Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides
Abstract
1. Introduction
2. Results
2.1. Spectroscopic Characterization of Citrus Flavanone Diglycosides and Aglycones
2.2. Microplate Spectroscopic Method for Rapid Evaluation of Substrate Selectivity of Mesophilic α-L-Rhamnosidases on Citrus Flavanone Diglycosides
2.3. Substrate Selectivity of α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Diglycosides by HPLC
2.4. Structral Basis for Substrtae Selectivity of α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Reagents
4.2. UV-Visible Spectra of Citrus Flavanones
4.3. Preparation of Standard Curves of Citrus Flavanone by UV-Visible Spectroscopy Using Microplate
4.4. Over-Expression and Purification of α-L-Rhamnosidases and β-D-Glucosidase
4.5. Activity Assay of α-L-Rhamnosidases by UV-Visible Spectroscopy Using Microplate
4.6. Activity Assay of α-L-Rhamnosidases by HPLC
4.7. Enzyme Kinetics of α-L-Rhamnosidases by HPLC
4.8. High Performance Liquid Chromatography (HPLC)
4.9. Molecular Docking of α-L-Rhamnosidases with Flavonoid Glycosides and Structural Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, V.; Yadav, P.K.; Yada, S.; Yadav, K.D.S. α-L-Rhamnosidase: A review. Process Biochem. 2010, 45, 1226–1235. [Google Scholar] [CrossRef]
- Cui, Z.; Maruyama, Y.; Mikami, B.; Hashimoto, W.; Murata, K. Crystal structure of glycoside hydrolase family 78 alpha-L-rhamnosidase from Bacillus sp. GL1. J. Mol. Biol. 2007, 374, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, J.B.; Almo, S.C.; Bresnick, A. New York-Structural GenomiX Research Consortium (NYSGXRC): A large scale center for the protein structure initiative. J. Struct. Funct. Genom. 2005, 6, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Guillotin, L.; Kim, H.; Traore, Y.; Moreau, P.; Lafite, P.; Coquoin, V.; Nuccio, S.; de Vaumas, R.; Daniellou, R. Biochemical characterization of the α-L-rhamnosidase DtRha from Dictyoglomus thermophilum: Application to the selective derhamnosylation of natural flavonoids. ACS Omega 2019, 4, 1916–1922. [Google Scholar] [CrossRef]
- O’Neill, E.C.; Stevenson, C.E.; Paterson, M.J. Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins 2015, 83, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Z.; Jackson, A.; Michikawa, M. The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J. Biol. Chem. 2013, 288, 12376–12385. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Makabe, K.; Ishida, N.; Kanezaki, N.; Shiono, Y.; Koseki, T. Aspergillus oryzae α-L-rhamnosidase: Crystal structure and insight into the substrate specificity. Proteins 2024, 92, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Pachl, P.; Škerlová, J.; Šimčíková, D. Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. Acta Crystallogr. D Struct. Biol. 2018, 74, 1078–1084. [Google Scholar] [CrossRef]
- Li, L.J.; Peng, C.; Gong, J.Y.; Liu, X.Q.; Li, W.J.; Zhu, Y.B.; Ni, H.; Li, Q.B. Improving alkaline stability of α-L-rhamnosidase from Aspergillus niger through computational strategy combines with folding free energy and binding free energy. Biochem. Eng. J. 2023, 200, 109075. [Google Scholar] [CrossRef]
- Li, L.J.; Liu, X.Q.; Du, X.P.; Wu, L.; Jiang, Z.D.; Ni, H.; Li, Q.B.; Chen, F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep. Biochem. Biotechnol. 2020, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Céliz, G.; Rodriguez, J.; Soria, F.; Daz, M. Synthesis of hesperetin 7-O-glucoside from flavonoids extracted from citrus waste using both free and immobilized α-L-rhamnosidases. Biocatal. Agric. Biotechnol. 2015, 4, 335–341. [Google Scholar] [CrossRef]
- Luo, C.M.; Ke, L.F.; Huang, X.Y.; Zhuang, X.Y.; Xiao, A.F.; Zhang, Y.H. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb. Technol. 2024, 175, 110410. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Wu, Z.Y.; Yu, Y.; Zhang, L.J.; Zhu, Y.B.; Ni, H.; Chen, F. Development and characterization of an α-L-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chem. 2018, 245, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Spagma, G.; Barbagallo, R.N.; Martino, A.; Pifferi, P.G. A simple method of purifying glycosidase: α-L-rhamnopyranosidases from Aspergillus niger to increase the aroma of Moscato wine. Enzyme Microb. Technol. 2000, 27, 522–530. [Google Scholar] [CrossRef]
- Ni, H.; Xiao, A.F.; Wang, Y.Q.; Chen, F.; Cai, H.N.; Su, W.J. Development and evaluation of an HPLC method for accurate determinations of enzyme activities of naringinase complex. J. Agric. Food Chem. 2013, 61, 10026–10032. [Google Scholar] [CrossRef]
- Monti, D.; Pisvejcová, A.; Kren, V.; Lama, M.; Riva, S. Generation of an α-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004, 87, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.C.; Zhao, J.; Zhang, N.; Xu, H.; Yang, J.; Ye, J.; Jiang, J.C. Efficient production of isoquercitin, icariin and icariside II by a novel thermostable α-L-rhamnosidase PodoRha from Paenibacillus odorifer with high α-1, 6-/α-1, 2-glycoside specificity. Enzym. Microb. Technol. 2022, 158, 110039. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Guardia, L.M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2006, 104, 466–479. [Google Scholar] [CrossRef]
- Ciftci, O.; Ozcan, C.; Kamisli, O.; Cetin, A.; Basak, N.; Aytac, B. Hesperidin, a citrus flavonoid, Has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem. Res. 2015, 40, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lei, H.H.; Chen, G.; Chen, C.; Song, Y.; Cao, Z.; Zhang, C.; Zhang, C.; Zhou, J.; Lu, Y.; et al. In vitro and in vivo studies reveal that hesperetin-7-O-glucoside, a naturally occurring monoglucoside, exhibits strong anti-inflammatory capacity. J. Agri. Food Chem. 2021, 69, 12753–12762. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res. 2021, 92, 21–31. [Google Scholar] [CrossRef]
- Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother. Res. 2020, 34, 3137–3147. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, K.; Boda, A.K.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorg. Med. Chem. Lett. 2019, 29, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell Longev. 2019, 10, 5484138. [Google Scholar] [CrossRef] [PubMed]
- Slámová, K.; Kapešová, J.; Valentová, K. “Sweet flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19, 2126. [Google Scholar] [CrossRef]
- Chang, H.Y.; Lee, Y.B.; Bae, H.A.; Huh, J.Y.; Nam, S.H.; Sohn, S.H.; Lee, H.J.; Lee, S.B. Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chem. 2011, 124, 234–241. [Google Scholar] [CrossRef]
- Lee, Y.S.; Huh, J.Y.; Nam, S.H.; Moon, S.K.; Lee, S.B. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012, 135, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Choi, H.D.; Eom, H.; Choi, I. Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chem. 2013, 139, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Huang, B.; Lei, L.; Lu, Y.J.; Zhou, J.L.; Wong, W.L. Production of high antioxidant activity flavonoid monoglucosides from citrus flavanone with immobilised α-L-rhamnosidase in one step. Int. J. Food Sci. Technol. 2019, 54, 2854–2862. [Google Scholar] [CrossRef]
- Hashimoto, W.; Miyake, O.; Nankai, H.; Murata, K. Molecular identification of an α-L-rhamnosidase from Bacillus sp. strain GL1 as an enzyme involved in complete metabolism of gellan. Arch. Biochem. Biophys. 2003, 415, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, B.L.; Xie, T.; Li, G.C.; Tuo, Y.; Xiang, Y.T. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnol. Lett. 2015, 37, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.H.; Hyun, Y.J.; Shim, J.; Hong, S.W.; Kim, D.H. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J. Microbiol. Biotechnol. 2015, 25, 18–25. [Google Scholar] [CrossRef]
- Zverlov, V.V.; Hertel, C.; Bronnenmeier, K.; Hroch, A.; Kellermann, J.; Schwarz, W.H. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: Biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol. Microbiol. 2000, 35, 173–179. [Google Scholar] [CrossRef]
- Ávila, M.; Jaquet, M.; Moine, D.; Requena, T.; Peláez, C.; Arigoni, F.; Jankovic, I. Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 2009, 155, 2739–2749. [Google Scholar] [CrossRef]
- Beekwilder, J.; Marcozzi, D.; Vecchi, S.; de Vos, R.; Janssen, P.; Francke, C.; van Hylckama Vlieg, J.; Hall, R.D. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009, 75, 3447–3454. [Google Scholar] [CrossRef]
- Michlmayr, H.; Brandes, W.; Eder, R.; Schümann, C.; del Hierro, A.M.; Kulbe, K.D. Characterization of two distinct glycosyl hydrolase family 78 α-L-rhamnosidases from Pediococcus acidilactici. Appl. Environ. Microbiol. 2011, 77, 6524–6530. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, H.; Fujimoto, Z.; Kaneko, S. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Biosci. Biotechnol. Biochem. 2013, 77, 213–216. [Google Scholar] [CrossRef]
- Hákon, B.; Gudmundur, O.H.; Olafur, H.F.; Andrew, M.; Jakob, K.K.; Bo, M. Two new thermostable α-L-rhamnosidases from a novel thermophilic bacterium. Enzym. Microb. Technol. 2004, 34, 561–571. [Google Scholar]
- Rabausch, U.; Ilmberger, N.; Streit, W.R. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases. J. Biotechnol. 2014, 191, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Weiz, G.; Breccia, J.D.; Mazzaferro, L.S. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV-visible spectrometry. Food Chem. 2017, 229, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Pozzo, T.; Megyeri, M.; Lindahl, S.; Sundin, A.; Turner, C.; Karlsson, E.N. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochem. 2011, 12, 11. [Google Scholar] [CrossRef]
- Mazzaferro, L.S.; Breccia, J.D. Quantification of hesperidin in citrus-based foods using a fungal diglycosidase. Food Chem. 2012, 134, 2338–2344. [Google Scholar] [CrossRef] [PubMed]
- Li, B.C.; Peng, B.; Zhang, T.; Li, Y.Q.; Ding, G.B. A spectrophotometric method for high-throughput screening of α-L-rhamnosidase activity on rutin coupled with a β-D-glucosidase assay. 3 Biotech 2019, 9, 227. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.Q.; Ding, G.B. Target discovery of novel α-L-rhamnosidases from human fecal netagenome and application for biotransformation of natural flavonoid glycosides. Appl. Biochem. Biotechnol. 2019, 189, 1245–1261. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 3.0; Schrödinger, LLC.: New York, NY, USA, 2024.
Enzymes | Organism | GenBank Accession | Selectivity on Natural Flavonoid Glycosides | Ref. |
---|---|---|---|---|
RhaB | Bacillus sp. GL1 | BAB62315 | Might catalyzed naringin | [34] |
BbRha | Bifidobacterium breve 689b | CP006715 | Might hydrolyzed hesperidin, naringin and rutin | [35] |
BdRham | Bifidobacterium dentium K-13 | AGS77942 | Might biotransformed naringin and rutin Could not hydrolyze quercitrin | [36] |
RamA | Clostridium stercorarium | AJ238748 | Might hydrolyzed hesperidin and naringin | [37] |
DtRha | Dictyoglomus thermophilum | ACI19983 | High activities on naringin, neodiosimin and neohesperidin Low activities on narirutin, diosimin and hesperidin | [4] |
KoRha | Klebsiella oxytoca | YP_005019950 | Might catalyzed rutin | [5] |
RhaB2 | Lactobacillus plantarum NCC245 | ACR19005 | Might hydrolyzed hesperidin and rutin Could not catalyze naringin and quercitrin | [38] |
RhaB1 | Lactobacillus plantarum NCC245 | ACR19007 | Might hydrolyzed hesperidin and rutin Could not catalyze naringin and quercitrin | [38] |
Ram1 | Lactobacillus plantarum WCFS1 | CAD65558 | Might hydrolyzed narirutin and rutin Low bioconversion rate on naringin | [39] |
Ram2 | Pediococcus acidilactici | WP_004165637 | Might hydrolyzed hesperidin and rutin | [40] |
Ram | Pediococcus acidilactici | EFL96112 | Might biotransformed rutin Low bioconversion rate on hesperidin | [40] |
SaRha78A | Streptomyces avermitilis MA-4680 | BAC68538 | Might biotransformed naringin and rutin Low bioconversion rate on hesperidin | [41] |
RhmB | Thermomicrobia bacterium PRI-1686 | AAR96047 | Might hydrolyzed hesperidin and naringin Could not hydrolyze rutin | [42] |
RhmA | Thermomicrobia bacterium PRI-1686 | AAR96046 | Might hydrolyzed hesperidin and naringin Slightly hydrolyzed rutin | [42] |
RhaB1 | Elephant feces metagenome | ZP01961192 | Low bioconversion rates on naringin and rutin | [43] |
Substrates | Glycosidic Bonds | Specific Activity (U g−1) | |||
---|---|---|---|---|---|
BtRha78A | HFM-RhaA | HFM-RhaC | HFM-Rha78 | ||
Rutin | α-1,6 | 84.6 ± 2.0 | 1313.1 ± 44.9 | 188.6 ± 6.6 | 13.9 ± 0.2 |
Troxerutin | α-1,6 | 13.9 ± 1.5 | 312.5 ± 9.2 | 62.9 ± 4.6 | 13.2 ± 0.3 |
Quercitrin | α-1 | NA | NA | NA | NA |
Myricetrin | α-1 | NA | NA | NA | NA |
Icariin | α-1 | NA | NA | NA | NA |
Diosmin | α-1,6 | 2050.7 ± 14.1 | NA | 1886.3 ± 3.0 | NA |
Rhoifolin | α-1,2 | NA | 1184.0 ± 19.3 | 43.1 ± 3.5 | 415.0 ± 15.7 |
Hesperidin | α-1,6 | 1399.0 ± 38.4 | 14.3 ± 0.6 | 2228.9 ± 34.8 | NA |
Neohesperidin | α-1,2 | NA | 1699.6 ± 54.2 | 259.5 ± 6.5 | 88.5 ± 1.0 |
Methy hesperidin | α-1,6 | 1205.1 ± 20.0 | 7.9 ± 0.6 | 1590.1 ± 3.4 | NA |
Naringin | α-1,2 | NA | 1925.4 ± 44.7 | 203.8 ± 1.3 | 129.4 ± 1.6 |
Narirutin | α-1,6 | 2034.1 ± 43.4 | 26.1 ± 0.8 | 2361.5 ± 56.4 | NA |
Neohesperidin dihydrochalcone | α-1,2 | NA | 1464.6 ± 5.4 | 86.6 ± 0.4 | 24.7 ± 0.7 |
Naringin dihydrochalcone | α-1,2 | NA | 1258.6 ± 26.6 | 60.5 ± 1.5 | 25.3 ± 2.0 |
BtRha78A | HFM-RhaA | HFM-RhaC | HFM-Rha78 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrates | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) |
Rutin | 0.47 | 2.38 | 199.5 | 5.62 | 1.24 | 4546.6 | 2.31 | 5.05 | 457.9 | ND | ND | ND |
Hesperidin | 8.73 | 2.78 | 3138.8 | ND | ND | ND | 58.38 | 2.16 | 27,025.0 | ND | ND | ND |
Neohesperidin | ND | ND | ND | 5.39 | 0.53 | 10,154.0 | 3.33 | 3.25 | 1025.8 | 0.56 | 3.97 | 140.0 |
Naringin | ND | ND | ND | 25.91 | 1.92 | 13,512.0 | 1.50 | 2.29 | 654.2 | 1.44 | 5.97 | 240.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.-C.; Wu, B.; Hou, X.; Ding, G.-B. Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules 2025, 30, 980. https://doi.org/10.3390/molecules30050980
Li B-C, Wu B, Hou X, Ding G-B. Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules. 2025; 30(5):980. https://doi.org/10.3390/molecules30050980
Chicago/Turabian StyleLi, Bin-Chun, Bingbing Wu, Xueting Hou, and Guo-Bin Ding. 2025. "Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides" Molecules 30, no. 5: 980. https://doi.org/10.3390/molecules30050980
APA StyleLi, B.-C., Wu, B., Hou, X., & Ding, G.-B. (2025). Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules, 30(5), 980. https://doi.org/10.3390/molecules30050980