Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Network Pharmacology Reveals the Anti-Stress Potential of C. Rhizoma
2.2. Aqueous Extract of C. Rhizoma Boosts C. elegans Stress Resilience
2.3. C. Rhizoma Aqueous Extract Diminished ROS Levels and Elevated SOD Activity Under UV Stress
2.4. C. Rhizoma Potentiated Nematode UV Resistance via Insulin/IGF-1 Signaling Pathway
2.5. Molecular Docking Analysis of Curcumin Derivatives as Key Active Compounds for Anti-UV Stress Effects Through FoxO Binding
2.6. C. Rhizoma Aqueous Extract Extended C. elegans Lifespan and Improved Health Indicators
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of C. Rhizoma Solution
3.3. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) Analysis of C. Rhizoma Solution
3.4. Network Pharmacology
3.4.1. Target Collection of Disease
3.4.2. Acquisition and Prediction of Active Ingredients and Corresponding Targets of C. Rhizoma
3.4.3. C. Rhizoma Active Ingredient–Target–Disease Network and Protein Interaction Network
3.4.4. GO Enrichment Analysis and KEGG Pathway Analysis
3.5. C. elegans Strains and Culture
3.6. Stress Resistance Analysis
3.7. Detection of Effects of C. Rhizoma on UV Resistance in Mutant Nematodes
3.8. Nucleus Localization Analysis of DAF-16
3.9. Measurement of SOD-3 Expression in Nematodes
3.10. Detection of ROS Content in Nematodes
3.11. Assay of Superoxide Dismutase (SOD) Activity
3.12. Quantitative Real-Time PCR (qPCR)
3.13. Effects of C. Rhizoma on Health Indexes of Nematodes
3.14. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Polsky, L.R.; Rentscher, K.E.; Carroll, J.E. Stress-induced biological aging: A review and guide for research priorities. Brain Behav. Immun. 2022, 104, 97–109. [Google Scholar] [CrossRef]
- Bernstein, E.F.; Chen, Y.Q.; Kopp, J.B.; Fisher, L.; Brown, D.B.; Hahn, P.J.; Robey, F.A.; Lakkakorpi, J.; Uitto, J. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J. Am. Acad. Dermatol. 1996, 34, 209–218. [Google Scholar] [CrossRef]
- Ravanat, J.L.; Douki, T.; Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B 2001, 63, 88–102. [Google Scholar] [CrossRef]
- Sokolov, M.; Neumann, R. Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells. Int. J. Mol. Sci. Mol. Sci. 2014, 15, 588–604. [Google Scholar] [CrossRef]
- Nagayama, K.; Fukuei, T. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage. Biomech. Model Mechanobiol. 2020, 19, 493–504. [Google Scholar] [CrossRef]
- Tsatsou, F.; Trakatelli, M.; Patsatsi, A.; Kalokasidis, K.; Sotiriadis, D. Extrinsic aging: UV-mediated skin carcinogenesis. Dermatoendocrinol 2012, 4, 285–297. [Google Scholar] [CrossRef]
- Klaunig, J.E.; Wang, Z.; Pu, X.; Zhou, S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol. 2011, 254, 86–99. [Google Scholar] [CrossRef]
- Huang, J.; Okuka, M.; McLean, M.; Keefe, D.L.; Liu, L. Telomere susceptibility to cigarette smoke-induced oxidative damage and chromosomal instability of mouse embryos in vitro. Free Radic. Biol. Med. 2010, 48, 1663–1676. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Stadtman, E.R. Role of oxidant species in aging. Curr. Med. Chem. 2004, 11, 1105–1112. [Google Scholar] [CrossRef]
- Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 2002, 32, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- de Seabra Rodrigues Dias, I.R.; Lo, H.H.; Zhang, K.; Law, B.Y.K.; Nasim, A.A.; Chung, S.K.; Wong, V.K.W.; Liu, L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol. Res. 2021, 170, 105696. [Google Scholar] [CrossRef]
- Ren, J.; Wei, D.; An, H.; Zhang, J.; Zhang, Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. J. Ethnopharmacol. 2020, 263, 112869. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, J.; Chen, M.; Li, Z.; Tong, X.; Hu, H.; Xiang, Z.; Lu, C.; Dai, F. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology 2016, 17, 373–381. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Orhan, I.E.; Badiee, A.; Daglia, M.; Nabavi, S.M. Rhodiola rosea L. and Alzheimer’s Disease: From Farm to Pharmacy. Phytother. Res. 2016, 30, 532–539. [Google Scholar] [CrossRef]
- Dong, Q.; Chu, F.; Wu, C.; Huo, Q.; Gan, H.; Li, X.; Liu, H. Scutellaria baicalensis Georgi extract protects against alcohol-induced acute liver injury in mice and affects the mechanism of ER stress. Mol. Med. Rep. 2016, 13, 3052–3062. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.; Yang, H. Schisandra chinensis fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int. J. Mol. Sci. Mol. Sci. 2018, 19, 1970. [Google Scholar] [CrossRef]
- Cao, P.; Sun, J.; Sullivan, M.A.; Huang, X.; Wang, H.; Zhang, Y.; Wang, N.; Wang, K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int. J. Biol. Macromol. 2018, 111, 1133–1139. [Google Scholar] [CrossRef]
- Gao, H.; Yuan, X.; Wang, Z.; Gao, Q.; Yang, J. Profiles and neuroprotective effects of Lycium ruthenicum polyphenols against oxidative stress-induced cytotoxicity in PC12 cells. J. Food Biochem. 2020, 44, e13112. [Google Scholar] [CrossRef]
- Gao, T.H.; Liao, W.; Lin, L.T.; Zhu, Z.P.; Lu, M.G.; Fu, C.M.; Xie, T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine 2022, 102, 154090. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Hao, M.; Tong, H.; Su, L.; Fei, C.; Gu, W.; Mao, J.; Lu, T.; Mao, C. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1188, 123022. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of vurcuma species. Nutrients 2018, 10, 1196. [Google Scholar] [CrossRef]
- Zhao, P.; Qiu, J.; Pan, C.; Tang, Y.; Chen, M.; Song, H.; Yang, J.; Hao, X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. Phytomedicine 2023, 114, 154810. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Chen, J.; Zheng, Y.; Limsila, B.; Lu, M.; Gao, T.; Yang, Q.; Fu, C.; Liao, W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother. 2021, 138, 111350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, X.; Qu, Y.; Ding, Y. Curcumin alleviates oxygen-glucose-deprivation/reperfusion-induced oxidative damage by regulating miR-1287-5p/LONP2 Axis in SH-SY5Y cells. Anal. Cell Pathol. 2021, 2021, 5548706. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020, 26, 72–80. [Google Scholar] [CrossRef]
- Shen, P.; Yue, Y.; Park, Y. A living model for obesity and aging research: Caenorhabditis elegans. Crit. Rev. Food Sci. Nutr. 2018, 58, 741–754. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Liu, Y.; Dong, S.; Wen, Z.; He, W.; Zhang, S.; Huang, Q.; Shi, M. ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Mol. Cancer 2017, 16, 79. [Google Scholar] [CrossRef]
- Li, D.; Chen, R.; Xu, X.; Hou, Y.; Li, Z.; Huang, C.; Zhang, G.; Wang, B.; Li, B.; Chu, X. Integrated metabolomics and network pharmacology to reveal the mechanisms of Shexiang Baoxin pill against atherosclerosis. Phytomedcine 2024, 135, 156138. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.W.; Storey, K.B. mTOR Signaling in Metabolic Stress Adaptation. Biomolecules 2021, 11, 681. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Wang, F.; Rong, P.; Wang, J.; Yu, X.; Wang, N.; Wang, S.; Xue, Z.; Chen, J.; Meng, W.; Peng, X. Anti-osteoporosis effects and regulatory mechanism of Lindera aggregata based on network pharmacology and experimental validation. Food Funct. 2022, 13, 6419–6432. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 2001, 13, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Kaelin, W.G., Jr.; Ratcliffe, P.J. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Colman, M.J.; Dansen, T.B.; Burgering, B.M.T. FOXO transcription factors as mediators of stress adaptation. Nat. Rev. Mol. Cell Biol. 2024, 25, 46–64. [Google Scholar] [CrossRef]
- Martins, R.; Lithgow, G.J.; Link, W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016, 15, 196–207. [Google Scholar] [CrossRef]
- Furukawa-Hibi, Y.; Kobayashi, Y.; Chen, C.; Motoyama, N. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid. Redox Signal 2005, 7, 752–760. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, M.; Song, Y.; Wang, W.; Zhao, H.; Tian, Y.; Wang, Y.; Bai, S.; Zhao, Y.; Chen, X.; et al. Two traditional Chinese medicines Curcumae Radix and Curcumae R40hizoma: An ethnopharmacology, phytochemistry, and pharmacology Review. Evid. Based Complement. Alternat. Med. 2016, 2016, 4973128. [Google Scholar] [CrossRef]
- Concetta Scuto, M.; Mancuso, C.; Tomasello, B.; Laura Ontario, M.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, hormesis and the nervous system. Nutrients 2019, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, Z.; Lin, H.; Ma, Z.; Wang, J.; Wang, Y.; Yu, W. Rhizoma curcumae Longae ameliorates high dietary carbohydrate-induced hepatic oxidative stress, inflammation in golden pompano Trachinotus ovatus. Fish Shellfish Immunol. 2022, 130, 31–42. [Google Scholar] [CrossRef]
- Bahrami, A.; Sathyapalan, T.; Moallem, S.A.; Sahebkar, A. Counteracting arsenic toxicity: Curcumin to the rescue? J. Hazard. Mater. 2020, 400, 123160. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Yushanjiang, F.; Wang, G.; Zheng, X.; Jiang, X. Germacrone mitigates cardiac remodeling by regulating PI3K/AKT-mediated oxidative stress, inflammation, and apoptosis. Int. Immunopharmacol. 2023, 124, 110876. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, S.; Yang, Y.; Qin, W.; Wang, Z.; Zhao, Z.; Liu, T.; Wang, X.; Duan, T.; Liu, Y.; et al. Oroxylin A ameliorates ultraviolet radiation-induced premature skin aging by regulating oxidative stress via the Sirt1 pathway. Biomed. Pharmacother. 2024, 171, 116110. [Google Scholar] [CrossRef]
- Hideg, E.; Jansen, M.A.; Strid, A. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Poljsak, B.; Dahmane, R.G.; Godic, A. Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol. Alp. Pannonica Adriat. 2012, 21, 33–36. [Google Scholar]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Samuelson, A.V.; Carr, C.E.; Ruvkun, G. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 2007, 21, 2976–2994. [Google Scholar] [CrossRef]
- Lin, K.; Hsin, H.; Libina, N.; Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 2001, 28, 139–145. [Google Scholar] [CrossRef]
- Hsu, A.L.; Murphy, C.T.; Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 2003, 300, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.Y.; Hench, J.; Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 2001, 11, 1950–1957. [Google Scholar] [CrossRef]
- Debes, C.; Papadakis, A.; Gronke, S.; Karalay, O.; Tain, L.S.; Mizi, A.; Nakamura, S.; Hahn, O.; Weigelt, C.; Josipovic, N.; et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023, 616, 814–821. [Google Scholar] [CrossRef]
- How, C.M.; Yen, P.L.; Wei, C.C.; Li, S.W.; Liao, V.H. Early life exposure to di(2-ethylhexyl) phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environ. Pollut. 2019, 251, 871–878. [Google Scholar] [CrossRef]
- Kim, J.; Ishihara, N.; Lee, T.R. A DAF-16/FoxO3a-dependent longevity signal is initiated by antioxidants. Biofactors 2014, 40, 247–257. [Google Scholar] [CrossRef]
- Zecic, A.; Braeckman, B.P. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells 2020, 9, 109. [Google Scholar] [CrossRef]
- Li, S.T.; Zhao, H.Q.; Zhang, P.; Liang, C.Y.; Zhang, Y.P.; Hsu, A.L.; Dong, M.Q. DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis elegans to cope with internal stress. Aging Cell 2019, 18, e12896. [Google Scholar] [CrossRef]
- Lee, S.S.; Kennedy, S.; Tolonen, A.C.; Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003, 300, 644–647. [Google Scholar] [CrossRef]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 2022, 23, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in Docking. Curr. Med. Chem. 2019, 26, 7555–7580. [Google Scholar] [CrossRef]
- Holder, G.M.; Plummer, J.L.; Ryan, A.J. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica 1978, 8, 761–768. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Deb, L.; Prasad, S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014, 20, 185–205. [Google Scholar] [CrossRef]
- Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol. 2008, 76, 1590–1611. [Google Scholar] [CrossRef] [PubMed]
- Yoysungnoen, B.; Bhattarakosol, P.; Changtam, C.; Patumraj, S. Effects of tetrahydrocurcumin on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Biomed. Res. Int. 2016, 2016, 1781208. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, D.; Xie, J.; Lin, G.; Zhou, J.; Liu, W.; Li, H.; Yi, T.; Su, Z.; Chen, J. Octahydrocurcumin, a final hydrogenated metabolite of curcumin, possesses superior anti-tumor activity through induction of cellular apoptosis. Food Funct. 2018, 9, 2005–2014. [Google Scholar] [CrossRef]
- Deng, H.; Wan, M.; Li, H.; Chen, Q.; Li, R.; Liang, B.; Zhu, H. Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered 2021, 12, 9993–10006. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.H.; Wu, C.C.; Yu, J.S. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J. Cell Biochem. 2003, 90, 327–338. [Google Scholar] [CrossRef]
- Wu, Z.; Qu, J.; Zhang, W.; Liu, G.H. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol. Cell 2024, 84, 34–54. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Zhao, S.; Feng, R.; Gao, X.; Chen, G.; Zhao, T.; Zhang, C.; Fang, Z.; Guo, Z.; et al. Transcriptomics, proteomics, metabolomics and network pharmacology reveal molecular mechanisms of multi-targets effects of Shenxianshengmai improving human iPSC-CMs beating. Clin. Transl. Med. 2023, 13, e1302. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, Y.; Tan, J.; Sun, Y.; Guan, W.; Jiang, P.; Yang, B.; Kuang, H. Integrated serum metabolomics and network pharmacology approach to reveal the potential mechanisms of with an olides from the leaves of Datura metel L. on psoriasis. J. Pharm. Biomed. Anal. 2020, 186, 113277. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Jia, Q.; Sieburth, D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat. Commun. 2021, 12, 2304. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, R.; von Gromoff, E.D.; Drepper, F.; Knapp, B.; Warscheid, B.; Baumeister, R.; Qi, W. Reprogramming of the transcriptome after heat stress mediates heat hormesis in Caenorhabditis elegans. Nat. Commun. 2023, 14, 4176. [Google Scholar] [CrossRef]
- Marogi, J.G.; Murphy, C.T.; Myhrvold, C.; Gitai, Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat. Commun. 2024, 15, 7927. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Zhang, J.; Li, J.; Bai, S.; Ma, J.; Fu, X. Didymin improves UV irradiation resistance in C. elegans. PeerJ 2019, 6, e6218. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Bai, S.; Xing, S.; Li, W.; Ma, J.; Fu, X. Knockdown of LMW-PTP enhances stress resistance in Caenorhabditis elegans. Int. J. Biol. Macromol. 2018, 113, 1015–1023. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, J.; An, L.; Huang, T.; Wang, W.; Cheng, Z.; Wang, L.; Xu, X.; Zhao, Z.; Fu, X.; et al. Knockdown of phosphatases of regenerating liver-1 prolongs the lifespan of Caenorhabditis elegans via activating DAF-16/FOXO. FASEB J. 2023, 37, e22844. [Google Scholar] [CrossRef]
CAS./No. | Ingredient of C. Rhizoma * | Formula | Ingredient of C. Rhizoma Water Extract # | Formula | Retention Time | m/z Found | Mass Error (ppm) |
---|---|---|---|---|---|---|---|
19431-84-6 | Curcumenol | C15H22O2 | Curcumenol | C15H22O2 | 10.41 | 235.1691 | 0.5 |
Procurcumenol | C15H22O2 | 11.50 | 217.1587 | 0.2 | |||
Isoprocurcumenol | C15H22O2 | 9.23 | 217.1587 | 0.1 | |||
Curcumadione | C15H22O2 | 10.25 | 235.1690 | 0.7 | |||
458-37-7 | Curcumin | C21H20O6 | Tetrahydrocurcumin | C21H24O6 | 8.60 | 355.1541 | 0.4 |
Hexahydrocurcumin | C21H26O6 | 6.39 | 357.1697 | 0.3 | |||
Octahydrocurcumin | C21H28O6 | 7.63 | 341.1745 | −0.4 | |||
20085-85-2 | Epicurzerenone | C15H18O2 | Dihydropyrocurzerenone Pyrocurzerenone | C15H18O | 10.65 | 215.1431 | 0.3 |
C15H16O | 8.35 | 213.1274 | 0.3 | ||||
20303-60-0 | Germacrone | C15H22O | Germacrone | C15H22O | 9.68 | 219.1744 | 0.6 |
Target ID | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|
AKT1 | 91 | 0.09649359 | 0.77300613 |
TNF | 85 | 0.07968469 | 0.74117647 |
EGFR | 74 | 0.04810785 | 0.7 |
SRC | 74 | 0.06556073 | 0.70391061 |
HSP90AA1 | 73 | 0.03490242 | 0.68108108 |
MAPK3 | 72 | 0.03348627 | 0.68852459 |
STAT3 | 71 | 0.0303438 | 0.67379679 |
MTOR | 66 | 0.0192511 | 0.65284974 |
ESR1 | 61 | 0.03135785 | 0.64615385 |
CCND1 | 57 | 0.01591554 | 0.62376238 |
PTGS2 | 56 | 0.01927096 | 0.62686567 |
EP300 | 54 | 0.02552771 | 0.61764706 |
PPARG | 52 | 0.02037604 | 0.61463415 |
MMP9 | 52 | 0.01095982 | 0.60287081 |
RELA | 50 | 0.01085425 | 0.60576923 |
PIK3CA | 49 | 0.00798017 | 0.59433962 |
TLR4 | 46 | 0.01037593 | 0.59433962 |
MDM2 | 43 | 0.00577946 | 0.58333333 |
MAPK14 | 42 | 0.0046569 | 0.58064516 |
PPARA | 41 | 0.0158975 | 0.58333333 |
GSK3B | 41 | 0.00556238 | 0.57798165 |
JAK2 | 40 | 0.00410697 | 0.57013575 |
AR | 37 | 0.00515632 | 0.56756757 |
MAP2K1 | 37 | 0.00294822 | 0.56 |
CDK4 | 36 | 0.00395323 | 0.55752212 |
PRKCA | 36 | 0.00522523 | 0.56502242 |
APP | 35 | 0.01207911 | 0.56756757 |
LYN | 35 | 0.00356585 | 0.54077253 |
RAF1 | 35 | 0.00410561 | 0.55021834 |
NR3C1 | 34 | 0.019599 | 0.57013575 |
PTPN11 | 34 | 0.00315151 | 0.54782609 |
ABL1 | 33 | 0.00363776 | 0.55021834 |
CDK2 | 33 | 0.00300429 | 0.54545455 |
LCK | 33 | 0.00351632 | 0.55263158 |
HMOX1 | 33 | 0.00369027 | 0.55263158 |
PLCG1 | 32 | 0.00376055 | 0.54310345 |
PARP1 | 32 | 0.00320413 | 0.54310345 |
JAK1 | 30 | 0.00363108 | 0.525 |
ACE | 30 | 0.00980281 | 0.55506608 |
PGR | 30 | 0.0046664 | 0.55506608 |
PRKCB | 29 | 0.00545351 | 0.53389831 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
act-1 | 5′-GTCATGGTCGGTATGGGACA-3′ | 5′-TTCGTAGATTGGGACGGTGT-3′ |
daf-16 | 5′-TTTCCGTCCCCGAACTCAA-3′ | 5′-ATTCGCCAACCCATGATGG-3′ |
hsf-1 | 5′-TTGACGACGACAAGCTTCCAGT-3′ | 5′-AAAGCTTGCACCAGAATCATCCC-3′ |
hsp-16.1 | 5′-CCACTATTTCCGTCCAGCTC-3′ | 5′-TGGAGAGCCTCTGCAAACTG-3′ |
sod-3 | 5′-CTCTTTTGGGAGGAAGTTATGG-3′ | 5′-GCCAGTTGGTCAGAAGATAG-3′ |
hsp-16.2 | 5′-CTGCAGAATCTCTCCATCTGAGTC-3′ | 5′-AGATTCGAAGCAACTGCACC-3′ |
hsp-16.49 | 5′-GTCAAATCTGCAATTTCGAATG-3′ | 5′-CAAATAATGGGATAGAAGAG-3′ |
hsp-12.6 | 5′-TGGCCACTTCAAAAGGGAG-3′ | 5′-CTCTTTTGGAGGAAGTATGG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, L.; Zhao, Y.; Jiang, L.; Song, F.; An, L.; Qi, E.; Fu, X.; Chen, J.; Ma, J. Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans. Molecules 2025, 30, 1668. https://doi.org/10.3390/molecules30081668
Jing L, Zhao Y, Jiang L, Song F, An L, Qi E, Fu X, Chen J, Ma J. Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans. Molecules. 2025; 30(8):1668. https://doi.org/10.3390/molecules30081668
Chicago/Turabian StyleJing, Linyao, Yanlin Zhao, Lijun Jiang, Fei Song, Lu An, Edmund Qi, Xueqi Fu, Jing Chen, and Junfeng Ma. 2025. "Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans" Molecules 30, no. 8: 1668. https://doi.org/10.3390/molecules30081668
APA StyleJing, L., Zhao, Y., Jiang, L., Song, F., An, L., Qi, E., Fu, X., Chen, J., & Ma, J. (2025). Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans. Molecules, 30(8), 1668. https://doi.org/10.3390/molecules30081668