The Development Prospects and Potential of High Specific Surface Area Materials: A Review of the Use of Porous Framework Materials for the Capture and Filtration of Ammonia
Abstract
:1. Introduction
2. Ammonia Filtration Methods
2.1. Catalytic Oxidation Process
2.2. Membrane Separation
2.3. Biotechnology
2.4. Washing
2.5. Adsorption
3. Commonly Used Ammonia Adsorbents
3.1. Activated Carbon
3.2. Graphene Oxide
3.3. Zeolite
3.4. Metal Inorganic Compounds
4. PFMs in Ammonia Adsorption
4.1. COFs and HOFs
4.2. MOF Materials
4.3. PFM Composite Materials
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PFMs | Porous framework materials |
MOFs | Metal–organic frameworks |
COFs | Covalent organic frameworks |
HOFs | Hydrogen-bonded organic frameworks |
AC | Activated carbon |
GO | Graphene oxide |
References
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Demirhan, C.D.; Tso, W.W.; Powell, J.B.; Pistikopoulos, E.N. Sustainable ammonia production through process synthesis and global optimization. Aiche J. 2019, 65, 16498. [Google Scholar] [CrossRef]
- Hoepfner, M.; Volkamer, R.; Grabowski, U.; Grutter, M.; Orphal, J.; Stiller, G.; von Clarmann, T.; Wetzel, G. First detection of ammonia NH3 in the Asian summer monsoon upper troposphere. Atmos. Chem. Phys. 2016, 16, 14357–14369. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Chen, J.; Zhou, X. Adsorption of SO2 and NH3 onto copper/graphene nanosheets composites: Statistical physics interpretations, thermodynamic investigations, and site energy distribution analyses. Chem. Eng. J. 2022, 446, 137224. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Zhong, F.-Y.; Liu, Y.; Huang, K. Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents. ACS Sustain. Chem. Eng. 2019, 7, 10552–10560. [Google Scholar] [CrossRef]
- Travlou, N.A.; Bandosz, T.J. N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media. Carbon 2017, 117, 228–239. [Google Scholar] [CrossRef]
- Lee, H.S.; Kang, B.W.; Cheong, J.P.; Lee, S.K. Relationships between indoor and outdoor air quality during the summer seasons in Korea. Atmos. Environ. 1997, 31, 1689–1693. [Google Scholar] [CrossRef]
- Pei, J.; Yin, Y.; Liu, J. Long-term indoor gas pollutant monitor of new dormitories with natural ventilation. Energy Build. 2016, 129, 514–523. [Google Scholar] [CrossRef]
- Bai, Z.; Dong, Y.; Wang, Z.; Zhu, T. Emission of ammonia from indoor concrete wall and assessment of human exposure. Environ. Int. 2006, 32, 303–311. [Google Scholar] [CrossRef]
- Lopez-Aparicio, S.; Smolik, J.; Maskova, L.; Souckova, M.; Grontoft, T.; Ondrackova, L.; Stankiewicz, J. Relationship of indoor and outdoor air pollutants in a naturally ventilated historical building envelope. Build. Environ. 2011, 46, 1460–1468. [Google Scholar] [CrossRef]
- Cheng, N.-N.; Li, Z.-L.; Lan, H.-C.; Xu, W.-L.; Jiang, W.-J.; Huang, K.; Peng, H.-L. Deep eutectic solvents with multiple weak acid sites for highly efficient, reversible and selective absorption of ammonia. Sep. Purif. Technol. 2021, 269, 118791–118799. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem.-Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, S.; Chen, N.; Shang, D.; Zhang, X.; Li, J. Research progress of ammonia adsorption materials. Chin. J. Process Eng. 2019, 19, 14–24. [Google Scholar]
- Sun, M.; Wang, S.; Li, Y.; Xu, H.; Chen, Y. Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia. Appl. Surf. Sci. 2017, 402, 323–329. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Ning, P.; Song, Z.; Liu, X.; Duan, Y. In situDRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen. Appl. Surf. Sci. 2017, 419, 733–743. [Google Scholar] [CrossRef]
- Dumont, E.; Hamon, L.; Lagadec, S.; Landrain, P.; Landrain, B.; Andres, Y. NH3 biofiltration of piggery air. J. Environ. Manag. 2014, 140, 26–32. [Google Scholar] [CrossRef]
- Mudliar, S.; Giri, B.; Padoley, K.; Satpute, D.; Dixit, R.; Bhatt, P.; Pandey, R.; Juwarkar, A.; Vaidya, A. Bioreactors for treatment of VOCs and odours—A review. J. Environ. Manag. 2010, 91, 1039–1054. [Google Scholar] [CrossRef]
- Melse, R.W.; Ogink, N.W.M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the Netherlands. Trans. ASAE 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, Y.; Ding, J.; Zhou, H.; Zhang, Y.; Feng, Q.; Zhang, X.; Chen, K.; Wang, J.; Chen, Q.; et al. Tunable ammonia adsorption within metal-organic frameworks with different unsaturated metal sites. Molecules 2022, 27, 7847. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Xiong, H.; Cai, Y.; Zhang, B. Molecular catalysts for electrocatalytic ammonia oxidation. Sci. China-Chem. 2024, 67, 3976–3993. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.-J.; Dong, C.-L.; Wang, J.; Zhang, X.; Lyalin, A.; Taketsugu, T.; Chen, Z.; Guan, D.; Xu, X.; et al. Electrocatalytic ammonia oxidation to nitrite and nitrate with NiOOH-Ni. Adv. Energy Mater. 2024, 14, 2401675. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Li, T.; Dietiker, J.-F.; Rogers, W.; Panday, R.; Gopalan, B.; Breault, G. Investigation of CO2 capture using solid sorbents in a fluidized bed reactor: Cold flow hydrodynamics. Powder Technol. 2016, 301, 1130–1143. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, S.-J.; Kim, K.-H.; Lee, S.-H.; Park, H.-S.; Jeon, B.-H. Removal of hazardous hexavalent chromium from aqueous phase using zirconium oxide-immobilized alginate beads. Appl. Geochem. 2018, 88, 113–121. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. J. Colloid Interface Sci. 2010, 348, 615–620. [Google Scholar] [CrossRef]
- Teng, H.S.; Yeh, T.S.; Hsu, L.Y. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 1998, 36, 1387–1395. [Google Scholar] [CrossRef]
- Huang, C.-C.; Li, H.-S.; Chen, C.-H. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J. Hazard. Mater. 2008, 159, 523–527. [Google Scholar] [CrossRef]
- Qajar, A.; Peer, M.; Andalibi, M.R.; Rajagopalan, R.; Foley, H.C. Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous Mesoporous Mater. 2015, 218, 15–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Luo, W.; Yang, H.; He, Y.; Liu, Y.; Zhang, X.; Peng, G. Study on adsorption and desorption of ammonia on graphene. Nanoscale Res. Lett. 2015, 10, 359. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure. J. Phys. Chem. C 2007, 111, 15596–15604. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Rappeport, S.; Zheng, Z.; Wang, Z.; Han, Z.; Langer, J.; Economy, J. Activated carbon fiber composites for gas phase ammonia adsorption. Microporous Mesoporous Mater. 2016, 234, 146–154. [Google Scholar] [CrossRef]
- Bernal, M.P.; Lopezreal, J.M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresour. Technol. 1993, 43, 27–33. [Google Scholar] [CrossRef]
- Helminen, J.; Helenius, J.; Paatero, E.; Turunen, I. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. J. Chem. Eng. Data 2001, 46, 391–399. [Google Scholar] [CrossRef]
- Witter, E.; Kirchmann, H. Peat, zeolite and basalt as adsorbents of ammoniacal nitrogen during manure decomposition. Plant Soil 1989, 115, 43–52. [Google Scholar] [CrossRef]
- Taghipour, H.; Shahmansoury, M.R.; Bina, B.; Movahdian, H. Operational parameters in biofiltration of ammonia-contaminated air streams using compost-pieces of hard plastics filter media. Chem. Eng. J. 2008, 137, 198–204. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Vo, H.T.; Lee, G.; Kim, N.; Jang, S.; Joo, J.B. Bead-shaped mesoporous alumina adsorbents for adsorption of ammonia. Materials 2020, 13, 1375. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Wang, C.; Gao, X.; Zhou, Y.; Chen, B.; Li, P. Self-healing hydrogen-bonded organic frameworks for low-concentration ammonia capture. J. Am. Chem. Soc. 2023, 146, 627–634. [Google Scholar] [CrossRef]
- Johnsen, R.E.; Jensen, P.B.; Norby, P.; Vegge, T. Temperature- and Pressure-Induced Changes in the Crystal Structure of Sr(NH3)8Cl2. J. Phys. Chem. C 2014, 118, 24349–24356. [Google Scholar] [CrossRef]
- McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated polymer-based chemical sensors. Chem. Rev. 2000, 100, 2537–2574. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, C.-W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H.-Y.; Xiao, F.-S.; Ma, S. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 984–992. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Earl, L.D.; Abney, C.W.; Wojtas, L.; Thallapally, P.K.; Ma, S. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 2018, 30, 1705479. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, X.; Li, W.; Yang, Z.; Zhang, Y.; Zhao, J.; Chi, Z. Local dynamics in a hydrogen-bonded organic framework for adaptive guest accommodation with programmable luminescence. Chem 2023, 9, 1241–1254. [Google Scholar] [CrossRef]
- Petit, C.; Bandosz, T.J. Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents. Dalton Trans. 2012, 41, 4027–4035. [Google Scholar] [CrossRef] [PubMed]
- Binaeian, E.; El-Sayed, E.-S.M.; Matikolaei, M.K.; Yuan, D. Experimental strategies on enhancing toxic gases uptake of metal-organic frameworks. Coord. Chem. Rev. 2021, 430, 213738. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, H.; Zhao, Y.; Xia, Q.; Qiu, J.; Wang, J. Regulating the pore microenvironment of microporous metal-organic frameworks for efficient adsorption of low-concentration ammonia. ACS Sustain. Chem. Eng. 2022, 10, 10945–10954. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Wang, Z.; Zhao, Y.; Xia, Q.; Qiu, J.; Wang, H.; Wang, J. Ionic liquid hybrid metal-organic frameworks for efficient adsorption and selective separation of ammonia at high temperature. Chem. Eng. J. 2023, 464, 142728. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, W.; Ma, H. Application and challenge of metal/covalent organic frameworks in ammonia sorption and separation. ChemPlusChem 2024, 89, e202400236. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Li, G.; Jiang, G.; Zhao, Y.; Li, L.; Li, K.; Liang, G.; Gao, S.; Xi, H.; et al. High-efficiency capture of ammonia using hierarchically porous Zr-MOF nanoarchitectures under ambient conditions: Thermodynamics, kinetics, and mechanisms. Chem. Eng. J. 2022, 440, 135764. [Google Scholar] [CrossRef]
- Doonan, C.J.; Tranchemontagne, D.J.; Glover, T.G.; Hunt, J.R.; Yaghi, O.M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2010, 2, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, Y.; Shui, F.; Yi, M.; Zhang, Z.; Liu, X.; Zhang, L.; You, Z.; Yang, R.; Yang, S.; et al. Extremely stable sulfuric acid covalent organic framework for highly effective ammonia capture. Chin. J. Chem. 2022, 40, 2445–2450. [Google Scholar] [CrossRef]
- Ma, K.; Li, P.; Xin, J.H.; Chen, Y.; Chen, Z.; Goswami, S.; Liu, X.; Kato, S.; Chen, H.; Zhang, X.; et al. Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Rep. Phys. Sci. 2020, 1, 100024. [Google Scholar] [CrossRef]
- Kang, D.W.; Kang, M.; Kim, H.; Choe, J.H.; Kim, D.W.; Park, J.R.; Lee, W.R.; Moon, D.; Hong, C.S. A hydrogen-bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem.-Int. Ed. 2019, 58, 16152–16155. [Google Scholar] [CrossRef]
- Yang, Y.; Faheem, M.; Wang, L.; Meng, Q.; Sha, H.; Yang, N.; Yuan, Y.; Zhu, G. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 2018, 4, 748–754. [Google Scholar] [CrossRef]
- Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627. [Google Scholar] [CrossRef]
- Glover, T.G.; Peterson, G.W.; Schindler, B.J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170. [Google Scholar] [CrossRef]
- Jasuja, H.; Peterson, G.W.; Decoste, J.B.; Browe, M.A.; Walton, K.S. Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chem. Eng. Sci. 2015, 124, 118–124. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Li, J.; Ouyang, K.; Yang, J. Ammonia capture and flexible transformation of M-2(INA) (M = Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 2016, 306, 340–347. [Google Scholar] [CrossRef]
- Rieth, A.J.; Dincă, M. Controlled gas uptake in metal–organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 2018, 140, 3461–3466. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J. Competitive coadsorption of ammonia with water and sulfur dioxide on metal-organic frameworks at low pressure. Build. Environ. 2022, 207, 108421. [Google Scholar] [CrossRef]
- Snyder, B.E.R.; Turkiewicz, A.B.; Furukawa, H.; Paley, M.V.; Velasquez, E.O.; Dods, M.N.; Long, J.R. A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks. Nature 2023, 613, 287–291. [Google Scholar] [CrossRef]
- Han, X.; Lu, W.; Chen, Y.; da Silva, I.; Li, J.; Lin, L.; Li, W.; Sheveleva, A.M.; Godfrey, H.G.W.; Lu, Z.; et al. High ammonia adsorption in MFM-300 materials: Dynamics and charge transfer in host–guest binding. J. Am. Chem. Soc. 2021, 143, 3153–3161. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Z.; Chen, Y.; Idrees, K.B.; Hanna, S.L.; Wang, X.; Goetjen, T.A.; Sun, Q.; Islamoglu, T.; Farha, O.K. Benign integration of a Zn-azolate metal-organic framework onto textile fiber for ammonia capture. ACS Appl. Mater. Interfaces 2020, 12, 47747–47753. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Ma, K.; Chen, Z.; Wang, X.; Knapp, J.; Alayoglu, S.; Wang, F.; Xia, Q.; Li, Z.; et al. Zirconium-based metal-organic framework with 9-connected nodes for ammonia capture. ACS Appl. Nano Mater. 2019, 2, 6098–6102. [Google Scholar] [CrossRef]
- Wu, S.-F.; Yuan, B.-Z.; Wang, L.-W. MOF–ammonia working pairs in thermal energy conversion and storage. Nat. Rev. Mater. 2023, 8, 636–638. [Google Scholar] [CrossRef]
- Petit, C.; Bandosz, T.J. MOF-graphite oxide composites: Combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater. 2009, 21, 4753–4757. [Google Scholar] [CrossRef]
- More, M.S.; Bodkhe, G.A.; Singh, F.; Kim, M.; Shirsat, M.D. Metal–organic framework-reduced graphene oxide (Zn-BDC@rGO) composite for selective discrimination among ammonia, carbon monoxide, and sulfur dioxide. Appl. Phys. A 2023, 129, 828. [Google Scholar] [CrossRef]
- Han, G.; Li, F.; Guo, M.; Fan, H.; Guo, Q.; Yu, G. MIL-101(Cr) loaded simple ILs for efficient ammonia capture and selective separation. Chem. Eng. J. 2023, 471, 144545. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Xiong, D.; Li, Z.; Wang, H.; Xuan, X.; Wang, J. Metal chloride functionalized MOF-253(Al) for high-efficiency selective separation of ammonia from H2 and N2. Chem. Eng. J. 2023, 474, 145307. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Catalytic oxidation | Simple Stable | High energy requirements The generation of NOx |
Membrane separation | Low maintenance requirements Easy to install and operate | Low stability Low selectivity under low flux |
Biotechnology | Low pressure drops Low operating costs | Complex operation Bacteria release |
Washing | Large temperature ranges Sturdy scrubbers | Corrosion Furring |
Adsorption | Low cost Operatable under ambient conditions High selectivity Recycling | Limited capacity High regeneration energy |
COF/HOF | BET Surface Area (m2 g−1) | Adsorption Capacity (mmol g−1) | Temperature and Pressure | Ref. |
---|---|---|---|---|
HOF-101 | 2100 | 8.44 | 298 K, 1 atm | [37] |
FDU-HOF-3 | 310 | 9.34 | 298 K, 1 atm | |
COF-10 | 1200 | 15 | 298 K, 1 atm | [51] |
TpBD-(SO3H)2 | - | 11.5 | 298 K, 1 atm | [52] |
HOF-102 | 2500 | 11.16 | 298 K, 1 atm | [53] |
KUF-1a | - | 6.67 | 283 K, 1 atm | [54] |
[HOOC]17-COF | 652 | 6.85 | 298 K, 1 atm | [55] |
[HOOC]33-COF | 458 | 8.21 | 298 K,1 atm |
MOF | BET Surface Area (m2 g−1) | Adsorption Capacity (mmol g−1) | Temperature and Pressure | Ref. |
---|---|---|---|---|
MOF-5 | 2449 | 12.2 | 298 K, 1.05 atm | [56] |
MOF-177 | 3275 | 12.2 | 298 K, 1.05 atm | |
HKUST-1 | 909 | 6.8 | 298 K, 1 atm | |
Cu-MOF-74 | 1170 | 3.4 | 298 K, 1 atm | [57] |
Co-MOF-74 | 825 | 6.7 | 298 K, 1 atm | |
Mg-MOF-74 | 1206 | 7.6 | 298 K, 1 atm | |
UiO-66 | 1100 | 1.79 | 273 K, 1 atm | [58] |
UiO-66-NH2 | 1096 | 3.56 | 273 K, 1 atm | |
UiO-66-NO2 | 729 | 1.98 | 273 K, 1 atm | |
UiO-66-OH | 946 | 5.69 | 273 K, 1 atm | |
UiO-66-(OH)2 | 814 | 2.29 | 273 K, 1 atm | |
UiO-66-SO3H | 323 | 2.24- | 273 K, 1 atm | |
UiO-66-(COOH)2 | 221 | 2.83 | 273 K, 1 atm | |
CoCl2BTDD | - | 4.78 | 298 K, 1 atm | [60] |
CoCl2BBTA | 1106 | 8.56 | 298 K, 1 atm | |
CuCl2BBTA | 1205 | 7.52 | 298 K, 1 atm | |
Cu(cyhdc) | 490 | 17.5 | 298 K, 1 atm | [62] |
MFM-300(VIV) | 1565 | 17.3 | 273 K, 1 atm | [63] |
MFM-300(Fe) | 1192 | 16.1 | 273 K, 1 atm | |
MFM-300(VIII) | 1892 | 15.6 | 273 K, 1 atm | |
MFM-300(Cr) | 1045 | 14.0 | 273 K, 1 atm | |
NFU-4 | - | 17.7 | 298 K,1 atm | [64] |
NU-300 | 1470 | 8.41 | 298 K,1 atm | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, W.; Wu, W.; Liu, Y.; Zhu, B.; Xiao, J.; Zhang, T.; Xi, S. The Development Prospects and Potential of High Specific Surface Area Materials: A Review of the Use of Porous Framework Materials for the Capture and Filtration of Ammonia. Molecules 2025, 30, 1737. https://doi.org/10.3390/molecules30081737
Yao W, Wu W, Liu Y, Zhu B, Xiao J, Zhang T, Xi S. The Development Prospects and Potential of High Specific Surface Area Materials: A Review of the Use of Porous Framework Materials for the Capture and Filtration of Ammonia. Molecules. 2025; 30(8):1737. https://doi.org/10.3390/molecules30081737
Chicago/Turabian StyleYao, Wenhao, Wenying Wu, Yitong Liu, Bingfa Zhu, Jifa Xiao, Teng Zhang, and Senliang Xi. 2025. "The Development Prospects and Potential of High Specific Surface Area Materials: A Review of the Use of Porous Framework Materials for the Capture and Filtration of Ammonia" Molecules 30, no. 8: 1737. https://doi.org/10.3390/molecules30081737
APA StyleYao, W., Wu, W., Liu, Y., Zhu, B., Xiao, J., Zhang, T., & Xi, S. (2025). The Development Prospects and Potential of High Specific Surface Area Materials: A Review of the Use of Porous Framework Materials for the Capture and Filtration of Ammonia. Molecules, 30(8), 1737. https://doi.org/10.3390/molecules30081737