Robust and Hydrophobic Silica/Polyimide Aerogel with Pomegranate-like Structure for Thermal Insulation and Flame Retardancy up to 1300 °C
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Composition Analysis
2.2. Mechanical Properties
2.3. Thermal Insulation Performance
2.4. Flame Retardancy
2.5. Hydrophobicity
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Guo, C.N.; Huang, D.M.; Lin, P. Aggregate structural changes in silica aerogels with temperature. Emerg. Mater. Res. 2017, 6, 47–54. [Google Scholar] [CrossRef]
- Meador, M.A.B.; Malow, E.J.; Silva, R.; Wright, S.; Quade, D.; Vivod, S.L.; Guo, H.Q.; Guo, J.; Cakmak, M. Mechanically Strong, Flexible Polyimide Aerogels Cross-Linked with Aromatic Triamine. ACS Appl. Mater. Interfaces 2012, 4, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560. [Google Scholar] [CrossRef]
- Huang, D.M.; Guo, C.N.; Zhang, M.Z.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Pisal, A.A.; Rao, A.V. Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J. Porous Mater. 2016, 23, 1547–1556. [Google Scholar] [CrossRef]
- He, S.; Li, Z.; Shi, X.J.; Yang, H.; Gong, L.L.; Cheng, X.D. Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area. Adv. Powder Technol. 2015, 26, 537–541. [Google Scholar] [CrossRef]
- Zhang, R.B.; An, Z.M.; Zhao, Y.; Zhang, L.; Zhou, P. Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity. Int. J. Appl. Ceram. Technol. 2020, 17, 1531–1539. [Google Scholar] [CrossRef]
- Pierre, A.C.; Pajonk, G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002, 102, 4243–4265. [Google Scholar] [CrossRef]
- Niu, Z.W.; He, X.Y.; Huang, T.; Tang, B.C.; Cheng, X.; Zhang, Y.; Shao, Z.D. A facile preparation of transparent methyltriethoxysilane based silica xerogel monoliths at ambient pressure drying. Microporous Mesoporous Mater. 2019, 286, 98–104. [Google Scholar] [CrossRef]
- Wang, L.B.; Guo, R.L.; Ren, J.F.; Song, G.M.; Chen, G.X.; Zhou, Z.; Li, Q.F. Preparation of superhydrophobic and flexible polysiloxane aerogel. Ceram. Int. 2020, 46, 10362–10369. [Google Scholar] [CrossRef]
- Rezaei, S.; Zolali, A.M.; Jalali, A.; Park, C.B. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 2020, 561, 890–901. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Jang, H.G.; Kim, S.Y.; Yang, B. Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control. Compos. Sci. Technol. 2019, 171, 244–251. [Google Scholar] [CrossRef]
- Li, H.M.; Li, J.H.; Thomas, A.; Liao, Y.Z. Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived from a Schiff-Base Porous Organic Polymer Aerogel for CO2 Storage and Supercapacitors. Adv. Funct. Mater. 2019, 29, 1904785. [Google Scholar] [CrossRef]
- Yu, Z.L.; Yang, N.; Apostolopoulou-Kalkavoura, V.; Qin, B.; Ma, Z.Y.; Xing, W.Y.; Qiao, C.; Bergström, L.; Antonietti, M.; Yu, S.H. Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. Angew. Chem. Int. Ed. 2018, 57, 4538–4542. [Google Scholar] [CrossRef]
- Li, Z.; Gong, L.L.; Cheng, X.D.; He, S.; Li, C.C.; Zhang, H.P. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016, 99, 349–355. [Google Scholar] [CrossRef]
- Song, Q.Q.; Miao, C.Q.; Sai, H.Z.; Gu, J.; Wang, M.J.; Jiang, P.J.; Wang, Y.T.; Fu, R.; Wang, Y.X. Silica-bacterial cellulose composite aerogel fibers with excellent mechanical properties from sodium silicate precursor. Gels 2022, 8, 17–29. [Google Scholar] [CrossRef]
- Li, C.D.; Liu, Q.S.; Zhang, G.H.; Lin, L.L.; Ostrikov, K. Rapid synthesis of MTES-derived silica aerogel monoliths in Cetyltrimethylammonium bromide/water solvent system by ambient pressure drying. Powder Technol. 2023, 418, 118314. [Google Scholar] [CrossRef]
- Li, K.W.; He, S.; Du, C.H.; Guo, S.P.; Huang, Y.J. Ultra flexible silica aerogel with excellent mechanical properties for durable oil-water separation. J. Environ. Chem. Eng. 2024, 12, 113752. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.D.; Shi, L.; He, S.; Gong, L.L.; Li, C.C.; Zhang, H.P. Flammability and oxidation kinetics of hydrophobic silica aerogels. J. Hazard. Mater. 2016, 320, 350–358. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, Y.L.; Hu, J.H.; Wang, H.T. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach. ACS Appl. Mater. Interfaces 2020, 12, 47854–47864. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.P. Enhanced mechanical properties of double-walled carbon nanotubes reinforced silica aerogels: An all-atom simulation study. Scr. Mater. 2021, 196, 113757. [Google Scholar] [CrossRef]
- Slosarczyk, A. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites. Nanomaterials 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, D.P.; Xu, F.H.; Kong, Y.; Shen, X.D. Flexible Silica aerogel composites for Thermal Insulation under High-Temperature and Thermal-Force Coupling Conditions. ACS Appl. Nano Mater. 2024, 7, 6326–6338. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Xue, T.T.; Ma, Z.C.; Fan, W.; Liu, T.X. Mechanically Strong and Thermally Insulating Polyimide Aerogel Fibers Reinforced by Prefabricated Long Polyimide Fibers. ACS Appl. Mater. Interfaces 2023, 15, 12443–12452. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yang, J.; Cheng, Y.L.; Zhao, S.P.; Fan, J.P. Elastic, strong polyimide/boron oxide composite aerogel with high thermal stability properties. Mater. Lett. 2024, 371, 136933. [Google Scholar] [CrossRef]
- Liu, T.; Liang, F.W.; Chen, S.; Zhang, P.; Qian, K.; Xu, Y.; Guo, W.W. Aramid reinforced polyimide aerogel composites with high-mechanical strength for thermal insulation material. Polym. Adv. Technol. 2023, 34, 1769–1776. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Liu, C.; Wang, Z.; Wang, J.; Xu, G.Y.; Shi, H.W. Ultralow shrinkage polyimide hybrid composite aerogel enhanced with organic fibers for thermal protection. J. Appl. Polym. Sci. 2024, 141, 55759. [Google Scholar] [CrossRef]
- Xue, T.T.; Yu, Y.; Fu, Z.P.; Wang, Q.Y.; Hu, Z.Y.; Fan, W.; Liu, T.X. Double-network polyimide/silica aerogel fiber for thermal insulation under extremely hot and humid environment. Compos. Sci. Technol. 2023, 242, 110196. [Google Scholar] [CrossRef]
- Zhang, X.H.; Ni, X.X.; Li, C.X.; You, B.; Sun, G. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy. J. Mater. Chem. A 2020, 8, 9701–9712. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, T.; Kong, Y.; Zhao, Z.Y.; Zhu, K.M.; Zhang, X.Q.; Shen, X.D. Facile synthesis of phenolic-reinforced silica aerogel composites for thermal insulation under thermal-force coupling conditions. Ceram. Int. 2023, 49, 29820–29828. [Google Scholar] [CrossRef]
- Xi, S.; Wang, Y.J.; Zhang, X.X.; Cao, K.L.; Su, J.; Shen, J.; Wang, X.D. Fire-resistant polyimide-silica aerogel composite aerogels with low shrinkage, low density and high hydrophobicity for aerospace applications. Polym. Test. 2023, 129, 108259. [Google Scholar] [CrossRef]
- Wu, Y.W.; Ye, M.F.; Zhang, W.C.; Yang, R.J. Polyimide Aerogels Crosslinked through Cyclic Ladder-like and Cage Polyamine Functionalized Polysilsesquioxanes. J. Appl. Polym. Sci. 2017, 134, 45296. [Google Scholar] [CrossRef]
- Gao, R.; Zhou, Z.J.; Zhang, H.B.; Zhang, X.G.; Wu, Y.M. The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment. Materials 2023, 16, 4888. [Google Scholar] [CrossRef]
- Salihi, E.C.; Zarrabi, A.; Zarepour, A.; Gürboğa, M.; Niar, S.H.N.; Özakpınar, O.B.; Wang, J.; Datan, H.; Khosravi, A.; Šiller, L. Ambient pressure dried graphene oxide-silica composite aerogels as pharmaceutical nanocarriers. J. Sol-Gel Sci. Technol. 2025, 113, 548–558. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.Y.; Pan, D.F.; Hou, Y. Robust, Fire-Retardant, and Water-Resistant Wood/Polyimide composite aerogels with a Hierarchical Pore Structure for Thermal Insulation. Gels 2023, 9, 467–479. [Google Scholar] [CrossRef]
- LU, X.; Arduinischuster, M.C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R.W. Thermal conductivity of monolithic organic aerogels. Science 1992, 255, 971–972. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, J.Y.; Pan, D.F.; Zhao, L. Directional-Freezing-Assisted In Situ Sol-Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based composite aerogels for Thermal Insulation. Gels 2023, 9, 170–182. [Google Scholar] [CrossRef]
- Li, T.; Song, J.W.; Zhao, X.P.; Yang, Z.; Pastel, G.; Xu, S.M.; Jia, C.; Dai, J.Q.; Chen, C.J.; Gong, A.; et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, 3724. [Google Scholar] [CrossRef]
- Jelle, B.P. state-of-the-art and future thermal building insulation materials and solutions-Properties, requirements and possibilities. Energ. Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Gu, J.; Fu, R.; Kang, S.C.; Yang, X.; Song, Q.Q.; Miao, C.Q.; Ma, M.H.; Wang, Y.X.; Sai, H. Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating. Constr. Build. Mater. 2022, 341, 127722. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Cheng, Y.H.; Xu, C.J.; Gao, M.Y.; Zhu, M.F.; Jiang, L. Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. Adv. Funct. Mater. 2021, 31, 2009349. [Google Scholar] [CrossRef]
Samples | PMDA (g) | TFMB (g) | TAB (g) | Acetic Anhydride (mL) | Pyridine (mL) | NMP (mL) |
---|---|---|---|---|---|---|
Si/PI-0 | 0 | 0 | 0 | 0 | 0 | 0 |
Si/PI-2 | 0.231 | 0.32 | 0.01 | 0.75 | 0.64 | 24.86 |
Si/PI-4 | 0.231 | 0.32 | 0.01 | 0.75 | 0.64 | 11.74 |
Si/PI-6 | 0.231 | 0.32 | 0.01 | 0.75 | 0.64 | 7.36 |
Si/PI-8 | 0.231 | 0.32 | 0.01 | 0.75 | 0.64 | 5.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Pan, D. Robust and Hydrophobic Silica/Polyimide Aerogel with Pomegranate-like Structure for Thermal Insulation and Flame Retardancy up to 1300 °C. Molecules 2025, 30, 1709. https://doi.org/10.3390/molecules30081709
Chen J, Pan D. Robust and Hydrophobic Silica/Polyimide Aerogel with Pomegranate-like Structure for Thermal Insulation and Flame Retardancy up to 1300 °C. Molecules. 2025; 30(8):1709. https://doi.org/10.3390/molecules30081709
Chicago/Turabian StyleChen, Junyong, and Defang Pan. 2025. "Robust and Hydrophobic Silica/Polyimide Aerogel with Pomegranate-like Structure for Thermal Insulation and Flame Retardancy up to 1300 °C" Molecules 30, no. 8: 1709. https://doi.org/10.3390/molecules30081709
APA StyleChen, J., & Pan, D. (2025). Robust and Hydrophobic Silica/Polyimide Aerogel with Pomegranate-like Structure for Thermal Insulation and Flame Retardancy up to 1300 °C. Molecules, 30(8), 1709. https://doi.org/10.3390/molecules30081709