Ultrasound-Assisted Ferritin Extraction from Northern Pike Liver: An Innovative Approach for Chlorogenic Acid Encapsulation with Enhanced Thermal Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Factors on the Amount of Ferritin Extracted from the Liver of Northern Pike
2.2. Optimization of Ferritin Extraction Process by RSM Method
2.3. Homology Modeling of the NPLF
2.4. Preparation of Apo-CA Nanoparticles
2.5. UV Spectral Analysis of NPLF, Apo, and Apo-CA
2.6. NPLF, Apo, and Apo-CA Infrared Spectral Analyses
2.7. NPLF, Apo, and Apo-CA Fluorescence Spectral Analysis
2.8. Transmission Electron Microscopy Analysis
2.9. Particle Size Analysis
2.10. NPLF and Apo-CA Thermogravimetric Analysis
2.11. Differential Scanning Calorimeter Analysis
3. Materials and Methods
3.1. Materials
3.2. Ultrasound-Assisted Extraction of Northern Pike Liver Ferritin
3.3. Preparation of Apoferritin (Apo)
3.4. Determination of Ferritin Content
3.5. Single-Factor Experiments
3.6. Experimental Design of the Response Method
3.7. Protein Gel Electrophoresis
3.8. LC/MS Analysis
3.9. Homology Modeling
3.10. Preparation of Apolipoprotein-CA Nanoparticles Using the PH-Reversible Recombinant Properties of Ferritin
3.11. High-Performance Liquid Chromatography Analysis
3.12. Fourier Transform Infrared (FTIR) Spectral Analysis
3.13. Ultraviolet-Visible Absorption Spectroscopy Analysis
3.14. Intrinsic Fluorescence Spectral Analysis of Samples
3.15. Transmission Electron Microscopy Experiments
3.16. Dynamic Light Scattering Experiment and ζ-Potential Analysis
3.17. Thermogravimetry Analysis
3.18. Differential Scanning Calorimeter Analysis Experiment (DSC)
3.19. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhen, Z.; Tang, W.; Chen, H.; Lin, X.; Todd, T.; Wang, G.; Cowger, T.; Chen, X.; Xie, J. RGD-Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors. ACS Nano 2013, 7, 4830–4837. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dong, Y.; Li, X.; Wang, F.; Zhang, Y. Chitosan Binding to a Novel Alfalfa Phytoferritin Nanocage Loaded with Baicalein: Simulated Digestion and Absorption Evaluation. Food Chem. 2022, 386, 132716. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Holowinski, P.; Dawidowicz, A.L.; Typek, R. Chlorogenic Acid-Water Complexes in Chlorogenic Acid Containing Food Products. J. Food Compos. Anal. 2022, 109, 104509. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, R.; Chi, X.; Chen, T.; Li, Y.; Xu, Y.; Zhu, B.; Hu, J. Unleashing the Power of Chlorogenic Acid: Exploring Its Potential in Nutrition Delivery and the Food Industry. Food Funct. 2024, 15, 4741–4762. [Google Scholar] [CrossRef]
- Wan, F.; Cai, X.; Wang, M.; Chen, L.; Zhong, R.; Liu, L.; Yi, B.; Hou, F.; Zhang, H. Chlorogenic Acid Supplementation Alleviates Dextran Sulfate Sodium (DSS)-Induced Colitis via Inhibiting Inflammatory Responses and Oxidative Stress, Improving Gut Barrier Integrity and Nrf-2/HO-1 Pathway. J. Funct. Foods 2021, 87, 104808. [Google Scholar] [CrossRef]
- Limwachiranon, J.; Huang, H.; Li, L.; Lin, X.; Zou, L.; Liu, J.; Zou, Y.; Aalim, H.; Duan, Z.; Luo, Z. Enhancing Stability and Bioaccessibility of Chlorogenic Acid Using Complexation with Amylopectin: A Comprehensive Evaluation of Complex Formation, Properties, and Characteristics. Food Chem. 2020, 311, 125879. [Google Scholar] [CrossRef] [PubMed]
- Jeanroy, C.; Denys, G.P.J. Morphological Traits Allow Distinguishing Their Hybrids from the Northern Pike, Esox lucius, and the Aquitanian Pike, Esox Aquitanicus (Actinopterygii, Esociformes). Cybium 2019, 43, 227–232. [Google Scholar] [CrossRef]
- Magnuson, J.T.T.; Sandheinrich, M.B.B. Relation among Mercury, Selenium, and Biomarkers of Oxidative Stress in Northern Pike (Esox lucius). Toxics 2023, 11, 244. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Wang, H.-J.; Pan, M.-C.; Chang, C.-K.; Chang, S.-W.; Hsieh, C.-W. Optimization of Ultrasonic-Assisted Extraction of Cordycepin from Cordyceps Militaris Using Orthogonal Experimental Design. Molecules 2014, 19, 20808–20820. [Google Scholar] [CrossRef]
- Hadi, B.; Sanagi, M.M.; Ibrahim, W.A.W.; Jamil, S.; AbdullahiMu’azu, M.; Aboul-Enein, H.Y. Ultrasonic-Assisted Extraction of Curcumin Complexed with Methyl-β-Cyclodextrin. Food Anal. Methods 2015, 8, 1373–1381. [Google Scholar] [CrossRef]
- Poureini, F.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Comparative Study on the Extraction of Apigenin from Parsley Leaves (Petroselinum crispum L.) by Ultrasonic and Microwave Methods. Chem. Pap. 2020, 74, 3857–3871. [Google Scholar] [CrossRef]
- He, X.; Wang, B.; Zhao, B.; Yang, F. Ultrasonic Assisted Extraction of Quinoa (Chenopodium quinoa Willd.) Protein and Effect of Heat Treatment on Its in Vitro Digestion Characteristics. Foods 2022, 11, 771. [Google Scholar] [CrossRef]
- Zou, Y.; Bian, H.; Li, P.; Sun, Z.; Sun, C.; Zhang, M.; Geng, Z.; Xu, W.; Wang, D. Optimization and Physicochemical Properties of Nutritional Protein Isolate from Pork Liver with Ultrasound-Assisted Alkaline Extraction. Anim. Sci. J. 2018, 89, 456–466. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Xu, X.; et al. Effects of Ultrasound Assisted Extraction on the Physiochemical, Structural and Functional Characteristics of Duck Liver Protein Isolate. Process Biochem. 2017, 52, 174–182. [Google Scholar] [CrossRef]
- Gorguc, A.; Bircan, C.; Yilmaz, F.M. Sesame Bran as an Unexploited By-Product: Effect of Enzyme and Ultrasound-Assisted Extraction on the Recovery of Protein and Antioxidant Compounds. Food Chem. 2019, 283, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Dabbour, M.; He, R.; Ma, H.; Musa, A. Optimization of Ultrasound Assisted Extraction of Protein from Sunflower Meal and Its Physicochemical and Functional Properties. J. Food Process Eng. 2018, 41, e12799. [Google Scholar] [CrossRef]
- Wang, D.; Duan, L.; Wei, M.; Chen, B.; Li, Z.; Liu, Q. Establishment of a Soluble Expression and Rapid Purification System for Self-Assembling Protein Nanoparticle and Characterization of Its Physiochemical Properties. Biochem. Eng. J. 2022, 186, 108580. [Google Scholar] [CrossRef]
- Sevieri, M.; Pinori, M.; Chesi, A.; Bonizzi, A.; Sitia, L.; Truffi, M.; Morasso, C.; Corsi, F.; Mazzucchelli, S. Novel Bioengineering Strategies to Improve Bioavailability and In Vivo Circulation of H-Ferritin Nanocages by Surface Functionalization. ACS Omega 2023, 8, 7244–7251. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Zhao, G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. Nanomaterials 2020, 10, 1894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Deng, X.; Guo, X.; Zhang, J. Sustained Release of Chlorogenic Acid by Co-Encapsulation of Sodium Alginate Binding to the Northern Pike (Esox lucius) Liver Ferritin. Food Chem. 2023, 429, 136924. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Fu, Q. Optimization of Ultrasound-Assisted Extraction Process of Perilla Seed Meal Proteins. Food Sci. Biotechnol. 2012, 21, 1701–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Zhou, C.; Atungulu, G.G.; Xu, K.; Ma, H.; Ye, X.; Abdualrahman, M.A.Y. Surface Topography, Nano-Mechanics and Secondary Structure of Wheat Gluten Pretreated by Alternate Dual-Frequency Ultrasound and the Correlation to Enzymolysis. Ultrason. Sonochem. 2016, 31, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Wen, C.; Zhang, J.; Feng, Y.; Duan, Y.; Zhou, J.; He, Y.; Zhang, H.; Ma, H. Effects of Simultaneous Dual-Frequency Divergent Ultrasound-Assisted Extraction on the Structure, Thermal and Antioxidant Properties of Protein from Chlorella pyrenoidosa. Algal Res.-Biomass Biofuels Bioproducts 2021, 56, 102294. [Google Scholar] [CrossRef]
- Antonio Vazquez, J.; Sotelo, C.G.; Sanz, N.; Perez-Martin, R.I.; Rodriguez-Amado, I.; Valcarcel, J. Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar. Drugs 2019, 17, 676. [Google Scholar] [CrossRef]
- Li, H.; Zang, J.; Tan, X.; Xia, X.; Wang, Z.; Du, M. Purification and Characterizations of a Nanocage Ferritin GF1 from Oyster (Crassostrea gigas). LWT 2020, 127, 109416. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, M.; Tang, J.; Lin, X.; Liu, G.; Wen, C.; Xu, X. Possibility and Challenge of Plant-Derived Ferritin Cages Encapsulated Polyphenols in the Precise Nutrition Field. Int. J. Biol. Macromol. 2024, 275, 133579. [Google Scholar] [CrossRef]
- Sudarev, V.V.; Dolotova, S.M.; Bukhalovich, S.M.; Bazhenov, S.V.; Ryzhykau, Y.L.; Uversky, V.N.; Bondarev, N.A.; Osipov, S.D.; Mikhailov, A.E.; Kuklina, D.D.; et al. Ferritin Self-Assembly, Structure, Function, and Biotechnological Applications. Int. J. Biol. Macromol. 2023, 224, 319–343. [Google Scholar] [CrossRef]
- Li, H.; Tan, X.; Xia, X.; Zang, J.; Wang, Z.; Du, M. Thermal Treatment Modified the Physicochemical Properties of Recombinant Oyster (Crassostrea gigas) Ferritin. Food Chem. 2020, 314, 126210. [Google Scholar] [CrossRef]
- Chen, L.; Bai, G.; Yang, R.; Zang, J.; Zhou, T.; Zhao, G. Encapsulation of β-Carotene within Ferritin Nanocages Greatly Increases Its Water-Solubility and Thermal Stability. Food Chem. 2014, 149, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Badu-Boateng, C.; Pardalaki, S.; Wolf, C.; Lajnef, S.; Peyrot, F.; Naftalin, R.J. Labile Iron Potentiates Ascorbate-Dependent Reduction and Mobilization of Ferritin Iron. Free Radical Biol. Med. 2017, 108, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Cebi, N.; Dogan, C.E.; Mese, A.E.; Ozdemir, D.; Arici, M.; Sagdic, O. A Rapid ATR-FTIR Spectroscopic Method for Classification of Gelatin Gummy Candies in Relation to the Gelatin Source. Food Chem. 2019, 277, 373–381. [Google Scholar] [CrossRef]
- Yang, C.; Wang, B.; Wang, J.; Xia, S.; Wu, Y. Effect of Pyrogallic Acid (1,2,3-Benzenetriol) Polyphenol-Protein Covalent Conjugation Reaction Degree on Structure and Antioxidant Properties of Pumpkin (Cucurbita sp.) Seed Protein Isolate. LWT food Sci. Technol. 2019, 109, 443–449. [Google Scholar] [CrossRef]
- Liang, M.; Tan, H.; Zhou, J.; Wang, T.; Duan, D.; Fan, K.; He, J.; Cheng, D.; Shi, H.; Choi, H.S.; et al. Bioengineered H-Ferritin Nanocages for Quantitative Imaging of Vulnerable Plaques in Atherosclerosis. ACS Nano 2018, 12, 9300–9308. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Li, H.; Xu, X.; Wu, C.; Wang, Z.; Zhao, G.; Du, M. Improvement of Physicochemical Properties of Lycopene by the Self-Assembly Encapsulation of Recombinant Ferritin GF1 from Oyster (Crassostrea gigas). J. Sci. Food Agric. 2024, 104, 2783–2791. [Google Scholar] [CrossRef]
- Moglia, I.; Santiago, M.; Olivera-Nappa, Á.; Soler, M. An Optimized Low-Cost Protocol for Standardized Production of Iron-Free Apoferritin Nanocages with High Protein Recovery and Suitable Conformation for Nanotechnological Applications. J. Inorg. Biochem. 2018, 183, 184–190. [Google Scholar] [CrossRef]
- Ahmadyousefi, Y.; Saidijam, M.; Amirheidari, B.; Rahbarizadeh, F.; Soleimani, M. A Novel Hyperthermostable Recombinant Protein Nanocage. Iran. Biomed. J. 2022, 26, 426–439. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Deng, X.; Zhao, Y.; Zhu, X.; Zhang, J. Modifications of Thermal-Induced Northern Pike (Esox lucius) Liver Ferritin on Structural and Self-Assembly Properties. Foods 2022, 11, 2987. [Google Scholar] [CrossRef]
- Pozzi, C.; Ciambellotti, S.; Bernacchioni, C.; Di Pisa, F.; Mangani, S.; Turano, P. Chemistry at the Protein-Mineral Interface in L-Ferritin Assists the Assembly of a Functional (μ3-Oxo)Tris[(μ2-Peroxo)] Triiron(III) Cluster. Proc. Natl. Acad. Sci. USA 2017, 114, 2580–2585. [Google Scholar] [CrossRef]
- Zhang, H.; Long, Y.; Peng, Y.; Chen, Y.; Hu, C.; Chen, J.; Chen, X.; Guo, A. Soluble Expression and Purification of Recombinant Bovine Ferritin H-Chain. Protein Expr. Purif. 2023, 211, 106340. [Google Scholar] [CrossRef] [PubMed]
- Scheltema, R.A.; Hauschild, J.-P.; Lange, O.; Hornburg, D.; Denisov, E.; Damoc, E.; Kuehn, A.; Makarov, A.; Mann, M. The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-Filter, High-Performance Quadrupole and an Ultra-High-Field Orbitrap Analyzer. Mol. Cell. Proteom. 2014, 13, 3698–3708. [Google Scholar] [CrossRef]
- Meng, D.; Chen, S.; Liu, J.; Wang, Q.; Wang, D.; Liu, M.; Zhou, Z.; Yang, R. Double-Interface Binding of Two Bioactive Compounds with Cage-like Ferritin. J. Agric. Food Chem. 2020, 68, 7779–7788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, X.; Wang, S.; Xu, Y.; Wang, D. Formation of Nanocomplexes Comprising Whey Proteins and Fucoxanthin: Characterization, Spectroscopic Analysis, and Molecular Docking. Food Hydrocoll. 2017, 63, 391–403. [Google Scholar] [CrossRef]
- Yang, R.; Chen, L.; Zhang, T.; Yang, S.; Leng, X.; Zhao, G. Self-Assembly of Ferritin Nanocages into Linear Chains Induced by Poly(α, L-Lysine). Chem. Commun. 2014, 50, 481–483. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Scalcione, L.J.; Arosio, P.; Bou-Abdallah, F. Hyperthermostable Recombinant Human Heteropolymer Ferritin Derived from a Novel Plasmid Design. Protein Sci. 2023, 32, e4543. [Google Scholar] [CrossRef]
NO. | X1/Ultrasonic Power (W) | X2/Ultrasound Time (min) | X3/Solid–Liquid Ratio | Y/The Amount of Ferritin Extracted (mg/kg) | |
---|---|---|---|---|---|
Measured Value | Predicted Value | ||||
1 | 200 | 25 | 1:3 | 136.21 ± 2.72 | 135.65 |
2 | 300 | 25 | 1:2 | 84.22 ± 1.68 | 81.94 |
3 | 100 | 25 | 1:4 | 87.8 ± 1.76 | 90.08 |
4 | 200 | 20 | 1:2 | 91.06 ± 1.82 | 89.30 |
5 | 200 | 30 | 1:2 | 101.48 ± 2.03 | 103.81 |
6 | 100 | 25 | 1:2 | 95.66 ± 1.91 | 97.38 |
7 | 200 | 25 | 1:3 | 135.29 ± 2.71 | 135.65 |
8 | 200 | 30 | 1:4 | 92.59 ± 1.85 | 94.36 |
9 | 200 | 25 | 1:3 | 134.85 ± 2.70 | 135.65 |
10 | 200 | 20 | 1:4 | 116.74 ± 2.33 | 114.41 |
11 | 100 | 20 | 1:3 | 120.21 ± 2.40 | 120.26 |
12 | 200 | 25 | 1:3 | 132.45 ± 2.65 | 135.65 |
13 | 200 | 25 | 1:3 | 139.46 ± 2.79 | 135.65 |
14 | 300 | 30 | 1:3 | 117.22 ± 2.34 | 117.17 |
15 | 300 | 20 | 1:3 | 92.59 ± 1.85 | 94.36 |
16 | 300 | 25 | 1:4 | 106.61 ± 2.13 | 104.89 |
17 | 100 | 30 | 1:3 | 98.23 ± 1.96 | 94.18 |
Source | Sum of Squares | df | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 5966.95 | 9 | 662.99 | 50.44 | <0.0001 |
X1/Ultrasonic power | 0.20 | 1 | 0.20 | 0.015 | 0.9057 |
X2/Ultrasound time | 15.35 | 1 | 15.35 | 1.17 | 0.3157 |
X3/Solid–liquid ratio | 122.62 | 1 | 122.62 | 9.33 | 0.0185 |
X1X2 | 543.12 | 1 | 543.12 | 41.32 | 0.0004 |
X1X3 | 228.77 | 1 | 228.77 | 17.40 | 0.0042 |
X2X3 | 298.77 | 1 | 298.77 | 22.73 | 0.0020 |
1325.42 | 1 | 1325.42 | 100.83 | <0.0001 | |
495.42 | 1 | 495.42 | 37.69 | 0.0005 | |
2493.90 | 1 | 2493.90 | 189.72 | <0.0001 | |
Residual | 92.02 | 7 | 13.15 | ||
Lack of Fit | 66.18 | 3 | 22.06 | 3.41 | 0.1332 |
Pure Error | 25.84 | 4 | 6.46 | ||
Cor Total | 6058.96 | 16 | 50.44 | 50.44 | |
R2 = 0.9848 | = 0.9653 |
No. | Amino Acid Sequence | Amino Acid Number | Theo. MH + [Da] |
---|---|---|---|
1 | IFLQDIK | 7 | 875.51165 |
2 | TVNQALLDLHK | 11 | 1250.6983 |
3 | IAADKVDPHLCDFLETHYLGEQVEAIK | 27 | 3110.5383 |
4 | VDPHLCDFLETHYLGEQVEAIK | 22 | 2612.2581 |
5 | MAEYLFDK | 8 | 1015.4685 |
6 | DDVALPGFAHFFK | 13 | 1462.7245 |
7 | FLAFQNK | 7 | 866.46504 |
8 | DEWGSGLEAMQCALQLEK | 18 | 2063.9292 |
9 | IAADKVDPHLCDFLETHYLGEQVEAIKK | 28 | 3238.6332 |
10 | KPDRDEWGSGLEAMQCALQLEK | 22 | 2560.205 |
Working Parameters | Setpoint |
---|---|
Pump Rate | 20 r/min |
Nebulizer Flow | 1.00 L/min |
Auxiliary Gas | 1.00 L/min |
Sample Flush Time | 40 s |
RF Power | 1550 w |
Working Parameters | Iron Content Before Deferring (μg/L) | Iron Content After Decentralization (μg/L) | Iron Removal Rate (%) |
---|---|---|---|
northern pike | 7259.22 ± 18.51 | 393.17 ± 1.8 | 94.58 |
Factor | Level | ||||
---|---|---|---|---|---|
Extract pH | 7.0 | 7.5 | 8.0 | 8.5 | 9.0 |
Ultrasonic power (W) | 100 | 200 | 300 | 400 | 500 |
Ultrasound time (min) | 10 | 15 | 20 | 25 | 30 |
Solid–liquid ratio | 1:2 | 1:3 | 1:4 | 1:5 | 1:6 |
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
X1/Ultrasonic power (W) | 100 | 20 | 1:2 |
X2/Ultrasound time (min) | 200 | 25 | 1:3 |
X3/Solid–liquid ratio | 300 | 30 | 1:4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Wang, Y.; Wei, Y.; Guo, X.; Liang, X.; Deng, X.; Zhang, L.; Zhang, J. Ultrasound-Assisted Ferritin Extraction from Northern Pike Liver: An Innovative Approach for Chlorogenic Acid Encapsulation with Enhanced Thermal Stability. Molecules 2025, 30, 2080. https://doi.org/10.3390/molecules30092080
Xing Z, Wang Y, Wei Y, Guo X, Liang X, Deng X, Zhang L, Zhang J. Ultrasound-Assisted Ferritin Extraction from Northern Pike Liver: An Innovative Approach for Chlorogenic Acid Encapsulation with Enhanced Thermal Stability. Molecules. 2025; 30(9):2080. https://doi.org/10.3390/molecules30092080
Chicago/Turabian StyleXing, Zhikun, Yi Wang, Yabo Wei, Xin Guo, Xiaoyue Liang, Xiaorong Deng, Lianfu Zhang, and Jian Zhang. 2025. "Ultrasound-Assisted Ferritin Extraction from Northern Pike Liver: An Innovative Approach for Chlorogenic Acid Encapsulation with Enhanced Thermal Stability" Molecules 30, no. 9: 2080. https://doi.org/10.3390/molecules30092080
APA StyleXing, Z., Wang, Y., Wei, Y., Guo, X., Liang, X., Deng, X., Zhang, L., & Zhang, J. (2025). Ultrasound-Assisted Ferritin Extraction from Northern Pike Liver: An Innovative Approach for Chlorogenic Acid Encapsulation with Enhanced Thermal Stability. Molecules, 30(9), 2080. https://doi.org/10.3390/molecules30092080