberts, EA; Goldstein, LS. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 2001, 414, 643–648. [Google Scholar]
- Pietrzik, CU; Yoon, IS; Jaeger, S; Busse, T; Weggen, S; Koo, EH. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci 2004, 24, 4259–4265. [Google Scholar]
- Blessed, G; Tomlinson, BE; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar]
- Giannakopoulos, P; Herrmann, FR; Bussiere, T; Bouras, C; Kovari, E; Perl, DP; Morrison, JH; Gold, G; Hof, PR. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 2003, 60, 1495–1500. [Google Scholar]
- Arnold, SE; Hyman, BT; Flory, J; Damasio, AR; Van Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex 1991, 1, 103–116. [Google Scholar]
- Braak, H; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl) 1991, 82, 239–259. [Google Scholar]
- Braak, H; Braak, E. Alzheimer’s disease: striatal amyloid deposits and neurofibrillary changes. J. Neuropathol. Exp. Neurol 1990, 49, 215–224. [Google Scholar]
- Joachim, CL; Morris, JH; Selkoe, DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am. J. Pathol 1989, 135, 309–319. [Google Scholar]
- Berg, L; McKeel, DW, Jr; Miller, JP; Storandt, M; Rubin, EH; Morris, JC; Baty, J; Coats, M; Norton, J; Goate, AM; Price, JL; Gearing, M; Mirra, SS; Saunders, AM. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch. Neurol 1998, 55, 326–335. [Google Scholar]
- Su, JH; Cummings, BJ; Cotman, CW. Plaque biogenesis in brain aging and Alzheimer’s disease. II. Progressive transformation and developmental sequence of dystrophic neurites. Acta Neuropathol 1998, 96, 463–471. [Google Scholar]
- Braak, H; Del Tredici, K. Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol. Aging 2004, 25, 713–718. [Google Scholar]
- Schonheit, B; Zarski, R; Ohm, TG. Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol. Aging 2004, 25, 697–711. [Google Scholar]
- Terry, RD; Masliah, E; Salmon, DP; Butters, N; DeTeresa, R; Hill, R; Hansen, LA; Katzman, R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol 1991, 30, 572–580. [Google Scholar]
- Scheff, SW; Price, DA; Schmitt, FA; DeKosky, ST; Mufson, EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007, 68, 1501–1508. [Google Scholar]
- Walsh, DM; Klyubin, I; Fadeeva, JV; Cullen, WK; Anwyl, R; Wolfe, MS; Rowan, MJ; Selkoe, DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002, 416, 535–539. [Google Scholar]
- Shankar, GM; Bloodgood, BL; Townsend, M; Walsh, DM; Selkoe, DJ; Sabatini, BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci 2007, 27, 2866–2875. [Google Scholar]
- Orgogozo, JM; Gilman, S; Dartigues, JF; Laurent, B; Puel, M; Kirby, LC; Jouanny, P; Dubois, B; Eisner, L; Flitman, S; Michel, BF; Boada, M; Frank, A; Hock, C. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003, 61, 46–54. [Google Scholar]
- Alzheimer, A. Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschr Psychiatr 1907, 64, 146–148. [Google Scholar]
- Wilkins, RH; Brody, IA. Alzheimer’s disease. Arch. Neurol 1969, 21, 109–110. [Google Scholar]
- Berrios, G. Alzheimer’s disease: a conceptual history. Int. J. Geriatr. Psychiatry 1990, 5, 355–365. [Google Scholar]
- Moller, HJ; Graeber, MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur. Arch. Psychiatry Clin. Neurosci 1998, 248, 111–122. [Google Scholar]
- Grundke-Iqbal, I; Iqbal, K; Quinlan, M; Tung, YC; Zaidi, MS; Wisniewski, HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem 1986, 261, 6084–6089. [Google Scholar]
- Cairns, NJ; Bigio, EH; Mackenzie, IR; Neumann, M; Lee, VM; Hatanpaa, KJ; White, CL, 3rd; Schneider, JA; Grinberg, LT; Halliday, G; Duyckaerts, C; Lowe, JS; Holm, IE; Tolnay, M; Okamoto, K; Yokoo, H; Murayama, S; Woulfe, J; Munoz, DG; Dickson, DW; Ince, PG; Trojanowski, JQ; Mann, DM. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 2007, 114, 5–22. [Google Scholar]
- Hernandez, F; Avila, J. Tauopathies. Cell. Mol. Life Sci 2007, 64, 2219–2233. [Google Scholar]
- Plattner, F; Angelo, M; Giese, KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem 2006, 281, 25457–25465. [Google Scholar]
- Ballatore, C; Lee, VM; Trojanowski, JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007, 8, 663–672. [Google Scholar]
- Mitchell, TW; Mufson, EJ; Schneider, JA; Cochran, EJ; Nissanov, J; Han, LY; Bienias, JL; Lee, VM; Trojanowski, JQ; Bennett, DA; Arnold, SE. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann. Neurol 2002, 51, 182–189. [Google Scholar]
- Delacourte, A; David, JP; Sergeant, N; Buee, L; Wattez, A; Vermersch, P; Ghozali, F; Fallet-Bianco, C; Pasquier, F; Lebert, F; Petit, H; Di Menza, C. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999, 52, 1158–1165. [Google Scholar]
- Santacruz, K; Lewis, J; Spires, T; Paulson, J; Kotilinek, L; Ingelsson, M; Guimaraes, A; DeTure, M; Ramsden, M; McGowan, E; Forster, C; Yue, M; Orne, J; Janus, C; Mariash, A; Kuskowski, M; Hyman, B; Hutton, M; Ashe, KH. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005, 309, 476–481. [Google Scholar]
- Stokin, GB; Lillo, C; Falzone, TL; Brusch, RG; Rockenstein, E; Mount, SL; Raman, R; Davies, P; Masliah, E; Williams, DS; Goldstein, LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005, 307, 1282–1288. [Google Scholar]
- Yoshiyama, Y; Higuchi, M; Zhang, B; Huang, SM; Iwata, N; Saido, TC; Maeda, J; Suhara, T; Trojanowski, JQ; Lee, VM. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007, 53, 337–351. [Google Scholar]
- Malchiodi-Albedi, F; Petrucci, TC; Picconi, B; Iosi, F; Falchi, M. Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons. J. Neurosci. Res 1997, 48, 425–438. [Google Scholar]
- Perry, G; Castellani, RJ; Smith, MA; Harris, PL; Kubat, Z; Ghanbari, K; Jones, PK; Cordone, G; Tabaton, M; Wolozin, B; Ghanbari, H. Oxidative damage in the olfactory system in Alzheimer’s disease. Acta Neuropathol. (Berl) 2003, 106, 552–556. [Google Scholar]
- Castellani, RJ; Nunomura, A; Rolston, RK; Moreira, PI; Takeda, A; Perry, G; Smith, MA. Sublethal RNA oxidation as a mechanism for neurodegenerative disease. Int. J. Mol. Sci 2008, 9, 789–806. [Google Scholar]
- Castellani, RJ; Harris, PL; Sayre, LM; Fujii, J; Taniguchi, N; Vitek, MP; Founds, H; Atwood, CS; Perry, G; Smith, MA. Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med 2001, 31, 175–180. [Google Scholar]
- Castellani, RJ; Perry, G; Siedlak, SL; Nunomura, A; Shimohama, S; Zhang, J; Montine, T; Sayre, LM; Smith, MA. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci. Lett 2002, 319, 25–28. [Google Scholar]
- Castellani, R; Smith, MA; Richey, PL; Perry, G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 1996, 737, 195–200. [Google Scholar]
- Kikuchi, A; Takeda, A; Onodera, H; Kimpara, T; Hisanaga, K; Sato, N; Nunomura, A; Castellani, RJ; Perry, G; Smith, MA; Itoyama, Y. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol. Dis 2002, 9, 244–248. [Google Scholar]
- Hy, LX; Keller, DM. Prevalence of AD among whites: a summary by levels of severity. Neurology 2000, 55, 198–204. [Google Scholar]
- Mattson, MP; Chan, SL; Duan, W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol. Rev 2002, 82, 637–672. [Google Scholar]
- Coyle, JT; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262, 689–695. [Google Scholar]
- Floyd, RA; Hensley, K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 2002, 23, 795–807. [Google Scholar]
- Eckert, A; Steiner, B; Marques, C; Leutz, S; Romig, H; Haass, C; Muller, WE. Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J. Neurosci. Res 2001, 64, 183–192. [Google Scholar]
- Hashimoto, M; Hsu, LJ; Rockenstein, E; Takenouchi, T; Mallory, M; Masliah, E. alpha-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem 2002, 277, 11465–11472. [Google Scholar]
- Marques, CA; Keil, U; Bonert, A; Steiner, B; Haass, C; Muller, WE; Eckert, A. Neurotoxic mechanisms caused by the Alzheimer’s disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J. Biol. Chem 2003, 278, 28294–28302. [Google Scholar]
- Guo, Q; Sopher, BL; Furukawa, K; Pham, DG; Robinson, N; Martin, GM; Mattson, MP. Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci 1997, 17, 4212–4222. [Google Scholar]
- Smith, MA; Hirai, K; Hsiao, K; Pappolla, MA; Harris, PL; Siedlak, SL; Tabaton, M; Perry, G. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem 1998, 70, 2212–2215. [Google Scholar]
- Guo, Q; Sebastian, L; Sopher, BL; Miller, MW; Ware, CB; Martin, GM; Mattson, MP. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem 1999, 72, 1019–1029. [Google Scholar]
- Pratico, D; Uryu, K; Leight, S; Trojanoswki, JQ; Lee, VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci 2001, 21, 4183–4187. [Google Scholar]
- Leutner, S; Czech, C; Schindowski, K; Touchet, N; Eckert, A; Muller, WE. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci. Lett 2000, 292, 87–90. [Google Scholar]
- Takahashi, M; Dore, S; Ferris, CD; Tomita, T; Sawa, A; Wolosker, H; Borchelt, DR; Iwatsubo, T; Kim, SH; Thinakaran, G; Sisodia, SS; Snyder, SH. Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron 2000, 28, 461–473. [Google Scholar]
- Matsuoka, Y; Picciano, M; La Francois, J; Duff, K. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer’s disease. Neuroscience 2001, 104, 609–613. [Google Scholar]
- LaFontaine, MA; Mattson, MP; Butterfield, DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer’s disease. Neurochem. Res 2002, 27, 417–421. [Google Scholar]
- Schuessel, K; Frey, C; Jourdan, C; Keil, U; Weber, CC; Muller-Spahn, F; Muller, WE; Eckert, A. Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic. Biol. Med 2006, 40, 850–862. [Google Scholar]
- Cecchi, C; Fiorillo, C; Sorbi, S; Latorraca, S; Nacmias, B; Bagnoli, S; Nassi, P; Liguri, G. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic. Biol. Med 2002, 33, 1372–1379. [Google Scholar]
- Nunomura, A; Chiba, S; Lippa, CF; Cras, P; Kalaria, RN; Takeda, A; Honda, K; Smith, MA; Perry, G. Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol. Dis 2004, 17, 108–113. [Google Scholar]
- Bogdanovic, N; Zilmer, M; Zilmer, K; Rehema, A; Karelson, E. The Swedish APP670/671 Alzheimer’s disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement. Geriatr. Cogn. Disord 2001, 12, 364–370. [Google Scholar]
- Saunders, AM; Schmader, K; Breitner, JC; Benson, MD; Brown, WT; Goldfarb, L; Goldgaber, D; Manwaring, MG; Szymanski, MH; McCown, N; et al. Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 1993, 342, 710–711. [Google Scholar]
- Miyata, M; Smith, JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet 1996, 14, 55–61. [Google Scholar]
- Leibson, CL; Rocca, WA; Hanson, VA; Cha, R; Kokmen, E; O’Brien, PC; Palumbo, PJ. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am. J. Epidemiol 1997, 145, 301–308. [Google Scholar]
- Guo, Z; Cupples, LA; Kurz, A; Auerbach, SH; Volicer, L; Chui, H; Green, RC; Sadovnick, AD; Duara, R; DeCarli, C; Johnson, K; Go, RC; Growdon, JH; Haines, JL; Kukull, WA; Farrer, LA. Head injury and the risk of AD in the MIRAGE study. Neurology 2000, 54, 1316–1323. [Google Scholar]
- Kivipelto, M; Helkala, EL; Laakso, MP; Hanninen, T; Hallikainen, M; Alhainen, K; Iivonen, S; Mannermaa, A; Tuomilehto, J; Nissinen, A; Soininen, H. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann. Intern. Med 2002, 137, 149–155. [Google Scholar]
- Seshadri, S; Beiser, A; Selhub, J; Jacques, PF; Rosenberg, IH; D’Agostino, RB; Wilson, PW; Wolf, PA. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med 2002, 346, 476–483. [Google Scholar]
- Honig, LS; Tang, MX; Albert, S; Costa, R; Luchsinger, J; Manly, J; Stern, Y; Mayeux, R. Stroke and the risk of Alzheimer disease. Arch. Neurol 2003, 60, 1707–1712. [Google Scholar]
- Ott, A; Slooter, AJ; Hofman, A; van Harskamp, F; Witteman, JC; Van Broeckhoven, C; van Duijn, CM; Breteler, MM. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet 1998, 351, 1840–1843. [Google Scholar]
- Rondeau, V; Commenges, D; Jacqmin-Gadda, H; Dartigues, JF. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am. J. Epidemiol 2000, 152, 59–66. [Google Scholar]
- Luchsinger, JA; Tang, MX; Shea, S; Mayeux, R. Caloric intake and the risk of Alzheimer disease. Arch. Neurol 2002, 59, 1258–1263. [Google Scholar]
- Friedland, RP; Fritsch, T; Smyth, KA; Koss, E; Lerner, AJ; Chen, CH; Petot, GJ; Debanne, SM. Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc. Natl. Acad. Sci. U. S. A 2001, 98, 3440–3445. [Google Scholar]
- Gupta, VB; Anitha, S; Hegde, ML; Zecca, L; Garruto, RM; Ravid, R; Shankar, SK; Stein, R; Shanmugavelu, P; Jagannatha Rao, KS. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell. Mol. Life Sci 2005, 62, 143–158. [Google Scholar]
- Bramlett, HM; Dietrich, WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab 2004, 24, 133–150. [Google Scholar]
- Perna, AF; Ingrosso, D; De Santo, NG. Homocysteine and oxidative stress. Amino Acids 2003, 25, 409–417. [Google Scholar]
- Maritim, AC; Sanders, RA; Watkins, JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol 2003, 17, 24–38. [Google Scholar]
- Moriel, P; Plavnik, FL; Zanella, MT; Bertolami, MC; Abdalla, DS. Lipid peroxidation and antioxidants in hyperlipidemia and hypertension. Biol. Res 2000, 33, 105–112. [Google Scholar]
- Preston, AM. Cigarette smoking-nutritional implications. Prog. Food Nutr. Sci 1991, 15, 183–217. [Google Scholar]
- Engelhart, MJ; Geerlings, MI; Ruitenberg, A; van Swieten, JC; Hofman, A; Witteman, JC; Breteler, MM. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002, 287, 3223–3229. [Google Scholar]
- Tang, MX; Jacobs, D; Stern, Y; Marder, K; Schofield, P; Gurland, B; Andrews, H; Mayeux, R. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996, 348, 429–432. [Google Scholar]
- Wolozin, B; Kellman, W; Ruosseau, P; Celesia, GG; Siegel, G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol 2000, 57, 1439–1443. [Google Scholar]
- in t’ Veld, BA; Ruitenberg, A; Hofman, A; Launer, LJ; van Duijn, CM; Stijnen, T; Breteler, MM; Stricker, BH. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med 2001, 345, 1515–1521. [Google Scholar]
- Morris, MC; Evans, DA; Bienias, JL; Tangney, CC; Bennett, DA; Wilson, RS; Aggarwal, N; Schneider, J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol 2003, 60, 940–946. [Google Scholar]
- Truelsen, T; Thudium, D; Gronbaek, M. Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 2002, 59, 1313–1319. [Google Scholar]
- Behl, C; Skutella, T; Lezoualc’h, F; Post, A; Widmann, M; Newton, CJ; Holsboer, F. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol. Pharmacol 1997, 51, 535–541. [Google Scholar]
- Hamburger, SA; McCay, PB. Spin trapping of ibuprofen radicals: evidence that ibuprofen is a hydroxyl radical scavenger. Free Radic. Res. Commun 1990, 9, 337–342. [Google Scholar]
- Green, P; Glozman, S; Weiner, L; Yavin, E. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim. Biophys. Acta 2001, 1532, 203–212. [Google Scholar]
- Echeverry, C; Blasina, F; Arredondo, F; Ferreira, M; Abin-Carriquiry, JA; Vasquez, L; Aspillaga, AA; Diez, MS; Leighton, F; Dajas, F. Cytoprotection by neutral fraction of tannat red wine against oxidative stress-induced cell death. J. Agric. Food Chem 2004, 52, 7395–7399. [Google Scholar]
- Stoll, LL; McCormick, ML; Denning, GM; Weintraub, NL. Antioxidant effects of statins. Drugs Today (Barc) 2004, 40, 975–990. [Google Scholar]
- Mattson, MP; Duan, W; Guo, Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J. Neurochem 2003, 84, 417–431. [Google Scholar]
- Nunomura, A; Perry, G; Aliev, G; Hirai, K; Takeda, A; Balraj, EK; Jones, PK; Ghanbari, H; Wataya, T; Shimohama, S; Chiba, S; Atwood, CS; Petersen, RB; Smith, MA. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol 2001, 60, 759–767. [Google Scholar]
- Nunomura, A; Perry, G; Pappolla, MA; Friedland, RP; Hirai, K; Chiba, S; Smith, MA. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J. Neuropathol. Exp. Neurol 2000, 59, 1011–1017. [Google Scholar]
- Abe, T; Tohgi, H; Isobe, C; Murata, T; Sato, C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J. Neurosci. Res 2002, 70, 447–450. [Google Scholar]
- Lovell, MA; Gabbita, SP; Markesbery, WR. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem 1999, 72, 771–776. [Google Scholar]
- Mecocci, P; MacGarvey, U; Beal, MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol 1994, 36, 747–751. [Google Scholar]
- Ding, Q; Markesbery, WR; Chen, Q; Li, F; Keller, JN. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci 2005, 25, 9171–9175. [Google Scholar]
- Keller, JN; Schmitt, FA; Scheff, SW; Ding, Q; Chen, Q; Butterfield, DA; Markesbery, WR. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 2005, 64, 1152–1156. [Google Scholar]
- Pratico, D; Clark, CM; Liun, F; Rokach, J; Lee, VY; Trojanowski, JQ. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch. Neurol 2002, 59, 972–976. [Google Scholar]
- Migliore, L; Fontana, I; Trippi, F; Colognato, R; Coppede, F; Tognoni, G; Nucciarone, B; Siciliano, G. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol. Aging 2005, 26, 567–573. [Google Scholar]
- Rinaldi, P; Polidori, MC; Metastasio, A; Mariani, E; Mattioli, P; Cherubini, A; Catani, M; Cecchetti, R; Senin, U; Mecocci, P. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging 2003, 24, 915–919. [Google Scholar]
- Guidi, I; Galimberti, D; Lonati, S; Novembrino, C; Bamonti, F; Tiriticco, M; Fenoglio, C; Venturelli, E; Baron, P; Bresolin, N; Scarpini, E. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2006, 27, 262–269. [Google Scholar]
- Schipper, HM; Bennett, DA; Liberman, A; Bienias, JL; Schneider, JA; Kelly, J; Arvanitakis, Z. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol. Aging 2006, 27, 252–261. [Google Scholar]
- Drake, J; Link, CD; Butterfield, DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 2003, 24, 415–420. [Google Scholar]
- Schuessel, K; Schafer, S; Bayer, TA; Czech, C; Pradier, L; Muller-Spahn, F; Muller, WE; Eckert, A. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol. Dis 2005, 18, 89–99. [Google Scholar]
- Resende, R; Moreira, PI; Deshpande, A; Busciglio, J; Pereira, C; Oliveira, CR. Increased oxidative stress is an early pathological feature in 3xTg-AD mice. Alzheimer’s and Dementia 2008, 4, T724–T725. [Google Scholar]
- Misonou, H; Morishima-Kawashima, M; Ihara, Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry (Mosc) 2000, 39, 6951–6959. [Google Scholar]
- Paola, D; Domenicotti, C; Nitti, M; Vitali, A; Borghi, R; Cottalasso, D; Zaccheo, D; Odetti, P; Strocchi, P; Marinari, UM; Tabaton, M; Pronzato, MA. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem. Biophys. Res. Commun 2000, 268, 642–646. [Google Scholar]
- Gomez-Ramos, A; Diaz-Nido, J; Smith, MA; Perry, G; Avila, J. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J. Neurosci. Res 2003, 71, 863–870. [Google Scholar]
- Nakashima, H; Ishihara, T; Yokota, O; Terada, S; Trojanowski, JQ; Lee, VM; Kuroda, S. Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic. Biol. Med 2004, 37, 176–186. [Google Scholar]
- Sung, S; Yao, Y; Uryu, K; Yang, H; Lee, VM; Trojanowski, JQ; Pratico, D. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J 2004, 18, 323–325. [Google Scholar]
- Bayer, TA; Schafer, S; Simons, A; Kemmling, A; Kamer, T; Tepest, R; Eckert, A; Schussel, K; Eikenberg, O; Sturchler-Pierrat, C; Abramowski, D; Staufenbiel, M; Multhaup, G. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl. Acad. Sci. U. S. A 2003, 100, 14187–14192. [Google Scholar]
- Li, F; Calingasan, NY; Yu, F; Mauck, WM; Toidze, M; Almeida, CG; Takahashi, RH; Carlson, GA; Flint Beal, M; Lin, MT; Gouras, GK. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem 2004, 89, 1308–1312. [Google Scholar]
- Smith, MA; Nunomura, A; Zhu, X; Takeda, A; Perry, G. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid. Redox Signal 2000, 2, 413–420. [Google Scholar]
- Reddy, PH; Beal, MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med 2008, 14, 45–53. [Google Scholar]
- Reddy, PH; McWeeney, S; Park, BS; Manczak, M; Gutala, RV; Partovi, D; Jung, Y; Yau, V; Searles, R; Mori, M; Quinn, J. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum. Mol. Genet 2004, 13, 1225–1240. [Google Scholar]
- Wang, X; Su, B; Fujioka, H; Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol 2008, 173, 470–482. [Google Scholar]
- Wang, X; Su, B; Siedlak, SL; Moreira, PI; Fujioka, H; Wang, Y; Casadesus, G; Zhu, X. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 19318–19323. [Google Scholar]
- Yang, Y; Mufson, EJ; Herrup, K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J. Neurosci 2003, 23, 2557–2563. [Google Scholar]
- Hirai, K; Aliev, G; Nunomura, A; Fujioka, H; Russell, RL; Atwood, CS; Johnson, AB; Kress, Y; Vinters, HV; Tabaton, M; Shimohama, S; Cash, AD; Siedlak, SL; Harris, PL; Jones, PK; Petersen, RB; Perry, G; Smith, MA. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci 2001, 21, 3017–3023. [Google Scholar]
- Minoshima, S; Giordani, B; Berent, S; Frey, KA; Foster, NL; Kuhl, DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol 1997, 42, 85–94. [Google Scholar]
- Honda, K; Smith, MA; Zhu, X; Baus, D; Merrick, WC; Tartakoff, AM; Hattier, T; Harris, PL; Siedlak, SL; Fujioka, H; Liu, Q; Moreira, PI; Miller, FP; Nunomura, A; Shimohama, S; Perry, G. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J. Biol. Chem 2005, 280, 20978–20986. [Google Scholar]
- Andorfer, C; Acker, CM; Kress, Y; Hof, PR; Duff, K; Davies, P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci 2005, 25, 5446–5454. [Google Scholar]
- Maynard, CJ; Cappai, R; Volitakis, I; Cherny, RA; White, AR; Beyreuther, K; Masters, CL; Bush, AI; Li, QX. Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem 2002, 277, 44670–44676. [Google Scholar]
- Niwa, K; Kazama, K; Younkin, SG; Carlson, GA; Iadecola, C. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis 2002, 9, 61–68. [Google Scholar]
- Zou, K; Gong, JS; Yanagisawa, K; Michikawa, M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci 2002, 22, 4833–4841. [Google Scholar]
- Bishop, GM; Robinson, SR. Human Abeta1-42 reduces iron-induced toxicity in rat cerebral cortex. J. Neurosci. Res 2003, 73, 316–323. [Google Scholar]
- Kontush, A; Berndt, C; Weber, W; Akopyan, V; Arlt, S; Schippling, S; Beisiegel, U. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic. Biol. Med 2001, 30, 119–128. [Google Scholar]
- Lee, HG; Perry, G; Moreira, PI; Garrett, MR; Liu, Q; Zhu, X; Takeda, A; Nunomura, A; Smith, MA. Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol. Med 2005, 11, 164–169. [Google Scholar]
- Takeda, A; Smith, MA; Avila, J; Nunomura, A; Siedlak, SL; Zhu, X; Perry, G; Sayre, LM. In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J. Neurochem 2000, 75, 1234–1241. [Google Scholar]
- Smith, MA; Harris, PL; Sayre, LM; Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 1997, 94, 9866–9868. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/). This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Castellani, R.J.; Zhu, X.; Lee, H.-G.; Smith, M.A.; Perry, G. Molecular Pathogenesis of Alzheimer’s Disease: Reductionist versus Expansionist Approaches. Int. J. Mol. Sci. 2009, 10, 1386-1406. https://doi.org/10.3390/ijms10031386
Castellani RJ, Zhu X, Lee H-G, Smith MA, Perry G. Molecular Pathogenesis of Alzheimer’s Disease: Reductionist versus Expansionist Approaches. International Journal of Molecular Sciences. 2009; 10(3):1386-1406. https://doi.org/10.3390/ijms10031386
Chicago/Turabian StyleCastellani, Rudy J., Xiongwei Zhu, Hyoung-Gon Lee, Mark A. Smith, and George Perry. 2009. "Molecular Pathogenesis of Alzheimer’s Disease: Reductionist versus Expansionist Approaches" International Journal of Molecular Sciences 10, no. 3: 1386-1406. https://doi.org/10.3390/ijms10031386
APA StyleCastellani, R. J., Zhu, X., Lee, H.-G., Smith, M. A., & Perry, G. (2009). Molecular Pathogenesis of Alzheimer’s Disease: Reductionist versus Expansionist Approaches. International Journal of Molecular Sciences, 10(3), 1386-1406. https://doi.org/10.3390/ijms10031386