Virtual Screening of Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and In Vitro Validation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking Screening Model Construction
2.2. Virtual Screening of Keap1 Inhibitors
2.3. ADMET Study for the Predicted Compounds
2.4. Molecular Dynamics (MD) Simulations for Chebulinic Acid and RA839
2.5. Validating the Predicted Results by In Vitro Experiment
Six Candidates Stimulated the Nrf2 Expression in HaCaT Cells
2.6. Penetration Study
3. Materials and Methods
3.1. Experimental Procedure
3.2. Materials
3.2.1. Reagents and Materials
3.2.2. Software for Molecular Docking and Visualization
3.3. Model Construction for Molecular Docking
3.3.1. Protein Preparation
3.3.2. Ligands Preparation
3.3.3. Docking Procedure
3.4. ADMET Study for the Candidate Inhibitors
3.5. Molecular Dynamics (MD) Simulations
3.6. Cell-Based Assays
3.6.1. Cell Culture and H2O2 Treatment
3.6.2. RNA Extraction and RT-qPCR Testing
3.7. Bioavailability Study for the Candidate Inhibitor
3.7.1. Silk Protein Encapsulation Technology
3.7.2. Franz Diffusion Cell (FDC)
3.7.3. UHPLC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, Y.; Dang, Y.; Gao, W.; Zhang, Y.; Xu, P.; Gu, J.; Ye, X. P38 and JNK signal pathways are involved in the regulation of phlorizin against UVB-induced skin damage. Exp. Dermatol. 2015, 24, 275–279. [Google Scholar] [CrossRef]
- Lee, C.W.; Ko, H.H.; Chai, C.Y.; Chen, W.T.; Lin, C.C.; Yen, F.L. Effect of Artocarpus communis Extract on UVB Irradiation-Induced Oxidative Stress and Inflammation in Hairless Mice. Int. J. Mol. Sci. 2013, 14, 3860–3873. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkur. Lekarski 2020, 48, 124–127. [Google Scholar]
- Lee, C.H.; Wu, S.B.; Hong, C.H.; Yu, H.S.; Wei, Y.H. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. Int. J. Mol. Sci. 2013, 14, 6414–6435. [Google Scholar] [CrossRef]
- Hwang, E.; Park, S.Y.; Lee, H.J.; Lee, T.Y.; Sun, Z.W.; Yi, T.H. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice. Phytother. Res. 2014, 28, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Mechqoq, H.; Hourfane, S.; El Yaagoubi, M.; El Hamdaoui, A.; da Silva Almeida, J.R.G.; Rocha, J.M.; El Aouad, N. Molecular Docking, Tyrosinase, Collagenase, and Elastase Inhibition Activities of Argan By-Products. Cosmetics 2022, 9, 24. [Google Scholar] [CrossRef]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999, 13, 76–86. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dayalan Naidu, S.; Dinkova-Kostova, A.T. Regulating Nrf2 activity: Ubiquitin ligases and signaling molecules in redox homeostasis. Trends Biochem. Sci. 2025, 50, 179–205. [Google Scholar] [CrossRef]
- El Kebbaj, R.; Bouchab, H.; Tahri-Joutey, M.; Rabbaa, S.; Limami, Y.; Nasser, B.; Egbujor, M.C.; Tucci, P.; Andreoletti, P.; Saso, L.; et al. The Potential Role of Major Argan Oil Compounds as Nrf2 Regulators and Their Antioxidant Effects. Antioxidants 2024, 13, 344. [Google Scholar] [CrossRef]
- Otake, K.; Ubukata, M.; Nagahashi, N.; Ogawa, N.; Hantani, Y.; Hantani, R.; Adachi, T.; Nomura, A.; Yamaguchi, K.; Maekawa, M.; et al. Methyl and Fluorine Effects in Novel Orally Bioavailable Keap1-Nrf2 PPI Inhibitor. ACS Med. Chem. Lett. 2023, 14, 658–665. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Jiang, X.; Du, H.; Shi, Y.; Xiu, M.; Liu, Y.; He, J. Natural products targeting Nrf2/ARE signaling pathway in the treatment of inflammatory bowel disease. Biomed. Pharmacother. 2023, 164, 114950. [Google Scholar] [CrossRef]
- Montes Diaz, G.; Hupperts, R.; Fraussen, J.; Somers, V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun. Rev. 2018, 17, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.F.; Fischer, P.D.; Coote, P.W.; Padmanabha Das, K.M.; Malets, Y.S.; Radchenko, D.S.; Moroz, Y.S.; Scott, D.A.; et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 2020, 580, 663–668. [Google Scholar] [CrossRef]
- Pallesen, J.S.; Tran, K.T.; Bach, A. Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases. J. Med. Chem. 2018, 61, 8088–8103. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, B.; Cheng, C.; Wang, Q.; Yang, L.; Li, Z.; Lv, X. Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease: Receptor structure-based virtual screening and biological evaluation. Chem. Biol. Interact. 2025, 408, 111390. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, H.; Encarnacion, A.M.; Jeong, J.; Choi, Y.; Park, S.; Lee, S.; Lee, T. Novel Inhibitor of Keap1-Nrf2 Protein-Protein Interaction Attenuates Osteoclastogenesis In Vitro and Prevents OVX-Induced Bone Loss In Vivo. Antioxidants 2024, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother. 2018, 105, 274–281. [Google Scholar] [CrossRef]
- Abdel-Naim, A.B.; Hassanein, E.H.M.; Binmahfouz, L.S.; Bagher, A.M.; Hareeri, R.H.; Algandaby, M.M.; Fadladdin, Y.A.J.; Aleya, L.; Abdel-Daim, M.M. Lycopene attenuates chlorpyrifos-induced hepatotoxicity in rats via activation of Nrf2/HO-1 axis. Ecotoxicol. Environ. Saf. 2023, 262, 115122. [Google Scholar] [CrossRef]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef]
- Boyenle, I.D.; Divine, U.C.; Adeyemi, R.; Ayinde, K.S.; Olaoba, O.T.; Apu, C.; Du, L.; Lu, Q.; Yin, X.; Adelusi, T.I. Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharmacol. Res. 2021, 167, 105577. [Google Scholar] [CrossRef]
- Cui, B.; Wang, Y.; Jin, J.; Yang, Z.; Guo, R.; Li, X.; Yang, L.; Li, Z. Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-Inflammatory, Antioxidant, and Antiapoptotic Properties, and Treats Photoaging by Upregulating VEGF-B Expression. Oxid. Med. Cell. Longev. 2022, 2022, 6037303. [Google Scholar] [CrossRef] [PubMed]
- Babiaka, S.B.; Simoben, C.V.; Abuga, K.O.; Mbah, J.A.; Karpoormath, R.; Ongarora, D.; Mugo, H.; Monya, E.; Cho-Ngwa, F.; Sippl, W.; et al. Alkaloids with Anti-Onchocercal Activity from Voacanga Africana Stapf (Apocynaceae): Identification and Molecular Modeling. Molecules 2020, 26, 70. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zhu, X.; Chen, Y.; Xu, B.; Bai, X.; Weng, X.; Xu, J.; Tao, Y.; Yang, D.; et al. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol. 2024, 69, 102987. [Google Scholar] [CrossRef]
- Liu, P.; Tian, W.; Tao, S.; Tillotson, J.; Wijeratne, E.M.K.; Gunatilaka, A.A.L.; Zhang, D.D.; Chapman, E. Non-covalent NRF2 Activation Confers Greater Cellular Protection than Covalent Activation. Cell Chem. Biol. 2019, 26, 1427–1435.e5. [Google Scholar] [CrossRef]
- Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ao, L.; Liu, P.; Wu, A.; Zhao, J.; Hu, X. Characterization of Soybean Protein Isolate-Food Polyphenol Interaction via Virtual Screening and Experimental Studies. Foods 2021, 10, 2813. [Google Scholar] [CrossRef] [PubMed]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nano Biotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Ribeiro, M.; Alvarenga, L.; Coutinho-Wolino, K.S.; Nakao, L.S.; Cardozo, L.F.; Mafra, D. Sulforaphane upregulates the mRNA expression of NRF2 and NQO1 in non-dialysis patients with chronic kidney disease. Free Radic. Biol. Med. 2024, 221, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Jin, G.; Gao, K.; Wang, S.; Zhang, X.; Zhou, K.; Cai, Y.; Zhou, X.; Zhao, Z. Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway. Phytomedicine 2023, 118, 154915. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhu, H.; Zhang, C.; Zhang, F.; Zhang, B.; Kaplan, D.L. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules 2012, 13, 826–832. [Google Scholar] [CrossRef]
- Bayraktar, O.; Oder, G.; Erdem, C.; Kose, M.D.; Cheaburu-Yilmaz, C.N. Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches. Int. J. Mol. Sci. 2023, 24, 9327. [Google Scholar] [CrossRef] [PubMed]
- Sohilait, M.R.; Pranowo, H.D.; Haryadi, W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation 2017, 13, 356–359. [Google Scholar] [CrossRef]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174, Erratum in: J. Comput. Chem. 2005, 26, 114. [Google Scholar] [CrossRef]
- Wang, X.; Liu, K.; Fu, S.; Wu, X.; Xiao, L.; Yang, Y.; Zhang, Z.; Lu, Q. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs. ACS Appl. Bio. Mater. 2023, 6, 74–82. [Google Scholar] [CrossRef]
- Bobasa, E.M.; Phan, A.D.T.; Netzel, M.E.; Cozzolino, D.; Sultanbawa, Y. Hydrolysable tannins in Terminalia ferdinandiana Exell fruit powder and comparison of their functional properties from different solvent extracts. Food Chem. 2021, 358, 129833. [Google Scholar] [CrossRef]
ChEMBL ID | IC50 (nM) | Binding Energy (kcal/mol) | Residual |
---|---|---|---|
3899754 | 0.14 | −11.6 | Phe557, Tyr334, Ser363, Arg415, ALa556, Ser508, Phe478, Arg483 |
3601212 | 14.40 | −9.3 | Arg483, Tyr525, Ser555, Ala556, Arg415, Tyr334, Ser363, Asn382 |
4544116 | 15.80 | −10.4 | Arg483, Tyr525, Gln530, Phe478, Asn414, Ala556, Ser602, Asn382 |
4757197 | 48.00 | −9.4 | Tyr572, Gln530, Ile559, Val512, Tyr525, Arg415, Arg483, Ile461, Phe478 |
4174651 | 60.00 | −9.7 | Asn382, Asn414, Ser363, Arg415, Tyr334, Ser602, Ala556, Ser555, Tyr525, Ser508, Arg483 |
4646536 | 73.00 | −9.2 | Ser508, Tyr525, Ser555, Ala556, Tyr334, Ser363, Arg415 |
4762197 | 120.00 | −10.4 | Ser363, Asn382, Tyr334, Arg415, Ala556, Phe577, Gln530 |
Compound | Binding Energy (kcal/mol) | Residuals | |
---|---|---|---|
Hydrogen bonding | Hydrophobic interactions | ||
Chebulinic acid | −10.4 | Ser363, Asn382, Asn414, Arg415, Ile461, Arg483, Tyr525, Gln530, Ser602 | Tyr334, Tyr525, Ala556 |
Angoroside C | −10.3 | Arg415, Arg483, Tyr525, Ser555, Ser602 | Tyr334, Arg415, Ala556 |
Sennoside B | −10.1 | Ser363, Asn382, Val418, Ile461, Val465, Ser508, Gly509, Val512, Tyr525, Gln530, Leu557, Ser602 | Tyr334, Arg415, Phe478, Tyr525, Ala556 |
Tubuloside B | −9.9 | Ser363, Asn382, Ile416, Val463, Arg483, Ser508, Gln530, Ser602, Tyr334, Arg415 | Tyr525, Ala556 |
Epmedin C | −9.8 | Arg483, Tyr525, Gln530, Ser555, Leu557 | Tyr334, Arg415, Ala556, Tyr572 |
Rabdosiin | −9.7 | Ser363, Asn382, Gly462, Arg483, Ser508, Tyr525, Gln530, Tyr572, Ser602 | Tyr334, Arg415, Tyr525, Ala556, Tyr572, Phe577 |
6‴-Feruloylspinosin | −9.3 | Ser363, Asn382, Asn414, Arg415, Arg483, Ser508, Tyr525, Gln530, Ser555, Ser602 | Tyr334, Arg415, Tyr525, Ala556 |
Forsythiaside A | −9.2 | Ser363, Gly364, Asn382, Arg415, Arg483, Ser508, Ala510, Gln530, Ala556 | Tyr334, Tyr525, Ala556 |
Cinnamtannin B-1 | −9.2 | Tyr334, Arg415, Arg483, Gly509, Tyr525, Gln530, Tyr572 | Tyr334, Tyr525, Ala556 |
Item | Complex of Chebulinic Acid | Complex of RA839 |
---|---|---|
ΔG total | −22.17 ± 3.93 | −33.85 ± 5.14 |
LE | 0.32 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Peng, Z.; Huang, D.; Zhou, Z. Virtual Screening of Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and In Vitro Validation. Molecules 2025, 30, 1815. https://doi.org/10.3390/molecules30081815
Huang Z, Peng Z, Huang D, Zhou Z. Virtual Screening of Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and In Vitro Validation. Molecules. 2025; 30(8):1815. https://doi.org/10.3390/molecules30081815
Chicago/Turabian StyleHuang, Zhengwan, Zhengang Peng, Dandan Huang, and Zhongyu Zhou. 2025. "Virtual Screening of Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and In Vitro Validation" Molecules 30, no. 8: 1815. https://doi.org/10.3390/molecules30081815
APA StyleHuang, Z., Peng, Z., Huang, D., & Zhou, Z. (2025). Virtual Screening of Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and In Vitro Validation. Molecules, 30(8), 1815. https://doi.org/10.3390/molecules30081815