Ensemble Machine Learning for the Prediction and Understanding of the Refractive Index in Chalcogenide Glasses
Abstract
1. Introduction
2. Results and Discussion
2.1. Performance of the Models
2.2. Prediction of the Refractive Index of Experimental Samples
2.3. SHAP Feature Importance and Interpretation
3. Methods
3.1. Data Acquisition
3.2. Features and Feature Selection
3.3. Machine Learning Workflow
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ChG | Chalcogenide Glass |
RFS | Recursive Feature Selector |
MAE | Mean Absolute Error |
MSE | Mean Squared Error |
RFR | Random Forest Regressor |
GBR | Gradient Boosting Regressor |
ADR | Adaptive Boosting (AdaBoost) Regressor |
ETR | Extremely Randomized Trees (ExtraTrees) Regressor |
HGBR | Histogram based Gradient (HistGradient) Boosting Regressor |
LGBMR | Light Gradient Boosting Machine (LightGBM) Regressor |
CATR | Categorical Boosting (CatBoost) Regressor |
XGBR | Extreme Gradient Boosting (XGBoost) Regressor |
Appendix A
Si% | Ge% | Te% | at 1550 nm |
---|---|---|---|
22.5 | 62.5 | 15.0 | 3.2 |
36.6 | 47.9 | 15.5 | 2.8 |
45.6 | 36.8 | 17.6 | 2.7 |
21.8 | 53.8 | 24.4 | 3.1 |
30.6 | 43.0 | 26.4 | 2.9 |
39.7 | 33.8 | 26.5 | 2.7 |
15.0 | 56.1 | 28.9 | 3.6 |
23.4 | 46.7 | 29.9 | 3.0 |
32.6 | 34.8 | 32.6 | 2.8 |
22.2 | 39.5 | 38.3 | 3.1 |
14.8 | 45.9 | 39.3 | 3.3 |
32.4 | 28.2 | 39.4 | 2.8 |
27.5 | 32.1 | 40.4 | 2.8 |
20.9 | 37.6 | 41.5 | 3.0 |
24.0 | 33.3 | 42.7 | 2.9 |
12.6 | 32.4 | 55.0 | 3.3 |
20.3 | 23.4 | 56.3 | 3.1 |
8.8 | 33.1 | 58.1 | 3.2 |
14.9 | 26.3 | 58.8 | 3.2 |
14.4 | 24.2 | 61.4 | 3.1 |
17.5 | 19.7 | 62.8 | 3.0 |
8.1 | 23.3 | 68.6 | 3.2 |
11.8 | 19.5 | 68.7 | 3.3 |
14.2 | 16.0 | 69.8 | 3.3 |
Function | Formula | Prefix/Suffix |
---|---|---|
Theoretical value | , where is the weight percentage and is the atomic weight of the element | th_ |
Mean | _mean | |
Range | _range | |
Occupation fraction | , where is the total number of valence electrons of the element | _frac |
Mismatch | _mismatch | |
Difference | _diff | |
Maximum | _max | |
Minimum | _min |
References
- Zhang, X.-H.; Adam, J.-L.; Bureau, B. Chalcogenide Glasses. In Springer Handbook of Glass; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 525–552. ISBN 9783319937267. [Google Scholar]
- Ikemoto, H.; Miyanaga, T. Local Structure of Amorphous Tellurium Studied by EXAFS. J. Synchrotron Rad. 2014, 21, 409–412. [Google Scholar] [CrossRef]
- Shelby, J.E. Introduction to Glass Science and Technology, 2nd ed.; RSC Advancing the Chemical Sciences; Royal Society of Chemistry: Cambridge, UK, 2005; pp. 203–205. ISBN 9780854046393. [Google Scholar]
- Einabadi, E.; Mashkoori, M. Predicting Refractive Index of Inorganic Compounds Using Machine Learning. Sci. Rep. 2024, 14, 24204. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, Z.; Yang, K.; Xu, X.; Bauchy, M. Machine Learning for Glass Science and Engineering: A Review. J. Non-Cryst. Solids X 2019, 4, 100036. [Google Scholar] [CrossRef]
- Mastelini, S.M.; Cassar, D.R.; Alcobaça, E.; Botari, T.; de Carvalho, A.C.P.L.F.; Zanotto, E.D. Machine Learning Unveils Composition-Property Relationships in Chalcogenide Glasses. Acta Mater. 2022, 240, 118302. [Google Scholar] [CrossRef]
- Singla, S.; Mannan, S.; Zaki, M.; Krishnan, N.M.A. Accelerated Design of Chalcogenide Glasses through Interpretable Machine Learning for Composition–Property Relationships. J. Phys. Mater. 2023, 6, 024003. [Google Scholar] [CrossRef]
- SciGlass/README.Md at Master. Epam/SciGlass. Available online: https://github.com/epam/SciGlass/blob/master/README.md (accessed on 3 June 2024).
- LinearRegression. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html (accessed on 15 February 2025).
- Mihai, C.; Sava, F.; Simandan, I.D.; Galca, A.C.; Burducea, I.; Becherescu, N.; Velea, A. Structural and Optical Properties of Amorphous Si–Ge–Te Thin Films Prepared by Combinatorial Sputtering. Sci. Rep. 2021, 11, 11755. [Google Scholar] [CrossRef]
- Welcome to the SHAP Documentation—SHAP Latest Documentation. Available online: https://shap.readthedocs.io/en/latest/ (accessed on 1 March 2025).
- Krishnan, N.M.A.; Kodamana, H.; Bhattoo, R. Interpretable Machine Learning. In Machine Learning for Materials Discovery; Springer International Publishing: Cham, Switzerland, 2024; pp. 159–171. ISBN 9783031446214. [Google Scholar]
- Kakiuchida, H.; Sekiya, E.H.; Shimodaira, N.; Saito, K.; Ikushima, A.J. Refractive Index and Density Changes in Silica Glass by Halogen Doping. J. Non-Cryst. Solids 2007, 353, 568–572. [Google Scholar] [CrossRef]
- Wang, T.; Wei, W.H.; Shen, X.; Wang, R.P.; Davies, B.L.; Jackson, I. Elastic Transition Thresholds in Ge–As(Sb)–Se Glasses. J. Phys. D Appl. Phys. 2013, 46, 165302. [Google Scholar] [CrossRef]
- Dory, J.-B.; Castro-Chavarria, C.; Verdy, A.; Jager, J.-B.; Bernard, M.; Sabbione, C.; Tessaire, M.; Fédéli, J.-M.; Coillet, A.; Cluzel, B.; et al. Ge–Sb–S–Se–Te Amorphous Chalcogenide Thin Films towards on-Chip Nonlinear Photonic Devices. Sci. Rep. 2020, 10, 11894. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, S.; Yang, Z.; Wang, R.; Yang, A.; Lucas, P. Composition Dependences of Refractive Index and Thermo-Optic Coefficient in Ge-As-Se Chalcogenide Glasses. J. Non-Cryst. Solids 2017, 459, 88–93. [Google Scholar] [CrossRef]
- Wen-Hou, W.; Liang, F.; Zhi-Yong, Y.; Xiang, S. Effect of Sb on Structure and Physical Properties of GeSbxSe7−x Chalcogenide Glasses. J. Inorg. Mater. 2014, 29, 1218. [Google Scholar] [CrossRef]
- Moss, T.S. A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors. Proc. Phys. Soc. B 1950, 63, 167–176. [Google Scholar] [CrossRef]
- Ticha, H.; Tichy, L. Remark on the Correlation between the Refractive Index and the Optical Band Gap in Some Crystalline Solids. Mater. Chem. Phys. 2023, 293, 126949. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimakawa, K. Amorphous Chalcogenide Semiconductors and Related Materials; Springer: New York, NY, USA, 2011; ISBN 9781441995094. [Google Scholar]
- Choi, J.W.; Han, Z.; Sohn, B.-U.; Chen, G.F.R.; Smith, C.; Kimerling, L.C.; Richardson, K.A.; Agarwal, A.M.; Tan, D.T.H. Nonlinear Characterization of GeSbS Chalcogenide Glass Waveguides. Sci. Rep. 2016, 6, 39234. [Google Scholar] [CrossRef] [PubMed]
- Petit, L.; Carlie, N.; Humeau, A.; Boudebs, G.; Jain, H.; Miller, A.C.; Richardson, K. Correlation between the Nonlinear Refractive Index and Structure of Germanium-Based Chalcogenide Glasses. Mater. Res. Bull. 2007, 42, 2107–2116. [Google Scholar] [CrossRef]
- Tostanoski, N.J.; Heilweil, E.J.; Wachtel, P.F.; Musgraves, J.D.; Sundaram, S.K. Structure-Terahertz Property Relationship and Femtosecond Laser Irradiation Effects in Chalcogenide Glasses. J. Non-Cryst. Solids 2023, 600, 122020. [Google Scholar] [CrossRef]
- Borisova, Z.U. Glassy Semiconductors; Springer: Boston, MA, USA, 1981; ISBN 9781475708530. [Google Scholar]
- Petit, L.; Carlie, N.; Adamietz, F.; Couzi, M.; Rodriguez, V.; Richardson, K.C. Correlation between Physical, Optical and Structural Properties of Sulfide Glasses in the System Ge–Sb–S. Mater. Chem. Phys. 2006, 97, 64–70. [Google Scholar] [CrossRef]
- Ticha, H.; Tichy, L. Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 2002, 4, 381–386. [Google Scholar]
- Kumar, P.; Tripathi, S.K.; Sharma, I. Effect of Bi Addition on the Physical and Optical Properties of Ge20Te74-Sb6Bi (x = 2, 4, 6, 8, 10) Thin Films Deposited via Thermal Evaporation. J. Alloys Compd. 2018, 755, 108–113. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1939. [Google Scholar]
- Phillips, J.C. Excitonic Instabilities and Bond Theory of III-VI Sandwich Semiconductors. Phys. Rev. 1969, 188, 1225–1228. [Google Scholar] [CrossRef]
- Aniya, M.; Shinkawa, T. A Model for the Fragility of Metallic Glass Forming Liquids. Mater. Trans. 2007, 48, 1793–1796. [Google Scholar] [CrossRef]
- Data—Mendeleev 0.20.1 Documentation. Available online: https://mendeleev.readthedocs.io/en/stable/data.html (accessed on 1 August 2023).
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials. npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, N.; Dwivedi, A.; Subramaniam, A. A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-Component Alloys. Intermetallics 2014, 53, 112–119. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Yang, Y.; Wang, J.; Liu, C.T. Atomic-Size Effect and Solid Solubility of Multicomponent Alloys. Scr. Mater. 2015, 94, 28–31. [Google Scholar] [CrossRef]
- Bharath, K.; Chelvane, J.A.; Kumawat, M.K.; Nandy, T.K.; Majumdar, B. Theoretical Prediction and Experimental Evaluation of Glass Forming Ability, Density and Equilibrium Point of Ta Based Bulk Metallic Glass Alloys. J. Non-Cryst. Solids 2019, 512, 174–183. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Fang, S.; Xiao, X.; Xia, L.; Li, W.; Dong, Y. Relationship between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses. J. Non-Cryst. Solids 2003, 321, 120–125. [Google Scholar] [CrossRef]
- Mansoori, G.A.; Carnahan, N.F.; Starling, K.E.; Leland, T.W. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres. J. Chem. Phys. 1971, 54, 1523–1525. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys. Mater. Trans. JIM 2000, 41, 1372–1378. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 97th ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2017; ISBN 9781498754293. [Google Scholar]
- Linstrom, P. NIST Chemistry WebBook, NIST Standard Reference Database 69; The National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Tandon, H.; Chakraborty, T.; Suhag, V. A New Scale of the Electrophilicity Index Invoking the Force Concept and Its Application in Computing the Internuclear Bond Distance. J. Struct. Chem. 2019, 60, 1725–1734. [Google Scholar] [CrossRef]
- Belciu, M.-I.; Velea, A. Prediction of glass formation ability in chalcogenides using machine learning algorithms. Adv. Sci. 2025; submitted. [Google Scholar]
- Mutual_info_regression. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html (accessed on 15 May 2024).
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating Mutual Information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- RFE. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html (accessed on 15 November 2024).
- RandomForestRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html (accessed on 15 November 2024).
- GradientBoostingRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html (accessed on 15 November 2024).
- AdaBoostRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html (accessed on 15 November 2024).
- ExtraTreesRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html (accessed on 15 November 2024).
- HistGradientBoostingRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html (accessed on 15 November 2024).
- Lightgbm.LGBMRegressor—LightGBM 4.6.0.99 Documentation. Available online: https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html (accessed on 15 November 2024).
- CatBoostRegressor. Available online: https://catboost.ai/docs/en/concepts/python-reference_catboostregressor (accessed on 15 November 2024).
- XGBoost Python Package—Xgboost 3.0.0 Documentation. Available online: https://xgboost.readthedocs.io/en/stable/python/index.html (accessed on 15 November 2024).
- Krishnan, N.M.A.; Kodamana, H.; Bhattoo, R. Non-Parametric Methods for Regression. In Machine Learning for Materials Discovery; Springer International Publishing: Cham, Switzerland, 2024; pp. 85–112. ISBN 9783031446214. [Google Scholar]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; Leanpub: Victoria, BC, Canada, 2020; ISBN 9780244768522. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd ed.; Data Science/Machine Learning; O’Reilly: Sebastopol, CA, 2023; ISBN 9781098125974. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Comparing Random Forests and Histogram Gradient Boosting Models. Available online: https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_hist_grad_boosting_comparison.html (accessed on 1 March 2025).
- Gradient Boosting Variants—Sklearn vs. XGBoost vs. LightGBM vs. CatBoost. Available online: https://datamapu.com/posts/classical_ml/gradient_boosting_variants/ (accessed on 1 March 2025).
- Wade, C.J. Hands-on Gradient Boosting with XGBoost and Scikit-Learn: Perform Accessible Machine Learning and Extreme Gradient Boosting with Python; Packt: Birmingham, UK, 2020; ISBN 9781839218354. [Google Scholar]
- van Wyk, A. Machine Learning with LightGBM and Python: A Practitioner’s Guide to Developing Production-Ready Machine Learning Systems, 1st ed.; Packt Publishing: Birmingham, UK, 2023; ISBN 9781800564749. [Google Scholar]
- Optuna—A Hyperparameter Optimization Framework. Available online: https://optuna.org/ (accessed on 1 February 2025).
Tuned Model/ Performance | Train Set | Cross-Validation Set | Test Set | Weighted Average Between Test and Cv | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | |||||
RFR | 0.047 | 0.005 | 0.970 | 0.081 | 0.014 | 0.864 | 0.097 | 0.021 | 0.865 | 0.090 | 0.018 | 0.865 |
GBR | 0.035 | 0.013 | 0.925 | 0.078 | 0.012 | 0.879 | 0.097 | 0.023 | 0.856 | 0.089 | 0.018 | 0.866 |
ADR | 0.056 | 0.004 | 0.977 | 0.096 | 0.020 | 0.809 | 0.118 | 0.028 | 0.820 | 0.108 | 0.024 | 0.815 |
ETR | 0.004 | 0.000 | 1.000 | 0.072 | 0.012 | 0.882 | 0.089 | 0.019 | 0.879 | 0.081 | 0.016 | 0.880 |
HGBR | 0.012 | 0.004 | 0.976 | 0.071 | 0.010 | 0.906 | 0.098 | 0.024 | 0.850 | 0.086 | 0.018 | 0.875 |
LGBMR | 0.062 | 0.009 | 0.949 | 0.083 | 0.015 | 0.859 | 0.099 | 0.022 | 0.859 | 0.092 | 0.019 | 0.859 |
CATR | 0.004 | 0.000 | 1.000 | 0.069 | 0.010 | 0.904 | 0.084 | 0.017 | 0.892 | 0.077 | 0.014 | 0.897 |
XGBR | 0.038 | 0.003 | 0.982 | 0.077 | 0.015 | 0.854 | 0.101 | 0.021 | 0.868 | 0.090 | 0.018 | 0.862 |
LR’s Input/Metrics | Base Set = Cross-Validation Set | Base Set = Cross-Validation Set + 5 Entries of the Train Set | ||||
---|---|---|---|---|---|---|
Train Set | Base Set | Test Set | Train Set | Base Set | Test Set | |
MAE | 0.0213 | 0.0673 | 0.0826 | 0.0187 | 0.0654 | 0.0810 |
MSE | 0.0009 | 0.0089 | 0.0161 | 0.0005 | 0.0086 | 0.0160 |
R2 | 0.9950 | 0.9130 | 0.8976 | 0.9972 | 0.9471 | 0.8985 |
Minimum | Maximum | Mean | Mode | 50% Quantile | Standard Deviation | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
1.95 | 4.34 | 2.55 | 2.30 | 2.40 | 0.40 | 1.31 | 1.19 |
25 Features | 30 Features | 33 Features | 35 Features | |
---|---|---|---|---|
RFR | 0.811 ± 0.065 | 0.818 ± 0.060 | 0.814 ± 0.060 | 0.814 ± 0.060 |
GBR | 0.779 ± 0.068 | 0.800 ± 0.061 | 0.783 ± 0.074 | 0.795 ± 0.067 |
ADR | 0.749 ± 0.081 | 0.757 ± 0.077 | 0.754 ± 0.081 | 0.762 ± 0.078 |
ETR | 0.813 ± 0.069 | 0.812 ± 0.074 | 0.819 ± 0.072 | 0.821 ± 0.071 |
HGBR | 0.807 ± 0.056 | 0.815 ± 0.053 | 0.813 ± 0.058 | 0.818 ± 0.054 |
LGBMR | 0.802 ± 0.059 | 0.818 ± 0.055 | 0.812 ± 0.060 | 0.818 ± 0.058 |
CATR | 0.816 ± 0.067 | 0.833 ± 0.062 | 0.829 ± 0.066 | 0.835 ± 0.067 |
XGBR | 0.804 ± 0.078 | 0.816 ± 0.064 | 0.799 ± 0.094 | 0.810 ± 0.069 |
Model/ | 30 Features Selected with MIR | RFS as Additional Filter | ||||||
---|---|---|---|---|---|---|---|---|
Train Set | Cross- Validation (Cv) Set | Test Set | Weighted Average Between Test and Cv | Train Set | Cross- Validation (cv) Set | Test Set | Weighted Average Between Test and cv| Final Number of Selected Features | |
RFR | 0.971 | 0.869 | 0.831 | 0.848 | 0.979 ↗ | 0.838 | 0.868 | 0.855 ↗ | 28 |
GBR | 0.974 | 0.861 | 0.823 | 0.840 | 0.976 ↗ | 0.845 | 0.848 | 0.847 ↗ | 23 |
ADR | 0.883 | 0.794 | 0.644 | 0.711 | 0.899 ↗ | 0.741 | 0.731 | 0.735 ↗ | 17 |
ETR | 1.000 | 0.879 | 0.864 | 0.871 | 1.000 = | 0.868 | 0.874 | 0.871 = | 28 |
HGBR | 0.976 | 0.885 | 0.822 | 0.850 | - | - | - | -| 30 |
LGBMR | 0.974 | 0.866 | 0.783 | 0.820 | 0.977 ↗ | 0.851 | 0.816 | 0.832 ↗ | 30 |
CATR | 0.996 | 0.890 | 0.862 | 0.874 | 0.996 = | 0.871 | 0.886 | 0.879 ↗ | 22 |
XGBR | 1.000 | 0.847 | 0.828 | 0.836 | 1.000 = | 0.807 | 0.849 | 0.830 ↘ | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belciu, M.-I.; Velea, A. Ensemble Machine Learning for the Prediction and Understanding of the Refractive Index in Chalcogenide Glasses. Molecules 2025, 30, 1745. https://doi.org/10.3390/molecules30081745
Belciu M-I, Velea A. Ensemble Machine Learning for the Prediction and Understanding of the Refractive Index in Chalcogenide Glasses. Molecules. 2025; 30(8):1745. https://doi.org/10.3390/molecules30081745
Chicago/Turabian StyleBelciu, Miruna-Ioana, and Alin Velea. 2025. "Ensemble Machine Learning for the Prediction and Understanding of the Refractive Index in Chalcogenide Glasses" Molecules 30, no. 8: 1745. https://doi.org/10.3390/molecules30081745
APA StyleBelciu, M.-I., & Velea, A. (2025). Ensemble Machine Learning for the Prediction and Understanding of the Refractive Index in Chalcogenide Glasses. Molecules, 30(8), 1745. https://doi.org/10.3390/molecules30081745